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APPROXIMATION LIMITATIONS OF PURE DYNAMIC
PROGRAMMING\ast 
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Abstract. We prove the first, even superpolynomial, lower bounds on the size of tropical
(min,+) and (max,+) circuits approximating given optimization problems. Many classical dynamic
programming (DP) algorithms for optimization problems are pure in that they only use the basic min,
max, + operations in their recursion equations. Tropical circuits constitute a rigorous mathematical
model for this class of algorithms. An algorithmic consequence of our lower bounds for tropical circuits
is that the approximation powers of pure DP algorithms and greedy algorithms are incomparable.
That pure DP algorithms can hardly beat greedy in approximation is long known. New in this
consequence is that the converse also holds.
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1. Introduction. A combinatorial optimization problem is specified by a finite
set of ground elements and a family F of subsets of these elements, called feasible
solutions. The problem itself then is, given an assignment of nonnegative real weights
to the ground elements, to compute the minimum or the maximum weight of a feasible
solution, the latter being the sum of weights of its elements.

The family F of feasible solutions itself can be described explicitly, or as the set of
0-1 solutions of a system of linear inequalities (as in linear programming), or by other
means. It is only important that F does not depend on the actual input weighting:
the family F is the same for all arriving input weightings.

For example, in the minimum weight spanning tree (MST) problem on a given
graph, feasible solutions are spanning trees of this graph (viewed as sets of their edges),
and the problem is to compute the minimum weight of a spanning tree of this graph.
In the assignment problem, feasible solutions are perfect matchings in a complete
bipartite graph, etc.

Dynamic programming (DP) is a fundamental algorithmic paradigm for solving
combinatorial optimization problems. Many classical DP algorithms are pure in that
they only apply the basic operations (min,+) or (max,+) in their recursion equations.
Note that these are the only operations used in the definitions of the optimization
problems themselves.

Notable examples of pure DP algorithms for combinatorial optimization problems
are the well-known Bellman--Ford--Moore shortest s-t path algorithm [4, 11, 22], the
Floyd--Warshall all-pairs shortest paths algorithm [9, 29] (see Figure 1.1), the Held--
Karp traveling salesman algorithm [14], and the Dreyfus--Levin--Wagner Steiner tree
algorithm [6, 19]. The Viterbi (max,\times ) DP algorithm [28] is also a pure (min,+) DP
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Fig. 1.1. A fragment of a tropical (min,+) circuit of size O(n3) implementing the Floyd--
Warshall DP algorithm for the all-pairs lightest paths on Kn problem. At the gate gk(i, j), the
minimum weight of a path from i to j, which only uses nodes 1, . . . , k as inner nodes, is computed.

algorithm via the isomorphism h : (0, 1] \rightarrow \BbbR + given by h(x) =  - lnx.
The main question we ask in this paper is: How many operations are necessary for

pure DP algorithms to approximate a given combinatorial optimization problem within
a given factor? That is, we are interested in proving lower bounds on the number of
performed operations.

A natural mathematical model for pure (min,+) and (max,+) DP algorithms
is that of tropical circuits. A tropical (min,+) circuit is a directed acyclic graph
whose each indegree-zero node holds either one of the input variables x1, . . . , xn or a
nonnegative real constant, and every other node (a gate) has indegree two and computes
either the minimum or the sum of the values computed at its two predecessors. Tropical
(max,+) circuits are defined similarly. The size of a circuit is the total number of its
gates. Note that pure (min,+) and (max,+) DP algorithms are just special (recursively
constructed) tropical circuits (see Figure 1.1). So, lower bounds on the size of tropical
circuits show limits of these pure DP algorithms.

In this paper, we prove the first nontrivial, even superpolynomial, lower bounds for
approximating tropical circuits and, hence, also for approximating pure DP algorithms.

Recall that an algorithm approximates a given optimization problem f within
a factor r \geqslant 1 (or r-approximates f) if for every input weighting x (a vector of n
nonnegative real numbers) the output value of the algorithm lies:

\circ between f(x) and r \cdot f(x), in the case when f is a minimization problem;
\circ between f(x)/r and f(x), in the case when f is a maximization problem.

The factor r may depend on the length n of the inputs x, but not on the inputs x
themselves. In both cases, the smaller the factor r is, the better the approximation.
In particular, factor r = 1 means that the problem is solved exactly.

One of our motivations for proving lower bounds on the number of operations
performed by approximating pure DP algorithms is to compare their approximation
power with that of the greedy algorithm; see Appendix A for what we mean by the
greedy algorithm.

That the greedy algorithm can have much worse approximation behavior than
pure DP algorithms is long known. Namely, there are many optimization problems
easily solvable by pure DP algorithms using a small number of (min,+) or (max,+)
operations, but the greedy algorithm cannot achieve any nontrivial approximation
factor (smaller than the maximum number of elements in feasible solutions). Examples
of such problems are the maximum weight independent set in a tree, the maximum
weight simple path in a transitive tournament problem, and many other problems.
To give a trivial example, note that the problem f(x) = max\{ x1, x2 + \cdot \cdot \cdot + xn\} can
be solved (within factor r = 1) by a trivial pure (max,+) DP algorithm performing
only n - 1 operations, but the greedy algorithm cannot achieve any smaller than an
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r = n - 1 approximation factor for this problem (see Proposition A.1 in Appendix A).
But what about the converse direction? Can pure DP algorithms also have worse
approximation behavior than greedy?

Apparently, the first indication that greedy can also beat pure DP was given
by Jerrum and Snir [15]. They proved that every (min,+) circuit solving (exactly,
within factor r = 1) the directed MST problem on n-vertex graphs (known also as the
arborescence problem) requires 2\Omega (n) gates. Since the family of feasible solutions of
the arborescence problem is an intersection of two matroids, the greedy algorithm can
approximate this problem within factor r = 2. This result was later improved in [17]
by showing that also the undirected MST problem, which can already be solved by the
greedy algorithm exactly, requires (min,+) circuits of size 2\Omega (

\surd 
n) to be solved exactly.

But what if pure DP algorithms are only required to approximate a given opti-
mization problem within some factor r > 1? Can greedy algorithms achieve smaller
approximation factors than efficient pure DP algorithms? Our lower bounds on the
size of approximating tropical circuits answer this question in the affirmative.

Below we summarize our main results. Since the approximation behaviors of
tropical (min,+) and (max,+) circuits turned out to be completely different, we
consider minimization and maximization problems separately.

2. Main results. Recall that a combinatorial optimization problem f(x1, . . . , xn)
is specified by giving some family F \subseteq 2[n] of feasible solutions. The problem itself
is then, given an input weighting x \in \BbbR n

+, to compute either the minimum or the
maximum weight

\sum 
i\in S xi of a feasible solution S \in F. To indicate the total number

n of ground elements, we will also write fn instead of just f .

Minimization. The boolean version of a minimization problem fn is the mono-
tone boolean function which, given a set of ground elements, decides whether this set
contains at least one feasible solution of fn.

Result 1 (boolean bound for (min,+) circuits; Theorem 4.3). If the boolean
version of a minimization problem fn requires monotone boolean (\vee ,\wedge ) circuits of size
> t, then no tropical (min,+) circuit of size \leqslant t can approximate fn within any finite
factor r = r(n) \geqslant 1.

That is, if a tropical (min,+) circuit has fewer than t gates, then regardless of
how large an approximation factor r we will allow, there will be an input weighting
on which the circuit makes an error: the computed value on this input will be either
strictly smaller or more than r times larger than the optimal value.

Together with known lower bounds for monotone boolean circuits, Result 1 yields
the same lower bounds for tropical (min,+) circuits approximating the corresponding
minimization problems.

Take, for example, the assignment problem: given a nonnegative weighting of the
edges of the complete bipartite n\times n graph, compute the minimum weight of a perfect
matching. Jerrum and Snir [15] have proved that any (min,+) circuit solving this
problem exactly (within the factor r = 1) must have 2\Omega (n) gates. On the other hand,
together with Razborov's monotone circuit lower bound for the logical permanent
function [26], Result 1 implies that a polynomial in n number of gates is not sufficient
to approximate this problem even when an arbitrarily large approximation factor is
allowed: for any finite approximation factor r = r(n) \geqslant 1, at least n\Omega (\mathrm{l}\mathrm{o}\mathrm{g}n) gates are
necessary to approximate the assignment problem within the factor r.

By combining the boolean bound (Result 1) with counting arguments, we show
that the greedy algorithm can beat approximating pure (min,+) DP algorithms on
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some minimization problems.

Result 2 (greedy can beat (min,+) circuits; Theorem 4.6). There are doubly
exponentially many in n minimization problems fn such that the greedy algorithm
solves fn exactly, but any (min,+) circuit approximating fn within any finite factor
r = r(n) \geqslant 1 must have 2\Omega (n) gates.

Our proof of Result 1 is fairly simple, but it only gives us an ``absolute"" lower
bound on the number of gates below which no tropical (min,+) circuit can approximate
a given minimization problem within any factor. More interesting (and less simple),
however, is the fact that, after an appropriate definition of the ``semantic degree"" of
monotone boolean circuits (subsection 7.1), a converse of Result 1 also holds: the
approximation power of tropical (min,+) circuits is captured (not only lower bounded)
by the computational power of monotone boolean circuits of bounded semantic degree.

Result 3 (converse of the boolean bound; Theorem 7.1). A minimization problem
f can be approximated within a factor r by a tropical (min,+) circuit of size t if and
only if the boolean version of f can be computed by a monotone boolean (\vee ,\wedge ) circuit
of size t and semantic degree at most r.

We prove this result in section 7 using convexity arguments. Yet another con-
sequence of these arguments is (see Remark 6.1) that, in order to show that the
minimization problem on a family F \subseteq 2[n] of feasible solutions can be r-approximated
by a (min,+) circuit of size t, it is enough to design a monotone arithmetic (+,\times )
circuit of size \leqslant t such that the polynomial computed by this circuit has the follow-
ing two properties (where we, as customary, only consider monomials with nonzero
coefficients):

1. for every monomial
\prod 

i\in T xdi
i there is a set S \in F with S \subseteq T ;

2. for every set S \in F there is a monomial
\prod 

i\in T xdi
i with T = S and all di \leqslant r.

That is, we can approximate minimization problems by designing monotone arithmetic
circuits of bounded degree. This is a (rough) upper bound on the size of approximating
(min,+) circuits in terms of arithmetic circuits. Result 3 gives a tight bound, but in
terms of boolean circuits.

Maximization. It turned out that not only the approximation behaviors of
(min,+) and (max,+) circuits are different (approximation factors may be unbounded
in the former model, while they are always bounded in the latter model), but also the
task of proving lower bounds for approximating (max,+) circuits is far more difficult
than that for (min,+) circuits.

The point is that for approximating (max,+) circuits, even Shannon-type counting
arguments fail (see subsection 5.1). In particular, there are doubly exponentially many
in n maximization problems fn such that (max,+) circuits require 2\Omega (n) gates to
solve any of them exactly (within the factor r = 1), but one single (max,+) circuit of
size O(n2) approximates each of these problems within a just slightly larger than 1
factor r = 1 + o(1) (Proposition 5.2). Such a jump in circuit size occurs also on
random maximization problems (Proposition 5.3). Moreover, there are also explicit
maximization problems fn that require (max,+) circuits of size at least 2n/4 to solve
them exactly (within factor r = 1), but can be approximated within the factor r = 2
by using only n gates (Theorem 5.4).

Warned by these facts, we go much deeper (than in the case of minimization) into
the structure of approximating (max,+) circuits and prove a general ``rectangle lower
bound"" for them.

Let F be a family of feasible solutions. A rectangle is a family of sets specified by
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a pair A,B of families satisfying A \cap B = \emptyset for all A \in A and B \in B. The rectangle
R = A\vee B itself consists of all sets A\cup B with A \in A and B \in B. The rectangle R lies
below F if every set of R is contained in at least one set of F. Given an approximation
factor r \geqslant 1, we say that a set F \in F appears r-balanced in the rectangle R if there are
sets A \in A and B \in B such that F shares \geqslant | F | /r elements with A\cup B, and \geqslant | F | /3r
elements with both A and B.

Result 4 (rectangle bound; special case of Theorem 5.9). If in any rectangle lying
below F, at most a 1/t portion of sets of F appears r-balanced, then every (max,+)
circuit approximating the maximization problem on F within the factor r must have
at least t gates.

Using the rectangle bound, we show that already a slight decrease of the allowed
approximation factors r can make tractable problems intractable, and that this happens
for arbitrarily large factors r. In the following result formalizing this phenomenon,
\epsilon > 0 is an arbitrarily small constant.

Result 5 (factor hierarchy theorem; Theorem 5.12). For every prime power m
and integer 1 \leqslant d \leqslant m, there is an explicit maximization problem fn on n = m2

ground elements which can be approximated within the factor r = m/d by a (max,+)
circuit of size 3n, but any (max,+) circuit approximating fn within the factor (1 - \epsilon )r
must have at least n\epsilon d/4 gates.

Finally, using the rectangle bound, we show that there are explicit maximization
problems fn such that (max,+) circuits of polynomial in n size cannot achieve even
an exponentially larger factor than the factor achieved by the greedy algorithm on fn.

Result 6 (greedy can beat (max,+) circuits; Theorem 5.13). For every integer
r \geqslant 6, there are explicit maximization problems fn such that the greedy algorithm
approximates fn within the factor r, but every (max,+) circuit approximating fn
within the factor 2r/9 must have 2n

\Omega (1)

gates.

Families of feasible solutions of the maximization problems fn in Result 5 are par-
ticular combinatorial designs, while those in Result 6 are families of perfect matchings
in r-partite r-uniform hypergraphs.

The algorithmic message. As we already mentioned above, it was long known
that for some combinatorial optimization problems, greedy algorithms can have much
worse approximation behavior than pure DP algorithms. Thus, Results 2 and 6 imply
that the approximation powers of greedy and pure DP algorithms are incomparable:
on some optimization problems, pure DP algorithms can also have much worse
approximation behavior than greedy.

Why ``only"" pure DP? In this paper, we only consider pure (min,+) and
(max,+) DP algorithms. Nonpure DP algorithms may use other arithmetic operations,
rounding, as well as very powerful operations like conditional branchings (via if-then-
else constraints), argmin, argmax, etc. The presence of such operations makes the
corresponding circuit models no longer amenable for analysis using known mathematical
tools. In particular, such DP algorithms have the full power of arithmetic circuits as
well as of unrestricted boolean (\vee ,\wedge ,\neg ) circuits (for example, \neg x is a simple conditional
branching operation if x = 0 then 1 else 0). Let us stress that our goal is to prove
(unconditional) lower bounds. In the context of this task, even proving lower bounds
for exactly solving (min,+, - ) circuits (tropical circuits with subtraction operation
allowed) remains a challenge (see subsection 8.4).
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Organization. In section 3, we recall the concept of sets produced by circuits and
show that when approximating combinatorial optimization problems, we can safely
assume that tropical circuits are constant-free, that is, contain no constants as inputs
(Lemma 3.2). Sections 4 to 7 are devoted to the proofs of our main results. Results 1
and 2 are proved in section 4, and Results 4 to 6 are proved in section 5. In section 6, we
use convexity arguments (Farkas's lemma) to give a tight structural connection between
the sets of feasible solutions of optimization problems to be approximated and the sets
of feasible solutions produced by approximating tropical circuits. In section 7, we prove
the converse of our boolean lower bound for approximating (min,+) circuits (Result 3).
The concluding section (section 8) contains some open problems. In Appendix A, we
recall greedy algorithms. In Appendix B, we exhibit an exponential (almost maximal
possible) decrease in the size of (max,+) circuits on explicit maximization problems
when going from the approximation factor r = 1 (exact solution) to factor r = 2.

Notation. Throughout the paper, \BbbN = \{ 0, 1, 2, . . .\} will denote the set of all
nonnegative integers, [n] = \{ 1, 2, . . . , n\} the set of the first n positive integers, \BbbR + the
set of all nonnegative real numbers, and 2E the family of all subsets of a set E. Also, \vec{}0
will denote the all-0 vector, and \vec{}ei will denote the 0-1 vector with exactly one 1 in the
ith position. For sets A,B \subseteq \BbbR n of vectors, their Minkowski sum (or sumset) is the set
of vectors A+B = \{ a+ b : a \in A, b \in B\} \subseteq \BbbR n, where a+ b = (a1 + b1, . . . , an + bn)
is the componentwise sum of vector a and b. That is, we add every vector of B to
every vector of A. For a real vector a = (a1, . . . , an) and a scalar \lambda \in \BbbR , \lambda \cdot a stands
for the vector (\lambda a1, . . . , \lambda an). If A \subseteq \BbbR n is a set of vectors, then \lambda \cdot A stands for the
set of vectors \{ \lambda \cdot a : a \in A\} . The support of vector a is the set Sa = \{ i : ai \not = 0\} of its
nonzero positions.

As customary, a family F of sets is an antichain if none of its sets is a proper
subset of another set of F. For two vectors a \in \BbbR n and b \in \BbbR n we write a \leqslant b if ai \leqslant bi
holds for all positions i = 1, . . . , n. A set A of vectors is an antichain if a \leqslant a\prime holds
for no two distinct vectors a \not = a\prime \in A. The characteristic vector of a set S \subseteq [n] is
the vector a \in \{ 0, 1\} n with ai = 1 if and only if i \in S.

3. Preliminaries. Every finite set A \subset \BbbN n of feasible solutions defines a dis-
crete optimization problem of the form f(x) = mina\in A\langle a, x\rangle or of the form f(x) =
maxa\in A\langle a, x\rangle , where here and in what follows \langle a, x\rangle = a1x1 + \cdot \cdot \cdot + anxn stands for
the scalar product of vectors a = (a1, . . . , an) and x = (x1, . . . , xn).

We will refer to such problems as problems defined by A, or as problems on A.
Such a problem is a 0-1 optimization problem if the set A \subseteq \{ 0, 1\} n of feasible
solutions consists of only 0-1 vectors. These latter problems are exactly what we
called ``combinatorial optimization"" problems on families F \subseteq 2[n] of feasible solutions,
where F consists of all sets Sa = \{ i : ai = 1\} for vectors a \in A.

To avoid trivialities, we will assume throughout that the all-0 vector (or the empty
set) is not a feasible solution; that is, we will always assume that \vec{}0 \not \in A and \emptyset \not \in F.

3.1. Circuits over semirings. Recall that a (commutative) semiring is a set
R closed under two associative and commutative binary operations ``addition"" (\oplus )
and ``multiplication"" (\otimes ), where multiplication distributes over addition: x\otimes (y \oplus z) =
(x \otimes y) \oplus (x \otimes z). That is, in a semiring, we can ``add"" and ``multiply"" elements, but
neither ``subtraction"" nor ``division"" is necessarily possible. We will assume that the
semiring, in addition to being commutative, contains a multiplicative identity element
1 with 1 \otimes x = x \otimes 1 = x.

A circuit over a semiring R is a directed acyclic graph; parallel edges joining
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the same pair of nodes are allowed. Each indegree-zero node (an input node) holds
either one of the variables x1, . . . , xn or a semiring element. Every other node, a gate,
has indegree two and performs one of the semiring operations. One of the gates is
designated as the output gate. The size of a circuit is the total number of gates in it.
A circuit is constant-free if it has no semiring elements as inputs.

Since in any semiring (R,\oplus ,\otimes ) multiplication distributes over addition, each circuit
\Phi over R computes (at the output gate) some polynomial

(3.1) \Phi (x1, . . . , xn) =
\sum 
b\in B

\lambda bX
b with Xb =

n\prod 
i=1

xbi
i

over R in a natural way, where B \subset \BbbN n is some set of exponent vectors, and xk
i stands

for xi \otimes xi \otimes \cdot \cdot \cdot \otimes xi k-times. Since we only consider semirings with multiplicative
identity, coefficients \lambda b \in R are semiring elements. To see why this assumption is
necessary, consider the semiring (R,+,\times ), where R is the set of all positive even
integers. Then the coefficient 3 of the monomial x in the polynomial x+ x+ x is not
a semiring element.

In this paper, we will mainly consider circuits over three commutative and idem-
potent semirings (R,\oplus ,\otimes ). In the boolean (\vee ,\wedge ) semiring, we have R = \{ 0, 1\} ,
x\oplus y := x \vee y, and x\otimes y := x \wedge y. In the tropical (min,+) semiring, we have R = \BbbR +,
x \oplus y := min(x, y), and x \otimes y := x+ y. Similarly, in the tropical (max,+) semiring,
we have R = \BbbR +, x \oplus y := max(x, y), and x \otimes y := x+ y. The multiplicative identity
element in the boolean semiring is 1 = 1, and is 1 = 0 in both tropical semirings. Over
the boolean semiring, the polynomial (3.1) computes the monotone boolean function

\Phi (x) =
\bigvee 
b\in B

\bigwedge 
i:bi \not =0

xi .

Over the tropical semirings, every monomial Xb =
\prod n

i=1 x
bi
i turns into the scalar

product Xb =
\sum n

i=1 bixi = \langle b, x\rangle of vectors b and x. Hence, the polynomial (3.1)
solves one of the two optimization problems with linear objective functions:

(3.2) \Phi (x) = min
b\in B

\langle b, x\rangle + \lambda b or \Phi (x) = max
b\in B

\langle b, x\rangle + \lambda b .

Note that if a tropical circuit \Phi is constant-free, then \lambda b = 0 holds for all b \in B.

3.2. Sets of vectors produced by circuits. A simple, but important in our
later analysis, observation is that every circuit of n variables over a semiring (R,\oplus ,\otimes )
not only computes some polynomial over R, but also produces (purely syntactically) a
finite set of vectors in \BbbN n in a natural way.

At each input node holding a semiring element, the same set \{ \vec{}0\} is produced. At
an input node holding a variable xi, the set \{ \vec{}ei\} is produced. At an ``addition"" (\oplus )
gate, the union of sets produced at its inputs is produced. Finally, at a ``multiplication""
(\otimes ) gate, the Minkowski sum of sets produced at its inputs is produced. The set
produced by the entire circuit is the set produced at its output gate.

It is clear that the same circuit \Phi with only ``addition"" (\oplus ) and ``multiplication""
(\otimes ) gates may compute different functions over different semirings. It is, however,
important to note that the set B \subset \BbbN n of vectors produced by \Phi is always the same---it
only depends on the circuit itself and not on the underlying semiring.

On the other hand, up to coefficients, the polynomial function computed by the
circuit \Phi is determined by the set of produced vectors.
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Fig. 3.1. Two constant-free (min,+) circuits solving the minimization problem f(x, y) =
min\{ 2x, 2y\} whose set of feasible solutions is A = \{ (2, 0), (0, 2)\} . The first circuit produces the set A
itself, whereas the second saves one gate by producing a different set B = \{ (2, 0), (1, 1), (0, 2)\} . Here
\Downarrow stands for two parallel edges.

Proposition 3.1. If B \subset \BbbN n is the set of vectors produced by a circuit \Phi over a
semiring R, then \Phi computes some polynomial over R whose set of exponent vectors
coincides with B.

Proof. Simple induction on the size of a circuit \Phi . Let B \subset \BbbN n be the set of
vectors produced and f : Rn \rightarrow R the polynomial function computed by \Phi .

If the circuit \Phi consists of a single input node holding a semiring element \lambda \in R,
then f(x) = \lambda is a constant polynomial with a single exponent vector \vec{}0. If \Phi consists
of a single input node holding a variable xi, then f(x) = xi is a degree-1 polynomial
with the single exponent vector \vec{}ei.

Now, the set of exponent vectors of a sum of two polynomials is just the union
of the sets of exponent vectors of these polynomials. Finally, when multiplying two
polynomials, we multiply each monomial of the first polynomial with all monomials of
the second polynomial. The exponent vector of a product of two monomials is the
sum of exponent vectors of these monomials.

Remark 3.1. In general, Proposition 3.1 has no converse, even for constant-free
circuits: if a circuit \Phi computes some polynomial f , then \Phi does not need to produce
the set of exponent vectors of f ; a simple example for tropical circuits is given in
Figure 3.1. Monotone arithmetic (+,\times ) circuits, that is, circuits over the arithmetic
semiring (\BbbR +,+,\times ), are here an exception: for them, the converse of Proposition 3.1
also holds. Namely, if such a circuit computes a polynomial f , then the set of vectors
produced by the circuit is exactly the set of exponent vectors of this polynomial f .
This holds because, if two arithmetic polynomials coincide on sufficiently many (with
respect to the number of variables and the degrees of these polynomials) inputs, then
these polynomials must syntactically coincide (even up to coefficients).

3.3. Eliminating constant inputs. Recall that an optimization problem on a
set A \subset \BbbN n of feasible solutions is of the form f(x) = mina\in A\langle a, x\rangle or of the form
f(x) = maxa\in A\langle a, x\rangle . To avoid trivialities, we always assume that A \not = \emptyset and \vec{}0 \not \in A.

These problems are ``constant-free"" in that they are completely specified by their
sets A of feasible solutions: there are no additional constant terms. In contrast, since
tropical circuits can have constant inputs, the optimization problems actually solved
by such circuits (exactly) may be not constant-free: they may have additional constant
terms; see (3.2).

However, as the following lemma shows, when dealing with tropical circuits
approximating (constant-free) optimization problems, we can safely restrict ourselves
to constant-free circuits. Recall that constant-free circuits only use the variables
x1, . . . , xn as inputs.

Lemma 3.2 (eliminating constant inputs). If an optimization problem on a set
A \subset \BbbN n can be r-approximated by a tropical circuit of size t, then this problem can
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also be r-approximated by a constant-free tropical circuit of size t.

Proof. Let \Phi be a tropical (max,+) or (min,+) circuit and B \subset \BbbN n the set of
vectors produced by \Phi . By Proposition 3.1, the circuit computes the maximum or the
minimum, over all vectors b \in B, of linear functions \langle b, x\rangle + \lambda b, where \lambda b \in \BbbR + are
some constants.

We obtain the constant-free version \Phi \ast of \Phi as follows. First, replace every
constant input by 0. Then eliminate zeros by repeatedly replacing gates u+ 0 and
max(u, 0) by the gate u, and a gate min(u, 0) by an input node holding 0. Since
\Phi (x) \not = 0 must hold for at least one x \in \BbbR n

+, the constant 0 input also disappears at
the end of this replacement. Since constant inputs can only affect the additive constant
terms \lambda b, the constant-free version \Phi \ast computes the maximum or the minimum of
linear functions \langle b, x\rangle without any constant terms. Our goal is to show that \Phi \ast still
r-approximates our optimization problem f on the set A.

Case 1: \Phi is a (max,+) circuit; hence, f(x) = maxa\in A\langle a, x\rangle . In this case, we have that
\Phi \ast (x) = maxb\in B\langle b, x\rangle , and \Phi (x) = maxb\in B\langle b, x\rangle + \lambda b for some nonnegative constants
\lambda b \in \BbbR +. Since \Phi approximates f , \Phi (x) \leqslant f(x) must hold for all input weightings
x \in \BbbR n

+. Taking x = \vec{}0, we obtain \Phi (\vec{}0) \leqslant f(\vec{}0) = 0 and, hence, \lambda b = 0 for all b \in B.
Thus, in the case of maximization, the constant-free version of the circuit solves just
the same problem as the original circuit, and we are done.

Case 2: \Phi is a (min,+) circuit; hence, f(x) = mina\in A\langle a, x\rangle . Since \Phi r-approximates f ,
we know that the inequalities f(x) \leqslant \Phi (x) \leqslant r \cdot f(x) must hold for all x \in \BbbR n

+. We have
to show that \Phi \ast also satisfies these inequalities. We know that \Phi \ast (x) = minb\in B\langle b, x\rangle ,
and \Phi (x) = minb\in B\langle b, x\rangle + \lambda b for some nonnegative constants \lambda b \in \BbbR +.

Since the constants \lambda b are nonnegative, we clearly have \Phi \ast (x) \leqslant \Phi (x) and, hence,
also \Phi \ast (x) \leqslant r \cdot f(x) for all x \in \BbbR n

+. So, it remains to show that \Phi \ast (x) \geqslant f(x) holds
for all x \in \BbbR n

+ as well. We know that \Phi (x) \geqslant f(x) holds for all x \in \BbbR n
+.

Assume contrariwise that \Phi \ast (x0) < f(x0) holds for some input weighting x0 \in \BbbR n
+.

Then the difference d = f(x0) - \Phi \ast (x0) is positive. We also know that \lambda := maxb\in B \lambda b

is positive, for otherwise there would be nothing to prove. So, take the constant
c := 2\lambda /d > 0, and consider the input weighting z := c \cdot x0. Since \Phi \ast (x0) = f(x0) - d,
and since \Phi (x) \leqslant \Phi \ast (x) + \lambda holds for all weightings x \in \BbbR n

+, the desired contradiction
follows:

\Phi (z) = \Phi (c \cdot x0) \leqslant \Phi \ast (c \cdot x0) + \lambda = c \cdot \Phi \ast (x0) + \lambda = c \cdot [f(x0) - d] + \lambda 

= c \cdot f(x0) - c \cdot d+ \lambda = f(c \cdot x0) - \lambda = f(z) - \lambda < f(z) .

4. Approximation limitations of (min,+) circuits. In this section, we first
prove a general ``boolean bound"" for approximating (min,+) circuits: if the boolean
(decision) version of a minimization problem requires monotone boolean (\vee ,\wedge ) circuits
of size at least t, then no (min,+) circuit of size < t can approximate the problem within
any finite factor (Theorem 4.3). Together with known lower bounds on the monotone
boolean circuit complexity, this gives us explicit minimization problems which are
hard to approximate by (min,+) circuits and, hence, by pure DP algorithms; three
selected examples are given in subsection 4.2. Then, in subsection 4.3, we combine
the boolean bound (Theorem 4.3) with counting arguments to show that greedy
algorithms can ``hardly"" beat pure DP algorithms: there exist many minimization
problems solvable by the greedy algorithm exactly, while polynomial-size (min,+)
circuits cannot approximate any of them within any finite factor.
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4.1. The boolean bound for approximating (min,+) circuits. Recall that
the support of a vector a \in \BbbN n is the set Sa = \{ i : ai \not = 0\} of its nonzero positions.
Every finite set A \subset \BbbN n of vectors defines the monotone boolean function

fA(x) =
\bigvee 
a\in A

\bigwedge 
i\in Sa

xi .

Note that, for every input x \in \{ 0, 1\} n, we have

(4.1) fA(x) = 1 if and only if Sx \supseteq Sa for some a \in A.

For example, if A is the set of characteristic 0-1 vectors of perfect matchings in Km,m,
then f accepts a subgraph G of Km,m if and only if G contains a perfect matching.

Two sets A,B \subseteq \BbbN n are similar if the support of every vector b \in B contains the
support of at least one vector a \in A, and vice versa. That is, A and B are similar if
and only if

(4.2) \forall b \in B \exists a \in A : Sb \supseteq Sa and \forall a \in A \exists b \in B : Sa \supseteq Sb.

Observation (4.1) immediately yields the following.

Proposition 4.1. Two sets of vectors define the same boolean function if and
only if these sets are similar.

The main connection between approximating (min,+) circuits and monotone
boolean circuits is given by the following lemma. The boolean version of a constant-
free tropical (min,+) circuit is the monotone boolean (\vee ,\wedge ) circuit obtained by
replacing each min-gate by an \vee -gate, and each +-gate by an \wedge -gate.

Lemma 4.2. If a constant-free (min,+) circuit \Phi approximates the minimization
problem on a set A \subset \BbbN n within a finite factor r = r(n) \geqslant 1, then the boolean version
of \Phi computes the boolean function defined by A.

Proof. Let B \subset \BbbN n be the set of vectors produced by \Phi . Since the circuit \Phi 
is constant-free, it solves the minimization problem \Phi (x) = minb\in B\langle b, x\rangle defined by
this set B. The minimization problem on A is f(x) = mina\in A\langle a, x\rangle . We know that
f(x) \leqslant \Phi (x) \leqslant r \cdot f(x) must hold for all input weightings x \in \BbbR n

+. The boolean version
\phi of \Phi also produces the same set B. By Proposition 4.1, it remains to show that the
set B is similar to A; see (4.2).

For the sake of contradiction, suppose first that there is a vector b \in B such
that Sa \setminus Sb \not = \emptyset holds for all vectors a \in A. Consider the assignment x \in \{ 0, 1\} n of
weights such that xi = 0 for i \in Sb, and xi = 1 for i \not \in Sb. On this weighting, we have
\Phi (x) \leqslant \langle b, x\rangle = 0. But since every vector a \in A has a position i \not \in Sb with ai \not = 0,
\langle a, x\rangle \geqslant 1 holds for all a \in A and, hence, also f(x) \geqslant 1, contradicting the inequality
f(x) \leqslant \Phi (x).

Now suppose that there is a vector a \in A such that Sb \setminus Sa \not = \emptyset holds for all vectors
b \in B. Let M = max\{ \langle a, a\rangle : a \in A\} , and consider the weighting x \in \{ 1, rM + 1\} n
such that xi = 1 for all i \in Sa and xi = rM + 1 for all i \not \in Sa (note that rM + 1 is
a finite number, because both the approximation factor r and the set A are finite).
Then f(x) \leqslant \langle a, x\rangle = \langle a, a\rangle \leqslant M . But since every vector b \in B has a position i \not \in Sa
such that bi \geqslant 1, we have \Phi (x) \geqslant rM + 1 > r \cdot f(x), contradicting the inequality
\Phi (x) \leqslant r \cdot f(x).

For a set A \subseteq \BbbN n of vectors, let Bool(A) denote the minimum size of a monotone
boolean (\vee ,\wedge ) circuit computing the boolean function fA defined by A. Let also
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Minr(A) denote the minimum size of a tropical (min,+) circuit approximating the
minimization problem on A within the factor r.

Theorem 4.3 (boolean bound). For every finite set A \subset \BbbN n and every finite
factor r = r(n) \geqslant 1, we have Minr(A) \geqslant Bool(A).

Proof. Take a (min,+) circuit \Phi of size t = Minr(A) approximating the minimiza-
tion problem on A within the factor r, and let B \subset \BbbN n be the set of vectors produced
by \Phi . By Lemma 3.2, we can assume that the circuit \Phi is constant-free. Hence, by
Lemma 4.2, the boolean version \phi of \Phi (which has the same size) computes the boolean
function defined by the set A, as desired.

Remark 4.1. Note that Theorem 4.3 does not exclude that using more than
Bool(A) gates, (min,+) circuits could achieve finite (and even small) approximation
factors. The boolean bound Bool(A) is just an ``absolute"" lower bound below which
no approximation is possible at all.

Remark 4.2. The proof of Theorem 4.3 is so direct and elementary because it
totally ignores the given approximation factor r: it only must be finite and, hence, can
be used in input weightings to fool too-small (min,+) circuits. Using more involved
arguments (based on Farkas's lemma), we will show in section 7 (Theorem 7.1) that,
under an appropriate definition of the ``semantic degree"" of monotone boolean circuits,
Theorem 4.3 has also a converse: a minimization problem can be approximated within
a factor r by a tropical (min,+) circuit of size t if and only if the boolean version of this
problem can be computed by a monotone boolean (\vee ,\wedge ) circuit of size t and semantic
degree at most r. Thus, the approximation power of tropical (min,+) circuits is
captured---not only lower bounded---by the computational power of monotone boolean
circuits.

4.2. Explicit lower bounds. Together with lower bounds on the monotone
boolean circuit complexity, the boolean bound (Theorem 4.3) immediately yields the
same lower bounds on the size of approximating (min,+) circuits. Let us mention
some examples.

In the lightest triangle problem, we are given an assignment of nonnegative weights
to the edges of Kn, and the goal is to compute the minimum weight of a triangle.

Corollary 4.1. The lightest triangle problem in Kn can be solved by a (min,+)
circuit using only n3 gates, but no (min,+) circuit with n3 - \Omega (1) gates can approximate
this problem within any finite factor.

Proof. Since we only have
\bigl( 
n
3

\bigr) 
triangles, a trivial (min,+) circuit of size at most

n3 (taking the minimum over all triangles) solves this problem exactly. On the other
hand, it is known [1, Lemma 3.14] that the decision version of this problem requires
monotone boolean circuits with \Omega (n3/ log4 n) gates. Theorem 4.3 gives the same lower
bound for approximating (min,+) circuits.

Recall that the n-assignment problem is as follows: given an assignment of
nonnegative real weights to the edges of the complete bipartite n\times n graph, compute
the minimum weight of a perfect matching in this graph. The corresponding family of
feasible solutions is here the family of all perfect matchings, viewed as sets of their
edges.

Corollary 4.2. Every (min,+) circuit approximating the n-assignment problem
within any finite factor must have at least n\Omega (\mathrm{l}\mathrm{o}\mathrm{g}n) gates.

Proof. The boolean function defined by the family of feasible solutions of the
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assignment problem is the boolean permanent function, which, as proved by Razbo-
rov [26], requires monotone boolean circuits of size n\Omega (\mathrm{l}\mathrm{o}\mathrm{g}n).

Let n be a prime power and 1 \leqslant d \leqslant n an integer. The polynomial (n, d)-design
is the family of all | F| = nd n-element subsets \{ (a, p(a)) : a \in GF(n)\} of the grid
GF(n)\times GF(n), where p = p(x) ranges over all nd univariate polynomials of degree at
most d - 1 over GF(n).

Corollary 4.3. If d \leqslant (n/4 lnn)1/2, then every (min,+) circuit approximating
the minimization problem on the polynomial (n, d)-design within any finite factor must
have at least n\Omega (d) gates.

Proof. By (numerically) improving the earlier result of Andreev [2], Alon and
Boppana [1] have shown that, at least for such values of d, any monotone boolean
circuit computing the boolean function defined by the corresponding family of feasible
solutions requires n\Omega (d) gates.

4.3. Greedy can beat approximating (min,+) circuits. Our goal now is to
show that there exist many (combinatorial) minimization problems which are solvable
by the greedy algorithm exactly (within the factor r = 1), but no (min,+) circuit
with a polynomial number of gates can approximate any of these problems within any
finite factor r = r(n).

We identify matroids with their families of bases. Under this proviso, a family
F is a matroid if and only if F is uniform (all sets have the same cardinality) and
the basis exchange axiom holds: if A \not = B \in F, then for every a \in A \setminus B there is a
b \in B \setminus A such that the set (A \setminus \{ a\} ) \cup \{ b\} belongs to F.

It is well known (see, for example, [23, Theorem 1.8.4]) that an optimization
problem on an antichain F can be solved by the greedy algorithm exactly if and only
if F is a matroid. This fact is usually called the Rado--Edmonds theorem [25, 7]. In
contrast, we will now show that most matroids require (min,+) circuits of exponential
size to be even only approximated within any finite factor. We will do this by counting,
so we need a lower bound on the number of matroids.

The following simple construction of matroids was implicit in several papers,
starting from those of Piff and Welsh [24] and Knuth [18], and was made explicit by

Bansal, Pendavingh, and Van der Pol [3, Lemma 8]. Let
\bigl( 
[n]
m

\bigr) 
denote the family of

all m-element subsets of [n] = \{ 1, . . . , n\} . The Hamming distance between two sets
A and B is dist(A,B) = | A \setminus B| + | B \setminus A| . A family H is separated if dist(A,B) > 2
holds for all A \not = B \in H.

Proposition 4.4. If H \subseteq 
\bigl( 
[n]
m

\bigr) 
is separated, then F =

\bigl( 
[n]
m

\bigr) 
\setminus H is a matroid.

Proof. Suppose contrariwise that F is not a matroid. Since the family F is uniform,
there must be two sets A \not = B \in F violating the basis exchange axiom: there is an
a \in A \setminus B such that (A \setminus \{ a\} ) \cup \{ b\} \not \in F for all b \in B. Observe that B \setminus A must
have at least two elements: if B \setminus A = \{ b\} held, then, since both A and B have the
same cardinality, the set (A \setminus \{ a\} ) \cup \{ b\} would coincide with B and, hence, would
belong to F. So, take b \not = c \in B \setminus A and consider the sets S = (A \setminus \{ a\} ) \cup \{ b\} and
T = (A \setminus \{ a\} ) \cup \{ c\} . Since the basis exchange axiom fails for A and B, neither S nor

T can belong to F; hence, both sets S and T belong to the family
\bigl( 
[n]
m

\bigr) 
\setminus F = H. But

dist(S, T ) = | \{ b, c\} | = 2, a contradiction with the family H being separated.

Proposition 4.5. There are 2(
n
m)/n matroids F \subseteq 

\bigl( 
[n]
m

\bigr) 
such that

\bigl( 
[n]
m

\bigr) 
\setminus F is

separated.
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Proof. Since subfamilies of separated families are also separated, it is enough, by
Proposition 4.4, to show that a separated family H \subseteq 

\bigl( 
[n]
m

\bigr) 
of size | H| \geqslant 

\bigl( 
n
m

\bigr) 
/n exists.

The following amazingly simple argument was suggested by Graham and Sloane [13].

For l \in \{ 0, 1, . . . , n - 1\} , let Hl be the family of all sets S \in 
\bigl( 
[n]
m

\bigr) 
such that

\sum 
i\in S i = l

mod n. We claim that each such family Hl is separated. Suppose contrariwise that
dist(S, T ) = 2 holds for some two sets S \not = T of Hl. Then S = A\cup \{ s\} and T = A\cup \{ t\} 
for some (m - 1)-element set A, and s \not = t are distinct numbers in [n] \setminus A. But then,
for a =

\sum 
i\in A i, we have a+ s = l mod n and a+ t = l mod n, which is impossible

because both numbers s and t are at most n. Thus, every family Hl is separated.
Since there are only n such families, and they exhaust the entire family

\bigl( 
[n]
m

\bigr) 
, there

must be an l for which | Hl| \geqslant 
\bigl( 
n
m

\bigr) 
/n holds.

Theorem 4.6. There are at least 22
n/n3

matroids F \subseteq 2[n] such that every (min,+)
circuit approximating the minimization problem on any of them within any finite factor
r = r(n) \geqslant 1 must have at least 2n/n3 gates.

Proof. The number of monotone boolean (\vee ,\wedge ) circuits of size t on n input
variables is at most L(n, t) = 2t(t + n)2t. This is, actually, an upper bound on the
number of constant-free circuits over any semiring (R,\oplus ,\otimes ). Indeed, each gate in
such a circuit is assigned a semiring operation (two choices) and acts on two previous
nodes. Each previous node can be either a previous gate (at most t choices) or an
input variable (n choices). Thus, each single gate has at most N = 2(t+ n)2 choices,
and the number of choices for a circuit is at most N t.

When applied with m = \lfloor n/2\rfloor , Proposition 4.5 gives us at least M(n) = 2(
n
m)/n \geqslant 

22
n/2n3/2

matroids F \subseteq 
\bigl( 
[n]
m

\bigr) 
. On the other hand, at most L(n, t) families F \subseteq 2[n]

can have monotone boolean circuit complexity at most t. For t := 2n/n3, we have
logL(n, t) = 2n/n3 + (2n+1/n3) log(n+ 2n/n3) = O(2n/n2) \ll logM(n) = 2n/2n3/2.
Since every circuit computes only one function, at least M(n)  - L(n, t) \geqslant L(n, t)
matroids require monotone boolean circuits of size at least t = 2n/n3. Theorem 4.3
yields the same lower bound for approximating (min,+) circuits.

5. Approximation limitations of (max,+) circuits. Given a family F \subseteq 2[n]

of feasible solutions and an approximation factor r \geqslant 1, we will denote by Maxr(F)
the minimum number of gates in a (max,+) circuit approximating the maximization
problem f(x) = maxS\in F

\sum 
i\in S xi on F within the factor r.

In section 4, we have shown that there are (even explicit) families F \subseteq 2[n], the
minimization problems on which cannot be approximated by small (polynomial in
n) size (min,+) circuits within any finite factor r = r(n). On the other hand, in the
case of maximization problems, the approximation factor is always finite. Namely, we
always have Maxn(F) \leqslant n - 1: since the weights are nonnegative, we can just use the
trivial (max,+) circuit max\{ x1, . . . , xn\} .

5.1. Counting fails for approximating (max,+) circuits. There is an even
more substantial difference between approximating (min,+) and (max,+) circuits
than just the ``bounded versus unbounded approximation factors"" phenomenon: unlike
for (min,+) circuits, even counting arguments are unlikely to yield large lower bounds
on the size of approximating (max,+) circuits, even for very small approximation
factors r = 1 + o(1).

Say that a family F \subseteq 2[n] is k-dense if every k-element subset of [n] is contained
in at least one set of F. The top k-of-n selection problem fn,k(x1, . . . , xn) outputs the
sum of the k largest input numbers.
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Proposition 5.1. The top k-of-n selection problem fn,k can be solved by a
(max,+) circuit of size 2kn, and this circuit approximates the maximization problem

on every k-dense family F \subseteq 
\bigl( 
[n]
m

\bigr) 
within the factor r = m/k.

Proof. The family of feasible solutions of fn,k consists of all k-element subsets of
[n] = \{ 1, . . . , n\} . In particular, fn,1(x) = max\{ x1, . . . , xn\} and fn,n(x) = x1+ \cdot \cdot \cdot +xn.
The Pascal identity

\bigl( 
n+1
k

\bigr) 
=

\bigl( 
n
k

\bigr) 
+
\bigl( 

n
k - 1

\bigr) 
for binomial coefficients gives us the recursion

fn+1,k(x1, . . . , xn+1) = max\{ fn,k(x1, . . . , xn), fn,k - 1(x1, . . . , xn) + xn+1\} .

So, fn,k can be solved by a (max,+) circuit with only 2kn (max,+) gates.

Now let F \subseteq 
\bigl( 
[n]
m

\bigr) 
be a k-dense family. The maximization problem on F is

f(x) = maxS\in F

\sum 
i\in S xi. Since the weights are nonnegative, the k-denseness of F

ensures that f(x) \geqslant fn,k(x). On the other hand, since no solution has more than m
elements, the optimal weight f(x) of a feasible solution cannot exceed m/k times the
sum of weights of k heaviest elements in this solution. Hence, f(x) \leqslant (m/k) \cdot fn,k(x),
as desired.

Proposition 5.2. There exist doubly exponentially many families F \subseteq 2[n] such
that Max1(F) = 2\Omega (n) but Max1+o(1)(F) \leqslant n2.

The families F are here matroids, and the upper bound is achieved by one single
(max,+) circuit.

Proof. Let n be a sufficiently large even integer and m = n/2. Proposition 4.5

gives us at least M := 2(
n
m)/n families F \subseteq 

\bigl( 
[n]
m

\bigr) 
(which are matroids) with the property

that the Hamming distance between any two distinct sets A \not = B \in 
\bigl( 
[n]
m

\bigr) 
\setminus F is > 2.

We claim that each such family F is k-dense for k := m  - 1. To see this, take any
set T \in 

\bigl( 
[n]

m - 1

\bigr) 
, take any two distinct elements a \not = b outside T , and consider the

m-element sets A = T \cup \{ a\} and B = T \cup \{ b\} . Since the Hamming distance between
A and B is 2, they cannot both lie outside the family F. So, at least one of them must
belong to F, as desired.

We thus have at least M families F \subseteq 
\bigl( 
[n]
m

\bigr) 
which are k-dense for k = m  - 1.

By Proposition 5.1, one (max,+) circuit of size at most 2kn \leqslant n2 for the top k-of-n
problem fn,k approximates the maximization problem on each of these M families
within the factor r = m/(m - 1) = 1 + 1/(m - 2) = 1 + o(1). On the other hand, by
Lemma 3.2, we can consider only constant-free (max,+) circuits, and the same counting
argument as in the proof of Theorem 4.6 yields the lower bound Max1(F) = 2\Omega (n) for
doubly exponentially many of these families F.

Remark 5.1 (boolean bound fails for approximating (max,+)). The standard
counting (as in the proof of Theorem 4.6) shows that the boolean function defined by
some of the families F given by Proposition 5.2 (actually, by many of these families)
requires monotone boolean circuits of size 2\Omega (n), but (by Proposition 5.2)Maxr(F) \leqslant n2

holds already for a factor r = 1 + o(1).

Actually, small (max,+) circuits can approximate even random maximization
problems quite well. For an even integer n \geqslant 4 and m = n/2, let F be a random
family of m-element subsets of [n] with each m-element subset being included in F

independently with probability 1/2.

Proposition 5.3. With probability 1 - o(1), Max1+o(1)(F) \leqslant n2 holds.

Proof. Let k := m - 2. Since each k-element set is contained in l =
\bigl( 
n - k
2

\bigr) 
= \Omega (n2)

sets of
\bigl( 
[n]
m

\bigr) 
, the probability that a fixed k-element set will be contained in none of the
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sets of F is (1/2)l = 2 - \Omega (n2). So, by the union bound, the family F is not k-dense

with probability at most
\bigl( 
n
m

\bigr) 
\cdot 2 - \Omega (n2) = 2 - \Omega (n2). That is, the family F is k-dense with

probability at least 1 - 2 - \Omega (n2). By Proposition 5.1, with this probability, the (max,+)
circuit for the top k-of-n selection problem (see Proposition 5.1) approximates the

maximization problem on a random family F \subseteq 
\bigl( 
[n]
n/2

\bigr) 
within the factor r = m/k =

1 + o(1).

Propositions 5.2 and 5.3 only show the mere existence of maximization problems
that are hard to solve by (max,+) circuits exactly (with factor r = 1) but can be
approximated by small (max,+) circuits within a slightly larger factor r > 1. Still,
there are also explicit maximization problems exhibiting a similar gap.

A family F \subseteq 2[n] is a Sidon family if the set A \subseteq \{ 0, 1\} n of the characteristic
0-1 vectors of sets in F has the following property for all vectors a, b, c, d \in A: if
a + b = c + d, then \{ a, b\} = \{ c, d\} (the addition is over the reals---not over GF(2)).
That is, knowing the sum a+ b \in \{ 0, 1, 2\} n of two vectors a, b \in A, we know which
vectors were added.

Theorem 5.4 (explicit gaps). Let m be an odd integer and n = 4m. Then there
is an explicit Sidon family F \subseteq 2[n] such that Max1(F) \geqslant 2n/4 but Max2(F) \leqslant n.

The lower bound here follows from known lower bounds on the monotone arithmetic
circuit complexity of polynomials whose sets of exponent vectors are Sidon sets, but
the proof of the upper bound is somewhat technical. So, since we are mainly interested
in proving lower bounds, we postpone the entire proof of Theorem 5.4 to Appendix B.

The message of Propositions 5.2 and 5.3 is that while most problems are hard
to solve exactly, they are trivially approximable by just one small (max,+) circuit
within a small factor r = 1 + o(1). Together with Theorem 5.4 (and Remark 5.1),
this serves as a serious indication that the task of proving lower bounds on the size
of approximating (max,+) circuits is by far more difficult than for (min,+) circuits:
monotone boolean circuits cannot help then, and even counting arguments are unlikely
to work against (max,+) circuits.

Still, by looking more carefully into the structure of vectors produced by approxi-
mating (max,+) circuits (Lemma 5.5), and using structural restrictions of such sets
given by a ``decomposition lemma"" (Lemma 5.6), we will be able to derive a general
``rectangle bound"" for approximating (max,+) circuits (Theorem 5.9).

5.2. Structure of approximating (max,+) circuits. Since we are interested
in the structure of sets of vectors produced by (approximating) circuits, it will be
convenient to turn to the language of vectors.

Lemma 5.5. If \Phi is a (max,+) circuit approximating the maximization problem
on a set A \subseteq \{ 0, 1\} n within a factor r, then the set B \subset \BbbN n of vectors produced by \Phi 
has the following two properties:

(i) if b \in B, then b \leqslant a for some a \in A;
(ii) if a \in A, then \langle a, b\rangle \geqslant 1

r \langle a, a\rangle for some b \in B.

Proof. By Lemma 3.2, we can assume that the circuit \Phi is constant-free. By
Proposition 3.1, the circuit \Phi solves the maximization problem \Phi (x) = maxb\in B\langle b, x\rangle .
The maximization problem on A is of the form f(x) = maxa\in A \langle a, x\rangle . Since the circuit
r-approximates the maximization problem on A, we know that 1

r \cdot f(x) \leqslant \Phi (x) \leqslant f(x)
must hold for all input weightings x \in \BbbR n

+.
If some vector b \in B had a position i with bi > 1, then on the input x = \vec{}ei, we

would have \Phi (x) \geqslant \langle b, x\rangle = bi > 1, but f(x) \leqslant 1, since all vectors in A are 0-1 vectors.
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So, B \subseteq \{ 0, 1\} n; that is, the set B also consists of only 0-1 vectors.
To show item (i), suppose contrariwise that there is a vector b \in B such that b \not \leqslant a

holds for all vectors a \in A. Since (as we have just shown) b is a 0-1 vector, this means
that, for every vector a \in A, there is a position i where bi = 1 but ai = 0. Hence, on
the weighting x := b, we have \Phi (x) \geqslant \langle b, x\rangle = \langle b, b\rangle , but \langle a, x\rangle = \langle a, b\rangle \leqslant \langle b, b\rangle  - 1 for
all a \in A, a contradiction with \Phi (x) \leqslant f(x).

To show item (ii), assume contrariwise that there is some vector a \in A such that
\langle a, b\rangle < m/r holds for all vectors b \in B, where m = \langle a, a\rangle . Then, on the input x := a,
we have \Phi (x) < m/r but f(x) \geqslant \langle a, a\rangle = m, a contradiction with 1

r \cdot f(x) \leqslant \Phi (x).

Remark 5.2. Note that Lemma 5.5 holds even when the circuit \Phi is only required
to r-approximate the given minimization problem on input weightings x \in \{ 0, 1\} n.
Indeed, to eliminate constant inputs from (max,+) circuits in Lemma 3.2 we only used
the input weighting x = \vec{}0, and the proof of Lemma 5.5 itself also uses only boolean
0-1 weightings. This implies that the rectangle bound (Theorem 5.9), whose proof
will use Lemma 5.5, holds also when the (max,+) circuits must approximate a given
problem only on boolean 0-1 weightings.

5.3. Minkowski circuits. As we already mentioned in subsection 3.2, unlike
the function computed by a circuit \Phi over a semiring (R,\oplus ,\otimes ), the set B \subset \BbbN n of
vectors produced by \Phi does not depend on the underlying semiring---it only depends
on the circuit itself. That is, B depends only on what the underlying graph of \Phi is,
and which of the two semiring operations is associated with each noninput node of
this graph. This independence of produced sets from actual semirings is captured by
the model of ``Minkowski circuits."" These circuits allow one to analyze the structure
of sets produced by circuits over arbitrary semirings in a uniform and mathematically
clean way.

A Minkowski circuit \Phi is a directed acyclic graph with n+ 1 input (indegree zero)
nodes holding single-element sets \{ \vec{}0\} , \{ \vec{}e1\} , . . . , \{ \vec{}en\} . Every other node, a gate, has
indegree two and performs either the set-theoretic union (\cup ) or the Minkowski sum
(+) operation on its two inputs.

The sets Xv \subset \BbbN n of vectors produced at the gates v of \Phi are obtained as follows.
If v is an input node, then Xv is one of the single-element sets \{ \vec{}0\} , \{ \vec{}e1\} , . . . , \{ \vec{}en\} ,
depending on which of these sets is held by the node v. Then Xv = Xu \cup Xw if
v = u \cup w is a union gate, and Xv = Xu +Xw if v = u+ w is a Minkowski sum gate.
The set B \subset \BbbN n produced by the entire circuit \Phi is the set Xv produced at the output
gate v.

The Minkowski version of a circuit \Phi over an arbitrary semiring (R,\oplus ,\otimes ) is
obtained by replacing each input constant \lambda \in R by the singleton \{ \vec{}0\} , each input
variable xi by the singleton \{ \vec{}ei\} , each ``addition"" (\oplus ) gate by the union (\cup ) gate, and
each ``multiplication"" (\otimes ) gate by the Minkowski sum (+) gate.

The model of Minkowski circuits is justified by the following trivial observation,
which follows directly from the definition of sets produced by circuits over semirings:
the set produced by a circuit over any semiring is the set produced by the Minkowski
version of this circuit.

5.4. Decomposition lemma for Minkowski circuits. We will prove lower
bounds for approximating (max,+) circuits using a general ``decomposition lemma""
for Minkowski circuits. The sumset defined by two sets X \subseteq \BbbN n and Y \subseteq \BbbN n of vectors
is the Minkowski sum X + Y = \{ x+ y : x \in X, y \in Y \} of these two sets.

Sumsets naturally emerge in every Minkowski circuit \Phi . At each Minkowski sum
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gate following a gate v (if there is any), the set Xv of vectors produced at v is ``enlarged""
by adding at least one vector to all vectors in Xv. So, when we arrive at the output
gate w, all of the translates Xv + y = \{ x+ y : x \in Xv\} of Xv by some vectors y \in \BbbN n

must lie in the set Xw = B produced by the entire circuit. This observation motivates
to associate with every gate v its residue

Yv = \{ y \in \BbbN n : Xv + y \subseteq B\} 

which collects such translate vectors y, For example, if v is the output gate, then
Xv = B and Yv = \{ \vec{}0\} . If v is an input node, then either Xv = \{ \vec{}0\} and Yv = B, or
Xv = \{ \vec{}ei\} and Yv = \{ b - \vec{}ei : b \in B, bi \geqslant 1\} .

Note that neither Xv nor Yv needs to lie in B, but Xv + Yv \subseteq B already holds for
every gate v. Thus, if the circuit \Phi has t gates, then we obtain a covering of the set B
by t sumsets of the form Xv + Yv

A norm-measure is any assignment \mu : \BbbN n \rightarrow \BbbR + of nonnegative real numbers to
vectors in \BbbN n such that every 0-1 vector with at most one 1 gets norm at most 1, and
the norm is monotone and subadditive: \mu (x) \leqslant \mu (x+ y) \leqslant \mu (x) + \mu (y) holds for all
vectors x, y \in \BbbN n.

Lemma 5.6 (decomposition lemma [16]). If a set B \subset \BbbN n can be produced by a
Minkowski (\cup ,+) circuit of size t, then B is a union of t sumsets X + Y \subseteq B with the
following property.

(\ast ) For every norm-measure \mu : \BbbN n \rightarrow \BbbR +, for every vector b \in B of norm
\mu (b) > 1, and for every 1/\mu (b) \leqslant \theta < 1 at least one of these sumsets X + Y
contains vectors x \in X and y \in Y such that x+ y = b and

\theta 
2 \cdot \mu (b) < \mu (x) \leqslant \theta \cdot \mu (b) .

This lemma was originally proved in [16, Theorem D]. Here we give a simpler
proof.

Proof. Let \Phi be a Minkowski (\cup ,+) circuit of size t producing the set B. Since
we have only t gates in the circuit, it is enough to show that the collection of sumsets
Xv + Yv associated with the gates v of \Phi has the desired property (\ast ). So, fix some
norm-measure \mu : \BbbN n \rightarrow \BbbR +, some vector b \in B of norm p := \mu (b) > 1, and a real
number 1/p \leqslant \theta < 1.

By a decomposition of the vector b (or just a decomposition, because the vector b is
fixed) at a gate v we will mean a pair (x, y) \in Xv \times Yv of vectors (if there is one) such
that x+ y = b. The norm of such a decomposition is the norm \mu (x) of the first vector
(that in the set Xv). Note that at the output gate, we have the unique decomposition
(x, y) = (b,\vec{}0) of b of norm \mu (x) = \mu (b) = p.

Claim. Let v be a gate entered from gates u and w. If there is a decomposition
(x, y) of vector b at gate v, then there is a decomposition (x\prime , y\prime ) of b at u or w such
that 1

2 \cdot \mu (x) \leqslant \mu (x\prime ) \leqslant \mu (x).

Proof. If v = u\cup w is a union gate, then Xv = Xu \cup Xw and, hence, Yv = Yu \cap Yw.
So, the same pair (x, y) is a decomposition at the gate u (if x \in Xu) or at the gate w
(if x \in Xw), and the claim is trivial in this case.

Assume now that v = u+w is a Minkowski sum gate. Then x = xu +xw for some
vectors xu \in Xu and xw \in Xw. Since vector y belongs to the residue Yv of gate v, we
know that Xu +Xw + y \subseteq B holds. In particular, both inclusions Xu + (xw + y) \subseteq B
and Xw + (xu + y) \subseteq B must hold. So, vector xw + y belongs to the residue Yu of
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gate u, and vector xu + y belongs to the residue Yw of gate w. This implies that the
pair (xu, xw + y) is a decomposition of b at the gate u, and the pair (xw, xu + y) is a
decomposition of b at the gate w. Since x = xu + xw, the monotonicity of the norm
implies that both \mu (xu) and \mu (xw) are at most \mu (x), while the subadditivity of the
norm implies that one of the norms \mu (xu) and \mu (xw) of these decompositions must be
at least 1

2 \cdot \mu (xu + xw) =
1
2 \cdot \mu (x), and we can take that input u or w at which the

decomposition has a larger norm.

We now start at the output gate with the unique decomposition (x, y) = (b,\vec{}0) of
vector b, and we traverse an input-output path P in the circuit backwards by using
the following rule: if v is a currently reached gate, and (x, y) is a decomposition at
this gate, then go to that of the two inputs of v which has a decomposition (x\prime , y\prime ) of
norm \mu (x\prime ) \geqslant 1

2 \cdot \mu (x) (if both input gates have this property, then go to any of them).
The claim above ensures that we will eventually reach some input node.

If this input node holds the set \{ \vec{}0\} , then the only decomposition (x, y) = (\vec{}0, b) of
vector b at this gate has norm \mu (x) = \mu (\vec{}0) \leqslant 1, and if this gate holds \{ \vec{}ei\} , then the
only decomposition (x, y) = (\vec{}ei, b - \vec{}ei) of b at this gate has norm \mu (x) = \mu (\vec{}ei) \leqslant 1 as
well. In both cases, we have that \mu (x) \leqslant 1, which is at most \theta p, because \theta \geqslant 1/p.

On the other hand, the (also unique) decomposition (x, y) = (b,\vec{}0) of the vector b
at the output gate has norm \mu (x) = \mu (b) = p, which is strictly larger than \theta p, because
\theta < 1. So, there must be an edge (u, v) in the path P at which the jump from \leqslant \theta p
to >\theta p happens. That is, there must be a decomposition (x, y) at the gate v and a
decomposition (x\prime , y\prime ) at the gate u such that \mu (x) > \theta p but \mu (x\prime ) \leqslant \theta p. By the above
claim, we have \mu (x\prime ) \geqslant 1

2 \cdot \mu (x). We have thus found a sumset Xu + Yu and vectors
x\prime \in Xu and y\prime \in Yu such that x\prime + y\prime = b and 1

2\theta p < \mu (x\prime ) \leqslant \theta p, as desired.

5.5. Decomposition lemma for approximating (max,+) circuits. In the
following lemma, 0 < \gamma < 1 is an arbitrary fixed ``balance"" parameter. For a 0-1
vector a, let | a| := \langle a, a\rangle denote the number of 1's in a.

Lemma 5.7. Let \Phi be a (max,+) circuit of size t approximating the maximization
problem on a set A \subseteq \{ 0, 1\} n within factor r \geqslant 1, and let B \subset \BbbN n be the set of vectors
produced by \Phi . Then there exist t or fewer sumsets X + Y \subseteq B such that

1. if x \in X and y \in Y , then x+ y \leqslant a for some a \in A;
2. \langle x, y\rangle = 0 holds for all x \in X and y \in Y ;
3. for every vector a \in A with | a| \geqslant r/\gamma ones, at least one of these sumsets

X + Y contains vectors x \in X and y \in Y such that

(5.1) \langle a, x+ y\rangle \geqslant 1
r \cdot | a| , \langle a, x\rangle > \gamma 

2r \cdot | a| , and \langle a, y\rangle \geqslant 1 - \gamma 
r \cdot | a| .

Proof. By Lemma 5.5, we know that the set B has the following two properties:
(i) if b \in B, then b \leqslant a for some a \in A;
(ii) if a \in A, then \langle a, b\rangle \geqslant 1

r \cdot | a| for some b \in B.
The Minkowski (\cup ,+) version \Phi \prime of the circuit \Phi has the same size t and produces

the same set B. When applied to the Minkowski circuit \Phi \prime , Lemma 5.6 gives us a
collection of t sumsets X + Y \subseteq B with the following property holding for every
norm-measure \mu : \BbbN n \rightarrow \BbbR +, for every vector b \in B of norm \mu (b) > 1, and for every
real number \theta satisfying 1/\mu (b) \leqslant \theta < 1:

(\ast ) at least one of the sumsets X + Y contains vectors x \in X and y \in Y such
that x+ y = b and \theta 

2 \cdot \mu (b) < \mu (x) \leqslant \theta \cdot \mu (b).
Since the set A consists of only 0-1 vectors, property (i) implies that the set B

also consists of 0-1 vectors. So, X + Y \subseteq B implies that each of our sumsets X + Y
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has the first two properties 1 and 2 claimed in Lemma 5.7. It remains to show the
third ``balancedness"" property 3.

Fix an arbitrary vector a \in A with | a| \geqslant r/\gamma ones. Property (ii) of the set B
suggests associating with a the norm-measure \mu (x) = \mu a(x) := \langle a, x\rangle . Then, by (ii),
there is a vector b \in B of norm \mu (b) = \langle a, b\rangle \geqslant p := | a| /r which is > 1 since | a| \geqslant r/\gamma ,
r \geqslant 1, and \gamma < 1. We also have \gamma \geqslant r/| a| \geqslant 1/\mu (b). Hence, by the property (\ast ), at
least one of our sumsets X + Y contains vectors x \in X and y \in Y such that x+ y = b
and the following inequalities hold:

(5.2) 1
2\gamma \cdot p < \mu (x) = \langle a, x\rangle \leqslant \gamma \cdot p .

Now, the first inequality in (5.1) follows since \langle a, x + y\rangle = \langle a, b\rangle \geqslant p, the second
inequality in (5.1) is the first inequality in (5.2), and, since \langle x, y\rangle = 0, the third
inequality in (5.1) follows from \langle a, x+ y\rangle \geqslant p and the second inequality in (5.2).

5.6. The rectangle bound. A rectangle is a family of sets specified by giving
a pair A,B of families of sets which is cross-disjoint in that A \cap B = \emptyset holds for all
sets A \in A and B \in B. The rectangle R = A \vee B itself consists of all sets A \cup B with
A \in A and B \in B. A rectangle R lies below a family F if every set of R is contained
in at least one set of F.

For real numbers r \geqslant 1 and 0 < \gamma < 1, we say that a set F appears (r, \gamma )-balanced
in a rectangle R = A \vee B if there are sets A \in A and B \in B such that

(5.3) | F \cap (A \cup B)| \geqslant 1
r \cdot | F | , | F \cap A| > \gamma 

2r \cdot | F | , and | F \cap B| \geqslant 1 - \gamma 
r \cdot | F | .

Thus, a set F appears balanced in a rectangle R if, for some pair of disjoint sets whose
union belongs to R, the union as well as the sets themselves contain sufficiently many
elements of F . In our applications, we will only use the last two inequalities in (5.3),
but the first inequality may also be important in some applications.

The following lemma is just a translation of Lemma 5.7 from the language of
vectors to the language of sets. Recall that Maxr(F) denotes the minimum size of a
(max,+) circuit approximating the maximization problem on F within the factor r.

Lemma 5.8. Let r \geqslant 1 and 0 < \gamma < 1. If Maxr(F) \leqslant t, then there are t or fewer
rectangles lying below F such that every set of F with at least r/\gamma elements appears
(r, \gamma )-balanced in at least one of these rectangles.

Proof. Take a (max,+) circuit \Phi of size t = Maxr(F) approximating the maxi-
mization problem on F within factor r. Let A \subseteq \{ 0, 1\} n be the set of characteristic 0-1
vectors of the sets in F. Hence, the circuit r-approximates the maximization problem
on A. Let B \subset \BbbN n be the set of vectors produced by \Phi .

Lemma 5.7 gives us t or fewer sumsets X + Y \subseteq B with properties 1--3 listed in
this lemma. By property 1, the set B and, hence, each of our t sumsets X +Y consists
of only 0-1 vectors. So, each sumset X + Y translates into the rectangle R = A \vee B,
where A is the family of supports Sx = \{ i : xi = 1\} of vectors x \in X, and B is the
family of supports Sy = \{ i : yi = 1\} of vectors y \in Y . After this translation, property
1 of Lemma 5.7 implies that each of these rectangles R = A \vee B lies below our family
F, property 2 yields the cross-disjointness condition (A \cap B = \emptyset for all sets A \in A and
B \in B), and property 3 implies that every set F \in F with | F | \geqslant r/\gamma elements appears
(r, \gamma )-balanced in at least one of these rectangles.

In applications, we will use a direct consequence of Lemma 5.8 formulated as a
lower bound on Maxr(F). Let r \geqslant 1 be a given approximation factor and 0 < \gamma < 1 be
any fixed real parameter (we are free to choose this parameter).
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Theorem 5.9 (rectangle bound). Let F be a family of feasible solutions and
H \subseteq F some subfamily of feasible solutions, each of cardinality at least r/\gamma . If for
every rectangle R lying below F at most h of the sets of H appear (r, \gamma )-balanced, then
Maxr(F) \geqslant | H| /h.

In particular, Result 4 stated in section 2 corresponds to the balance parameter
\gamma = 2/3. In the following applications, we will always take F = H, but the possibility
of choosing special subfamilies H \subseteq F of feasible solutions may be useful in other
applications. Note that, in addition to the cross-disjointness and balancedness of
rectangles, the fact that the rectangles must lie below F is also important. If, say, F is
the family of all perfect matchings in some graph, and if a rectangle R lies below F,
then we immediately know that every set of R must be a union of two vertex-disjoint
matchings.

5.7. Maximization on designs. We already know that there exist many max-
imization problems for which slight decrease of the allowed approximation factor
from r = 1 + o(1) to r = 1 can exponentially increase the size of (max,+) circuits
(Proposition 5.2). We also know explicit maximization problems for which such a jump
in circuit size occurs when decreasing the approximation factor from r = 2 to r = 1
(Theorem 5.4).

Our goal in this section is to show that such jumps can happen for arbitrarily
large approximation factors r: a slight decrease of the allowed approximation factor
r can make tractable problems intractable. We demonstrate these jumps on maxi-
mization problems whose families F of feasible solutions are ``combinatorial designs""
(Theorem 5.12 below).

An (m, d)-design (know also as a weak design) is a family F which is
\circ m-uniform: every set has exactly m elements;
\circ d-disjoint : no two distinct sets share d or more elements in common.

We will see soon (the upper bound in Theorem 5.12) that, for some (m, d)-
designs F \subseteq 2[n] with n = m2, Maxr(F) = O(n) holds when the approximation factor
r = m/d is allowed. On the other hand, we have the following general lower bound on
Maxr(F) for every (m, d) design F, when the allowed approximation factor r is only
slightly smaller than m/d.

To state this bound, we need an auxiliary notation. For a family F of sets and a real
number l \geqslant 0, let \#l(F) denote the maximal possible number of sets in F containing a
fixed set with l (or more) elements. In other words, \#l(F) is the maximal possible
number of sets in F whose intersection has l (or more) elements. In particular, if m is
the maximum cardinality of a set of F, then | F| = \#0(F) \geqslant \#1(F) \geqslant \cdot \cdot \cdot \geqslant \#m(F) = 1,
and \#l(F) = 0 for all l > m. Note that a nonempty m-uniform family F is an
(m, d)-design if and only if \#d(F) = 1. Also, \#1(F) = 1 means that all sets of F are
disjoint.

Lemma 5.10. Let F be an (m, d)-design for 1 \leqslant d < m, 1/(d+ 1) \leqslant \gamma < 1, and
l = \gamma d/2. For the factor r = (1 - \gamma )m/d, we have

Maxr(F) \geqslant 
| F| 

\#l(F)
.

Proof. We are going to apply the rectangle bound (Theorem 5.9) with the balance
parameter \gamma . First, observe that | F | \geqslant r/\gamma holds for every set F \in F: since | F | = m,
this is equivalent to the inequality 1 \geqslant (1 - \gamma )/\gamma d, which holds because \gamma \geqslant 1/(d+ 1).

Take an arbitrary rectangle R = A \vee B lying below F. Let FR \subseteq F be the family
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of all sets F \in F such that

| F \cap A| \geqslant \gamma 
2r \cdot m = \gamma 

2(1 - \gamma ) \cdot d \geqslant \gamma 
2 \cdot d = l and | F \cap B| \geqslant 1 - \gamma 

r \cdot m = d

hold for some A \in A and B \in B. By Theorem 5.9, it is enough to show that
| FR| \leqslant \#l(F). We can assume that all sets B \in B have | B| \geqslant d elements: sets B \in B

of size | B| < d cannot fulfill | F \cap B| \geqslant d and, hence, can be removed from B without
changing FR. Similarly, we can assume that all sets A \in A have | A| \geqslant l elements. Let
X be the union of all sets in A; hence, | X| \geqslant l.

Claim. All sets of FR contain the set X.

Proof. Take a set F \in FR. Then | F \cap B| \geqslant d holds for some set B \in B. On the
other hand, since the rectangle R lies below F, every set A \cup B with A \in A must lie
in some set of F. Since all these sets contain the set B with | B| \geqslant d elements, and
since the family F is d-disjoint, this implies that all sets of A \vee \{ B\} and, hence, also
the set X \cup B must be contained in one set FB of F. Since both sets F and FB of F
contain the same set F \cap B of size | F \cap B| \geqslant d, and since the family F is d-disjoint,
the equality F = FB and, hence, the desired inclusion X \subseteq F follow.

Since the set X has | X| \geqslant l elements, the claim yields | FR| \leqslant \#| X| (F) \leqslant \#l(F)
and, by Theorem 5.9 (applied with H = F), the desired lower bound Maxr(F) \geqslant 
| F| /| FR| \geqslant | F| /\#l(F) follows.

5.8. Factor hierarchy theorem. We will now apply the general lower bound of
Lemma 5.10 to explicit designs. Let m be a prime power, let 1 \leqslant d \leqslant m be an integer,
and consider the grid GF(m)\times GF(m). The polynomial (m, d)-design F consists of
all | F| = md subsets S of points in this grid of the form S = \{ (a, p(a)) : a \in GF(m)\} 
for a univariate polynomial p = p(x) of degree at most d - 1 over GF(m). Note that
no two points of any of these sets S lie in the same row of the grid.

The main combinatorial property of polynomial designs is the following.

Proposition 5.11. Let F be a polynomial (m, d)-design and 1 \leqslant d \leqslant m. For
every set of l \leqslant d points of the grid GF(m)\times GF(m), with no two in the same row,
exactly md - l sets of F contain this set. In particular, \#l(F) \leqslant md - l holds for every
0 \leqslant l \leqslant d.

Proof. This is a direct consequence of a standard result in polynomial interpolation.
For any l \leqslant d distinct points (a1, b1), . . . , (al, bl) in GF(m)\times GF(m), the number of
polynomials p(x) of degree at most d - 1 satisfying p(a1) = b1, . . . , p(al) = bl is either 0
(if ai = aj holds for some i \not = j) or exactly md - l: this latter number is exactly the
number of solutions of the corresponding system of linear equations, with coefficients
of p viewed as variables.

We already know that (min,+) circuits approximating minimization problems on
polynomial designs (within any finite factor r = r(m)) must be large (Corollary 4.3).
Now we show that also the maximization problem on the polynomial (m, d)-design is
hard to approximate as long as the allowed approximation factor is smaller than m/d.

Theorem 5.12 (factor hierarchy theorem). Let F be a polynomial (m, d)-design
for 1 \leqslant d < m and 1/(d+ 1) \leqslant \gamma < 1. Then

(i) Maxr(F) \leqslant 3m2 for the factor r = m/d, but
(ii) Maxr(F) \geqslant m\gamma d/2 for the factor r = (1 - \gamma )m/d.

That is, the maximization problem on F can be approximated by a small (max,+)
circuit within the factor r = m/d, but the size of approximating (max,+) circuits
drastically increases when this factor is only slightly decreased.
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Proof. To show the lower bound (ii), we just apply Lemma 5.10, which yields
the lower bound Maxr(F) \geqslant | F| /\#l(F) for l = \gamma d/2. Since | F| = md and, by
Proposition 5.11, \#l(F) \leqslant md - l, the desired lower bound Maxr(F) \geqslant ml follows.

So, it remains to show the upper bound (i). Given an input weighting x of the
points of the grid GF(m) \times GF(m), we can first use m(m  - 1) max operations to
compute m numbers y1, . . . , ym, where yi is the maximum weight of a point in the
ith row of the grid. We then apply the (max,+) circuit for the top d-of-m selection
problem (see Proposition 5.1) to compute the sum W of the largest d of the numbers
y1, . . . , ym using at most 2dm additional (max,+) operations. Hence, W is a sum
of weights of d heaviest points in the grid with no two in the same row: each yi
picks only one point in the ith row. The main combinatorial property of polynomial
designs (Proposition 5.11) implies that these d points are contained in a (unique)
set of F. Hence, the found value W cannot exceed the optimal value (the weights
are nonnegative). On the other hand, the weight of d heaviest points of an optimal
solution F \in F cannot exceed W . Since | F | = m, the weight of this solution cannot
exceed (m/d)W , as desired.

Remark 5.3. The maximizing greedy algorithm also achieves the same approxima-
tion factor m/d on the polynomial (m, d)-design: it will also first take the heaviest d
points of the grid GF(m)\times GF(m), with no two lying in the same row. But this is
already the best the greedy algorithm can do.

To show this, take \epsilon > 0 arbitrarily small, and set c := 1/(1  - \epsilon /2) > 1. Take
two arbitrary sets A \not = B \in F and a subset S \subset A of | S| = d elements. Since F is an
(m, d)-design, S cannot be contained in B. So, give weight c > 1 to all elements of S,
weight 1 to all elements of B \setminus S, and zero weight to the rest. Then the maximizing
(best-in) greedy algorithm picks elements of weight c first, gets all | S| = d of them,
but then is stuck because no element of weight 1 fits; hence, the greedy algorithm
achieves the total weight c| S| = cd. But the optimum is at least | B| = m. Hence, the
approximation factor is at least m/cd = (1 - \epsilon /2)m/d > (1 - \epsilon )m/d.

5.9. Greedy can beat approximating (max,+) circuits. As Remark 5.3
shows, Theorem 5.12 does not imply that the maximizing greedy algorithm can beat
approximating (max,+) circuits: small (max,+) circuits can also achieve the greedy
approximation factor on designs.

To show that the greedy algorithm can still outperform approximating (max,+)
circuits, we consider another maximization problem: maximum weight matchings
in k-partite k-uniform hypergraphs. We have a set V = V1 \cup \cdot \cdot \cdot \cup Vk of | V | = mk
vertices decomposed into k disjoint blocks V1, . . . , Vk, each of size m. Edges (also
called hyperedges) are k-tuples e \in V1 \times \cdot \cdot \cdot \times Vk. The ground set E consists of all
| E| = mk edges. Two edges are disjoint if they differ in all k positions. A matching
is a set of disjoint edges and is a perfect matching if it has the maximum possible
number m of edges.

The family Fm,k of feasible solutions of our problem consists of all | Fm,k| = (m!)k - 1

perfect matchings. So, the maximization problem on Fm,k is, given an assignment of
nonnegative weights xe to the edges e \in E, to compute the maximum total weight

f(x) = max \{ xe1 + \cdot \cdot \cdot + xem : ei \in E , and ei and ej are disjoint for all i \not = j\} 

of a perfect matching. Note that in the case k = 2, Fm,k consists of perfect matchings
in Km,m, and the problem is to compute the maximum weight of such a perfect
matching.
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The greedy algorithm can approximate the maximization problem on Fm,k within
the factor k by just always picking the heaviest of the remaining edges, untouched by
the partial matching picked so far. On the other hand, we have the following lower
bound for (max,+) circuits approximating this problem.

Theorem 5.13. Let m be a sufficiently large integer, and let k = k(m) be an
integer such that 6 \leqslant k \leqslant log

\surd 
m. If r \leqslant 2k/9, then

Maxr(Fm,k) = 2\Omega (
\surd 
m) .

Proof. We are going to apply the rectangle bound (Theorem 5.9) with \gamma := 2/3;
note that then both \gamma 

2 and 1  - \gamma in (5.3) are equal to 1/3. So, take an arbitrary
rectangle R = A \vee B lying below F = Fm,k. Hence, sets in A and in B are subsets
of (hyper)edges e \in V1 \times \cdot \cdot \cdot \times Vk. Since R lies below our family F, and F consists of
(perfect) matchings, all sets A \cup B with A \in A and B \in B must also be matchings.
Take the integer d := \lceil m/3r\rceil , and consider the family

FR = \{ F \in F : | F \cap A| \geqslant d and | F \cap B| \geqslant d for some A \in A and B \in B\} .

Our goal is to show a possibly small upper bound | FR| \leqslant h on the number of sets in
any such family. Then Theorem 5.9 (for the balance parameter \gamma = 2/3) gives the
lower bound Maxr(F) \geqslant | F| /h.

Since the rectangle R = A\vee B is cross-disjoint, we know that the matchings A \in A

and B \in B must be edge-disjoint; that is, A \cap B = \emptyset must hold. However, since the
sets A \cup B are also matchings (R lies below F), we actually know that matchings A
and B are even vertex-disjoint : if S \subseteq V is the set of vertices belonging to at least
one edge of a matching in A, and T \subseteq V is the set of vertices belonging to at least
one edge of a matching in B, then S \cap T = \emptyset (this is a crucial property). Note that in
the proof of the lower bound for designs (Lemma 5.10), the cross-disjointness property
of rectangles was not used.

So, call a matching A \subseteq V1\times \cdot \cdot \cdot \times Vk an S-matching if A \subseteq (V1\cap S)\times \cdot \cdot \cdot \times (Vk\cap S)
holds, that is, if edges of A only match vertices of S; T -matchings are defined similarly.
By the definition of FR, every perfect matching F \in FR has at least d edges lying in
(V1 \cap S) \times \cdot \cdot \cdot \times (Vk \cap S) and at least d edges lying in (V1 \cap T ) \times \cdot \cdot \cdot \times (Vk \cap T ). In
particular, every perfect matching F \in FR must contain at least one matching A \cup B,
where A is an S-matching with | A| = d edges and B is a T -matching with | B| = d
edges. It therefore suffices to upper-bound the number of perfect matchings F with
this property.

We can pick any such pair (A,B) as follows. Let Si = S \cap Vi and Ti = T \cap Vi

for i = 1, . . . , k. We can assume that each of these 2k sets has at least d vertices, for
otherwise none of the S-matchings or T -matchings could have \geqslant d edges, implying
that FR = \emptyset .

\circ Pick in each Si a subset S\prime 
i \subseteq Si of | S\prime 

i| = d vertices, and in each Ti a subset
T \prime 
i \subseteq Ti of | T \prime 

i | = d vertices. There are at most

k\prod 
i=1

\biggl( 
mi

d

\biggr) \biggl( 
m - mi

d

\biggr) 
\leqslant 

\biggl( 
m

2d

\biggr) k

possibilities to do this, where mi = | Si| .
\circ Pick a perfect matching A in S\prime 

1 \times \cdot \cdot \cdot \times S\prime 
k and a perfect matching B in

T \prime 
1 \times \cdot \cdot \cdot \times T \prime 

k. There are only
\bigl[ 
(d!)k - 1

\bigr] 2
= (d!)2(k - 1) possibilities to do this.
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After a pair (A,B) of matchings is picked, there are at most [(m  - 2d)!]k - 1

possibilities to extend A \cup B to a perfect matching. Thus,

| FR| \leqslant 
\biggl( 
m

2d

\biggr) k

(d!)2(k - 1)[(m - 2d)!]k - 1 =

\biggl( 
m

2d

\biggr) \Biggl[ 
m! \cdot 

\biggl( 
2d

d

\biggr)  - 1
\Biggr] k - 1

,

where the equality follows because
\bigl( 
m
2d

\bigr) 
= m!/(2d)!(m - 2d)! and (2d)!/(d!)2 =

\bigl( 
2d
d

\bigr) 
.

Since there are | F| = (m!)k - 1 perfect matchings, the rectangle bound (Theorem 5.9)
yields the following lower bound on t = Maxr(F):

t \geqslant 
| F| 
| FR| 

\geqslant 

\bigl( 
2d
d

\bigr) k - 1\bigl( 
m
2d

\bigr) \geqslant 

\biggl( 
22d

d

\biggr) k - 1

\cdot 
\biggl( 

2d

em

\biggr) 2d

=
1

dk - 1

\biggl( 
2kd

em

\biggr) 2d

\geqslant 
1

dk - 1

\biggl( 
2k

3er

\biggr) 2d

,

where the second inequality follows from the inequalities
\bigl( 
m
2d

\bigr) 
\leqslant (em/2d)2d and\bigl( 

2d
d

\bigr) 
\geqslant 22d/

\surd 
4d \geqslant 22d/d, and the last inequality follows because (by our choice)

d = \lceil m/3r\rceil \geqslant m/3r. Our approximation factor is r = 2k/9. Since clearly d \leqslant m, we
have a lower bound

t \geqslant 

\biggl( 
3

e

\biggr) 6m/2k

\cdot d - k \geqslant 20.8m/2k - k \mathrm{l}\mathrm{o}\mathrm{g}m .

From our assumption k \leqslant log
\surd 
m, we have m/2k \geqslant 

\surd 
m \gg k logm, and the desired

lower bound t \geqslant 2\Omega (m/2k) \geqslant 2\Omega (
\surd 
m) follows.

6. What do approximating tropical circuits produce? If we know that a
tropical circuit approximates a given optimization (minimization or maximization)
problem within a given factor, what can then be said about the set of vectors produced
by that circuit? Using elementary arguments, we partially answered this question
in Lemmas 4.2 and 5.5: we gave properties which the sets of produced vectors must
necessarily have (these properties were already sufficient for our purposes). We will
now use convexity arguments to give properties of produced sets that are also sufficient
for circuits to approximate given problems.

6.1. A version of Farkas's lemma. Recall that a vector c \in \BbbR n is a convex
combination (or a weighted average) of vectors1 \vec{}b1, . . . ,\vec{}bm in \BbbR n if there are real scalars
\lambda 1, . . . , \lambda m \geqslant 0 such that

\lambda 1 + \cdot \cdot \cdot + \lambda m = 1 and c = \lambda 1 \cdot \vec{}b1 + \cdot \cdot \cdot + \lambda m \cdot \vec{}bm .

It is easy to see the following averaging property : for every vector x \in \BbbR n and every
convex combination c of vectors in B, we have minb\in B\langle b, x\rangle \leqslant \langle c, x\rangle \leqslant maxb\in B \langle b, x\rangle .

We will need the following formulation of Farkas's lemma due to Fan [8, Theorem 4];
see also [27, Corollary 7.1h].

Lemma 6.1 (Farkas's lemma [8]). Let u, \vec{}u1, . . . , \vec{}um \in \BbbR n, and \alpha , \alpha 1, . . . , \alpha m \in \BbbR .
The following two assertions are equivalent:

1. \forall y \in \BbbR n inequalities \langle \vec{}u1, y\rangle \geqslant \alpha 1, . . . , \langle \vec{}um, y\rangle \geqslant \alpha m imply \langle u, y\rangle \geqslant \alpha .
2. \exists \lambda 1, . . . , \lambda m \in \BbbR + such that u =

\sum 
i \lambda i\vec{}ui and \alpha \leqslant 

\sum 
i \lambda i\alpha i.

This relates optimization with convex combinations.

1We use the arrow notation \vec{}bi for vectors only when they are indexed.
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Lemma 6.2. For any vectors a,\vec{}a1, . . . ,\vec{}am \in \BbbR n the following two assertions are
equivalent:

1. \forall x \in \BbbR n
+ : \langle a, x\rangle \geqslant mini\langle \vec{}ai, x\rangle .

2. \exists \lambda 1, . . . , \lambda m \in \BbbR + :
\sum 

i \lambda i = 1 and a \geqslant 
\sum 

i \lambda i\vec{}ai.

Proof. The implication 2 \Rightarrow 1 follows directly from the aforementioned averaging
property of convex combinations. To show the converse implication 1 \Rightarrow 2, observe
that the assertion 1 is equivalent to the assertion that the set of inequalities \langle \vec{}ai, x\rangle \geqslant z
and \langle \vec{}ej , x\rangle \geqslant 0 for i = 1, . . . ,m and j = 1, . . . , n implies the inequality \langle a, x\rangle \geqslant z. We
use the inequalities \langle \vec{}ej , x\rangle \geqslant 0 to ensure that we only consider vectors x in \BbbR n

+ (with
no negative entries).

By taking y = (x, z), u = (a, - 1), \vec{}ui = (\vec{}ai, - 1) for i = 1, . . . ,m, and \vec{}um+j =
(\vec{}ej , 0) for j = 1, . . . , n, the above assertion turns into the assertion that for every
vector y in \BbbR n+1, the system of inequalities \langle \vec{}ui, y\rangle \geqslant 0 for i = 1, . . . ,m+n implies the
inequality \langle u, y\rangle \geqslant 0. Then, by Lemma 6.1, there exist \lambda 1, . . . , \lambda m+n \in \BbbR + such that

(a, - 1) =

m\sum 
i=1

\lambda i(\vec{}ai, - 1) +

n\sum 
j=1

\lambda m+j(\vec{}ej , 0) .

This yields \lambda 1 + \cdot \cdot \cdot + \lambda m = 1 and a \geqslant 
\sum 

i \lambda i\vec{}ai, as desired.

The following direct consequence of Lemma 6.2 compares the values of optimization
problems. For a set U of real vectors, let Conv(U) denote the set of all convex
combinations of vectors in U , that is, the convex hull of U . Say that a set U \subseteq \BbbR n

lies above a set V \subseteq \BbbR n if \forall u \in U \exists v \in V : u \geqslant v, and that U lies below V if
\forall u \in U \exists v \in V : u \leqslant v.

Lemma 6.3. Let U, V \subset \BbbR n be finite sets of vectors. Then the following hold:
1. \forall x \in \BbbR n

+ : minu\in U \langle u, x\rangle \geqslant minv\in V \langle v, x\rangle if and only if U lies above Conv(V );
2. \forall x \in \BbbR n

+ : maxu\in U \langle u, x\rangle \leqslant maxv\in V \langle v, x\rangle if and only if U lies below Conv(V ).

Claim 1 follows directly from Lemma 6.2. Claim 2 also follows from Lemma 6.2
by using the equality max(x, y) =  - min( - x, - y).

6.2. Consequences for tropical circuits. Recall that the maximization (resp.,
minimization) problem on a given set A \subset \BbbN n of feasible solutions is, for every
input weighting x \in \BbbR n

+, to compute the maximum (resp., minimum) weight \langle a, x\rangle =
a1x1 + \cdot \cdot \cdot + anxn of a feasible solution a \in A.

Lemma 6.3 directly yields the following complete characterization of the properties
of sets of vectors produced by approximating (max,+) circuits.

Lemma 6.4 (maximization). Let A \subset \BbbN n be some finite set of vectors, let \Phi be
a (max,+) circuit, and let B \subset \BbbN n be the set of vectors produced by \Phi . Then the
following two assertions are equivalent:

1. \Phi approximates the maximization problem on A within a factor r.
2. B lies below Conv(A), and 1

r \cdot A lies below Conv(B).

Proof. By Lemma 3.2, we can assume the circuit \Phi is constant-free. Hence, by
Proposition 3.1, the circuit solves the maximization problem of the form \Phi (x) =
maxb\in B \langle b, x\rangle . The maximization problem on A is of the form f(x) = maxa\in A\langle a, x\rangle .
The circuit approximates the maximization problem on A within factor r if and only
if 1

r \cdot f(x) \leqslant \Phi (x) \leqslant f(x) holds for all weightings x \in \BbbR n
+.

When applied with U = B and V = A, Lemma 6.3(2) implies that the inequality
\Phi (x) \leqslant f(x) holds if and only if B lies below Conv(A). When applied with U = 1

r \cdot A
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and V = B, this lemma implies that the inequality 1
r \cdot f(x) \leqslant \Phi (x) holds if and only

if 1
r \cdot A lies below Conv(B).

We say that a set U \subseteq \BbbR n lies tightly above the convex hull Conv(V ) of a set
V \subseteq \BbbR n if for every vector u \in U the inequality u \geqslant c holds for some convex
combination c of vectors v \in V with the same support as that of u. That is, we now
additionally have that none of the vectors v \in V in the convex combination c has a
zero in a position i where ui \not = 0.

Lemma 6.5 (minimization). Let A \subset \BbbN n be some finite set of vectors, let \Phi be a
(min,+) circuit, and let B \subset \BbbN n be the set of vectors produced by \Phi .

Then the following two assertions are equivalent:
1. \Phi approximates the minimization problem on A within a factor r.
2. B lies above Conv(A), and r \cdot A lies above Conv(B).

If A \subseteq \{ 0, 1\} n and A is an antichain, then these assertions are equivalent to
3. B lies above A and r \cdot A lies tightly above Conv(B).

Proof. By Lemma 3.2, we can assume the circuit \Phi is constant-free. Hence, by
Proposition 3.1, the circuit solves the minimization problem of the form \Phi (x) =
minb\in B \langle b, x\rangle . The minimization problem on A is of the form f(x) = mina\in A\langle a, x\rangle .
The circuit approximates the minimization problem on A within factor r if and only if
f(x) \leqslant \Phi (x) \leqslant r \cdot f(x) holds for all weightings x \in \BbbR n

+. When applied with U = B
and V = A, Lemma 6.3(1) implies that the inequality \Phi (x) \geqslant f(x) holds if and only if
B lies above Conv(A). When applied with U = r \cdot A and V = B, this lemma implies
that the inequality r \cdot f(x) \geqslant \Phi (x) holds if and only if r \cdot A lies above Conv(B). This
shows the equivalence of the assertions 1 and 2.

Suppose now that A \subseteq \{ 0, 1\} n and that A is an antichain. The implication 3 \Rightarrow 2
is obvious. So, assume that the set B has property 2, i.e., that B lies above Conv(A)
and r \cdot A lies above Conv(B).

To show that B lies above the set A (not only above its convex hull), take an
arbitrary vector b \in B. Since B lies above Conv(A), there must be a vector a \in A and
a scalar 0 < \lambda \leqslant 1 such that b \geqslant \lambda \cdot a. Since a is a 0-1 vector and b is a nonnegative
integer vector, b \geqslant a must hold.

To show that r \cdot A lies tightly above Conv(B), take an arbitrary vector a \in A.
Since, by 2, the set r \cdot A lies above Conv(B), the inequality r \cdot a \geqslant c must hold for

some convex combination c = \lambda 1 \cdot \vec{}b1 + \cdot \cdot \cdot + \lambda m \cdot \vec{}bm of vectors in B, where all scalars
\lambda i are positive. It remains to show that then S\vec{}bi = Sa holds for all i = 1, . . . ,m, i.e.,
that all the vectors in this convex combination have the same support as our vector a.

Since (as we have just shown) the set B lies above the set A, there must be (not

necessarily distinct) vectors \vec{}a1, . . . ,\vec{}am in A such that \vec{}bi \geqslant \vec{}ai for all i = 1, . . . ,m

and, hence, c =
\sum m

i=1 \lambda i \cdot \vec{}bi \geqslant 
\sum m

i=1 \lambda i \cdot \vec{}ai. The inequality r \cdot a \geqslant c implies that
Sa \supseteq S\vec{}bi \supseteq S\vec{}ai

must hold for all i. Since A is an antichain and consists of only 0-1
vectors, this implies \vec{}ai = a for all i. We thus have S\vec{}bi = Sa for all i = 1, . . . ,m, as
desired.

Remark 6.1 (approximation using arithmetic circuits). Lemma 6.5 implies that
in order to show that the minimization problem on an antichain F \subseteq 2[n] can be
r-approximated by a (min,+) circuit of size t, it is enough to design a monotone
arithmetic (+,\times ) circuit \Phi of size \leqslant t such that the polynomial computed by this
circuit has the following two properties:

1. for every monomial
\prod 

i\in T xdi
i there is a set S \in F with S \subseteq T ;

2. for every set S \in F there is a monomial
\prod 

i\in T xdi
i with T = S and all di \leqslant r.
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Indeed, property 1 ensures that the set B of vectors produced by the arithmetic circuit
\Phi lies above the set A of characteristic 0-1 vectors of sets in F, while property 2 ensures
that the set r \cdot A lies tightly above Conv(B). By Lemma 6.5, the (min,+) version of
\Phi r-approximates the minimization problem on F.

7. A tight boolean bound for (min,+) circuits. In subsection 4.1, we have
shown (Theorem 4.3) that the monotone boolean circuit complexity of the decision
versions of minimization problems is a lower bound on the size of (min,+) circuits
approximating these problems within any finite approximation factor r \geqslant 1. Lemma 6.5
will allow us to take the factor r into account, that is, to show that approximating
(min,+) circuits and monotone boolean circuits are even more tightly related (as given
in Theorem 7.1 below). For this purpose, we introduce the concept of ``semantic degree""
of monotone boolean circuits.

7.1. Semantic degree of boolean circuits. A minterm of a monotone boolean
function f(x1, . . . , xn) is a vector a \in \{ 0, 1\} n such that f(a) = 1, but f(a\prime ) = 0 for
any vector a\prime obtained by switching any single 1-entry of a to 0. The boolean function
defined by a finite set A \subset \BbbN n of vectors is of the form

fA(x) =
\bigvee 
a\in A

\bigwedge 
i\in Sa

xi ,

where, as before, Sa = \{ i : ai \not = 0\} is the support of vector a. In particular, if
A \subset \{ 0, 1\} n is the set of minterms of a boolean function, then this function is of the
form fA (is defined by the set of its minterms).

A monotone boolean (\vee ,\wedge ) circuit \phi for a boolean function fA (defined by its set A
of minterms) not only computes the function fA but also produces (purely syntactically)
some finite set B \subset \BbbN n of vectors, as given in subsection 3.2. By Proposition 3.1, the
circuit \phi computes the boolean function fB defined by the set B. Since the circuit \phi 
computes the function fA, we know that fB(x) = fA(x) must hold for all x \in \{ 0, 1\} n.
The ``semantic degree"" of the circuit \phi (motivated by Lemma 6.5) gives an upper
bound on the magnitudes of entries of particular (not all) vectors of the set B.

Namely, we define the semantic degree, deg \phi , of \phi as the minimum real number r
such that the set r \cdot A lies tightly above the convex hull Conv(B) of the set B produced
by the circuit \phi . Recall that this means that for every minterm a \in A there are
vectors \vec{}b1, . . . ,\vec{}bm \in B and positive scalars \lambda 1, . . . , \lambda m such that \lambda 1 + \cdot \cdot \cdot + \lambda m = 1,
S\vec{}b1 = . . . = S\vec{}bm = Sa, and

(7.1) a \leqslant \lambda 1 \cdot \vec{}b1 + \cdot \cdot \cdot + \lambda m \cdot \vec{}bm \leqslant r \cdot a .

We use the adjective ``semantic"" because deg \phi depends on the function computed
by \phi , that is, on the set A of minterms of this function. Note that the first inequality
in (7.1) always holds because a is a 0-1 vector, and S\vec{}bi = Sa holds for all vectors bi
(we included this inequality just for clarity).

7.2. The converse of the boolean bound (Theorem 4.3). For a finite set
A \subset \BbbN n, let Boolr(A) denote the minimum size of a monotone boolean circuit of
semantic degree at most r computing the boolean function fA defined by A.

Theorem 7.1 (tight boolean bound). If A \subset \{ 0, 1\} n is an antichain, then
Minr(A) = Boolr(A) holds for every r \geqslant 1.

Proof. To show Minr(A) \leqslant Boolr(A), take a monotone boolean (\vee ,\wedge ) circuit \phi of
semantic degree r computing the boolean function fA defined by A. We can assume
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that the circuit is constant-free: 0 and 1 are the only possible constants, and they can
be trivially eliminated from the circuit. Let B \subset \BbbN n be the set of vectors produced
by the circuit \phi . By Proposition 3.1, the circuit \phi computes the boolean function fB
defined by this set; that is, fB(x) = fA(x) holds for all inputs x \in \{ 0, 1\} n.

Let \Phi be the (also constant-free) tropical (min,+) version of the boolean circuit \phi 
obtained from \phi by replacing each \vee -gate by a min-gate, and each \wedge -gate by a +-gate.
The (min,+) circuit \Phi produces the same set B.

Since fB(x) \leqslant fA(x) must hold for all inputs x \in \{ 0, 1\} n, for every b \in B there
must be a vector a \in A with Sb \supseteq Sa. Since vectors in A are 0-1 vectors, this latter
inclusion yields b \geqslant a. Thus, the set B lies above A and, hence, also above Conv(A).
Since the circuit \phi has semantic degree r, we additionally have that the set r \cdot A lies
above Conv(B). By Lemma 6.5, the circuit \Phi approximates the minimization problem
on A within the factor r.

To show Boolr(A) \leqslant Minr(A), take a tropical (min,+) circuit \Phi approximating the
minimization problem on A within the factor r, and let B \subset \BbbN n be the set of vectors
produced by \Phi . By Lemma 3.2, we can assume that the circuit \Phi is constant-free. Let
\phi be the boolean version of the tropical circuit \Phi obtained by replacing each min-gate
by an \vee -gate, and each +-gate by an \wedge -gate. (Recall that min and \vee are ``additions""
and + and \wedge are ``multiplications"" in the corresponding semirings.) The circuit \phi 
produces the same set B. By Lemma 6.5, we know that the set B has the following
two properties:

(i) B lies above A;
(ii) r \cdot A lies tightly above Conv(B).

By property (ii), the semantic degree of the boolean circuit \phi is at most r. On the other
hand, property (i) implies that the support of every vector b \in B contains the support
of at least one vector a \in A, and property (ii) implies that the support of every vector
a \in A contains the support of at least one vector b \in B. In terms of Proposition 4.1,
this means that the set B is similar to the set A. Since (by Proposition 3.1) the circuit
computes a boolean function fB defined by the set B, Proposition 4.1 itself implies
that \phi computes the boolean function defined by the set A.

7.3. Bounds on semantic degree. An r-bounded copy of a boolean vector
a \in \{ 0, 1\} n is an integer vector b \in \BbbN n which has the same nonzero positions as a, and
every nonzero position of b is at most r. In particular, the unique 1-bounded copy of
a is the vector a itself. Recall that | a| = \langle a, a\rangle is the number of ones in a 0-1 vector a.

Proposition 7.2. Let \phi be a monotone boolean circuit computing a boolean func-
tion f , A \subset \{ 0, 1\} n the set of minterms of f , and B \subset \BbbN n the set of vectors produced
by the circuit \phi . Then the following hold:

1. deg \phi = 1 if and only if A \subseteq B.
2. deg \phi \leqslant r holds if for every a \in A the set B contains at least one r-bounded

copy of a.
3. If deg \phi \leqslant r holds, then for every a \in A the set B contains at least one

s-bounded copy of a for s \leqslant r| a|  - | a| + r.

Note that 1 is a special case of 2 and 3 for r = 1.

Proof. The ``if"" direction in 1 is obvious. The ``only if"" direction follows from a
simple observation: a convex combination \lambda 1b1 + \cdot \cdot \cdot + \lambda mbm of positive integers bi
with all \lambda i > 0 can be equal to 1 only if b1 = . . . = bm = 1.

Claim 2 is also obvious, because for every 0-1 vector a, the inequality b \leqslant r \cdot a
holds for every r-bounded copy b of a.



198 STASYS JUKNA AND HANNES SEIWERT

To show claim 3, assume that deg \phi \leqslant r. Take any minterm a \in A, and let m = | a| 
be the number of ones in a. By the definition of the semantic degree, we know that
there must be a convex combination c =

\sum l
i=1 \lambda i \cdot \vec{}bi of vectors bi \in B with all supports

S\vec{}bi = Sa such that c \leqslant r \cdot a holds. By Carath\'eodory's theorem [5], if a vector is in
the convex hull of some set P \subseteq \BbbR m of vectors, then this vector can be written as a
convex combination of m+ 1 or fewer vectors in P . So, by taking P = \{ \vec{}b1, . . . ,\vec{}bl\} , we
can assume that l \leqslant | a| + 1 = m+ 1.

Consider the vectors \vec{}b\prime i :=
\vec{}bi  - a \geqslant \vec{}0 (the vectors \vec{}b\prime i are nonnegative, because

vectors \vec{}bi have the same support as a). Then c = a + c\prime with c\prime :=
\sum l

i=1 \lambda i
\vec{}b\prime i =

c - a \leqslant r \cdot a - a = (r  - 1) \cdot a. Since \lambda 1 + \cdot \cdot \cdot + \lambda l = 1, there must be an i such that

\lambda i \geqslant 1/l \geqslant 1/(m+ 1). From \lambda i \cdot \vec{}b\prime i \leqslant c\prime \leqslant (r  - 1) \cdot a, and since a is a 0-1 vector, we

have that all entries of vector \vec{}b\prime i must be at most (r  - 1)/\lambda i \leqslant (r  - 1)(m+ 1). Hence,

all entries of the vector \vec{}bi are at most (r  - 1)(m+ 1) + 1 = rm - m+ r, as desired.

Remark 7.1. An apparent advantage of Proposition 7.2 is that it avoids the
somewhat involved definition of the semantic degree via convex hulls. Items 1 and 2
may be useful when proving upper bounds, while items 1 and 3 may be useful when
proving lower bounds on the size of monotone boolean circuits of bounded semantic
degree.

Remark 7.2. Note that the upper bound s \leqslant r| a|  - | a| + r in item 3 of Proposi-

tion 7.2 cannot be substantially improved. Takem = | a| vectors\vec{}bi := a+m(r - 1)\vec{}ei, and

let all \lambda i := 1/m. Then the convex combination c =
\sum m

i=1 \lambda i\cdot \vec{}bi = a+(r - 1)\cdot a = r\cdot a sat-

isfies c \leqslant r \cdot a, but every vector\vec{}bi in this combination has s = 1+m(r - 1) = r| a|  - | a| +1
as one of it entries.

The following example shows that the semantic degree of monotone boolean
circuits can be small even when some vectors produced by the circuit have very large
entries.

Example 7.3 (shortest paths). Let A be the set of characteristic 0-1 vectors of
all simple paths in Kn between two fixed vertices s and t. Then the boolean function
fA defined by A is the s-t connectivity function STCONN on n-vertex graphs. The
Bellman--Ford pure DP algorithm for the shortest s-t path problem gives us a monotone
boolean (\vee ,\wedge ) circuit \phi of size O(n3) computing the boolean function fA. The circuit
has gates ul

j at which the existence of a path from vertex s to vertex j with at most l

edges is detected. Then u1
j = xs,j for all j \not = s, and the recursion of Bellman--Ford is

to compute ul+1
j as the OR of ul

j and all ul
i \wedge xi,j for i \not \in \{ s, j\} . The output gate is

un - 1
t .

The vectors of the set B \subset \BbbN n produced by the Bellman--Ford circuit \phi correspond
not to (simple) paths but rather to walks of length at most n - 1 from s to t. Since a
walk can traverse the same edge many times, some vectors in B have entries much
larger than 1. Still, by Proposition 7.2(1), deg \phi = 1 holds: every (simple) s-t path is
also a walk of length at most n - 1, implying that A \subseteq B.

7.4. Semantic versus syntactic degree. The standard, ``syntactic"" definition
of the degree is the following. Each input node holding a variable has degree 1. The
degree of an OR gate is the maximum of the degrees of its input gates, and the degree
of an AND gate is the sum of the degrees of its input gates. The following proposition
shows that the semantic degree never exceeds the syntactic degree.

Proposition 7.3. Let \phi 1 and \phi 2 be any two monotone boolean circuits. Then
deg \phi 1 \vee \phi 2 \leqslant max \{ deg \phi 1,deg \phi 2\} and deg \phi 1 \wedge \phi 2 \leqslant deg \phi 1 + deg \phi 2.
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Proof. For i \in \{ 1, 2\} , let Ai \subseteq \{ 0, 1\} n be the set of minterms of the boolean
function computed by \phi i, and let Bi \subset \BbbN n be the set of vectors produced by \phi i. Let
ri = deg \phi i be the semantic degree of \phi i.

Take an arbitrary minterm a of \phi . If \phi = \phi 1 \vee \phi 2, then B = B1 \cup B2 is the union
of the set B1 and B2, and a \in Ai for some i \in \{ 1, 2\} . We know that c \leqslant ri \cdot a must
hold for some vector c in Conv(Bi) \subseteq Conv(B). So, deg \phi 1 \vee \phi 2 \leqslant max\{ r1, r2\} in this
case.

If \phi = \phi 1 \wedge \phi 2, then B = B1 + B2 is the Minkowski sum of the sets B1 and B2,
and a = \vec{}a1 \vee \vec{}a2 is a componentwise OR of some minterms \vec{}a1 \in A1 and \vec{}a2 \in A2. We
know that \vec{}c1 \leqslant r1 \cdot \vec{}a1 and \vec{}c2 \leqslant ri \cdot \vec{}a2 must hold for some vectors \vec{}c1 \in Conv(B1)
and \vec{}c2 \in Conv(B2). A well-known property of Minkowski sums is that Conv(B1) +
Conv(B2) = Conv(B1 + B2) always holds. Hence, the vector c = \vec{}c1 + \vec{}c2 belongs to
Conv(B) and satisfies c = \vec{}c1 + \vec{}c2 \leqslant r1 \cdot \vec{}a1 + r2 \cdot \vec{}a2 \leqslant r1 \cdot a+ r2 \cdot a = (r1 + r2) \cdot a. So,
deg \phi 1 \wedge \phi 2 \leqslant r1 + r2 holds in this case.

The following example illustrates that, together with Proposition 7.3, the upper
bound Minr(A) \leqslant Boolr(A) given by Theorem 7.1 allows one to show that some
minimization problems can be approximated by small (min,+) circuits within (large)
but finite factors by proving upper bounds for monotone boolean circuits of bounded
semantic degree. Recall that some minimization problems cannot be approximated by
(min,+) circuits of polynomial size within any finite factor r = r(n) at all (subsec-
tion 4.2).

Example 7.4 (spanning trees). In the minimum weight spanning tree problem Tn,
we are given an assignment of nonnegative real weights to the edges of Kn, and the goal
is to compute the minimum weight of a spanning tree in Kn; the weight of a subgraph
is the sum of weights of its edges. We have shown in [17] that Min1(Tn) = 2\Omega (

\surd 
n).

On the other hand, the decision version of this problem is the graph connectivity
problem. Using the (pure) DP algorithm of Bellman and Ford, for every pair (s, t) of
vertices, the s-t connectivity problem can be solved by a monotone boolean circuit
\phi s,t of size O(n3) and semantic degree deg \phi s,t = 1 (see Example 7.3). So, the
connectivity problem can be solved by the circuit \phi 1,2 \wedge \phi 1,3 \wedge \cdot \cdot \cdot \wedge \phi 1,n of size O(n4).
By Proposition 7.3, the circuit has semantic degree r \leqslant n - 1. Theorem 7.1 implies
that Minr(Tn) = O(n4) holds for some finite factor r \leqslant n - 1.

8. Conclusion and open problems. Developing a workable taxonomy of exist-
ing algorithmic paradigms in rigorous mathematical terms is an important long-term
goal. When pursuing this goal, the main difficulty is to prove unconditional lower
bounds on the complexity of algorithms from particular classes, that is, to prove lower
bounds not relying on unproven complexity assumptions like P \not = NP.

In this paper, we consider the class of all pure DP algorithms, take tropical
circuits as their natural mathematical model, and prove the first nontrivial (even
superpolynomial) unconditional lower bounds for approximating pure DP algorithms
in this model. The results imply that the approximation powers of greedy and pure
DP algorithms are incomparable. Some interesting questions still remain open.

Given a family F \subseteq 2[n] of feasible solutions and an approximation factor r \geqslant 1,
let, as before, Maxr(F) denote the minimum number of gates in a (max,+) circuit
approximating the maximization problem f(x) = maxS\in F

\sum 
i\in S xi on F within the

factor r. In the case of minimization problems and (min,+) circuits, the corresponding
complexity measure is Minr(F).
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8.1. Minimization. We have shown in Theorem 4.6 that there exist a lot of
monotone boolean functions f such that minterms of f are bases of a matroid, and f
requires monotone boolean circuits of exponential size. But we do not know of any
explicit matroid for which the corresponding boolean function requires large monotone
boolean circuits.

Problem 1. Prove a superpolynomial lower bound on the monotone boolean circuit
complexity of an explicit boolean function whose minterms are bases of a matroid.

Let Tn be the family of all spanning trees in a complete n-vertex graph Kn. Since
Tn is a matroid, both minimization and maximization problems can be solved exactly
(within factor r = 1) by the greedy algorithm. On the other hand, we know that
Min1(Tn) = 2\Omega (

\surd 
n) [17]. We also know that Minr(Tn) = O(n4) holds if factor r = n - 1

is allowed (Example 7.4).

Problem 2. Is Min2(Tn) polynomial in n?

8.2. Maximization. The next question concerns the maximization problem on
the matroid Tn of spanning trees in Kn. We know that, for factor r = 1, we have
Max1(Tn) = 2\Omega (

\surd 
n) [17].

Problem 3. Is Max2(Tn) polynomial in n?

In Theorem 5.13, we considered the maximum weight problem on k-partite hy-
pergraphs. For k = 2, the calculations made in the proof of Theorem 5.13 result
in a trivial bound. This raises a natural question: does a similar lower bound hold
for matchings in bipartite graphs? Let Mn be the family of all perfect matchings
in a complete bipartite n \times n graph. The greedy algorithm can approximate the
maximization problem on Mn within the factor 2.

Problem 4. Is Max2(Mn) polynomial in n?

We have shown in Theorem 4.6 that the minimization problem on many matroids
cannot be efficiently approximated by pure DP algorithms within any finite factor r.
But what happens with maximization problems? By Proposition 5.2, we know that
there are a lot of matroids F \subseteq 2[n] such that Max1(F) = 2\Omega (n) but Maxr(F) \leqslant n2

holds already for r = 1 + o(1).

Problem 5. Are there matroids on which the maximization problem cannot be
efficiently approximated by pure DP algorithms within some factor r \geqslant 1 + \epsilon for a
constant \epsilon > 0?

Note that here we only ask for the mere existence. By Proposition 5.2, the answer
is ``yes"" for r = 1. But this proposition and Proposition 5.3 indicate that direct
counting arguments may fail to answer this question for slightly larger approximation
factors r.

8.3. Tradeoffs between minimization and maximization. If a family F of
feasible solutions is uniform (all sets of F have the same cardinality), then Min1(F) =
Max1(F) (see, for example, [16, Lemma 2]). That is, if we consider exactly solving
tropical circuits (factor r = 1), then there is no difference between the tropical circuit
complexity of the minimization and the maximization problems on the same (uniform)
set F of feasible solutions.

But the situation is entirely different if we consider approximating circuits: Theo-
rem 4.6 and Proposition 5.2 give us doubly exponentially many in n matroids F \subseteq 2[n]

such that Max1+o(1)(F) \leqslant n2, but Minr(F) = 2\Omega (n) for any finite factor r = r(n) \geqslant 1.
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Problem 6. Are there uniform families F for which the gap Maxr(F)/Mins(F) is
exponential for r \geqslant s > 1?

Note that the separating family F is here required to be uniform (or at least
to form an antichain): without this requirement, the gap can be artificially made
large. To see this, take an arbitrary uniform family H \subseteq 2[n] with large Maxr(H) (as
in Theorems 5.12 and 5.13), and extend it to a nonuniform family F by adding all
single-element sets. Then Min1(F) \leqslant n (just compute the minimum weight of a single
element), but Maxr(F) still remains large.

8.4. Pure DP algorithms with subtraction. Can the size of tropical approx-
imating circuits be substantially reduced by allowing (in addition to min /max and
+) also subtraction ( - ) gates? In the case of the approximation factor r = 1 (exact
solution), we already know the answer: subtraction gates can then even exponentially
decrease the circuit size. Namely, we already know that both directed and undirected
versions of the MST problem (minimum weight spanning tree problem) on n-vertex
graphs require tropical (min,+) circuits of size 2\Omega (

\surd 
n) [15, 17], but, as shown by Fomin,

Grigoriev, and Koshevoy [10], both these problems are solvable by tropical (min,+, - )
circuits of size only O(n3). Unfortunately, no nontrivial lower bounds for (min,+, - )
circuits are known so far. So, at least two natural questions arise:

\circ Prove lower bounds for (min,+, - ) circuits, at least when r = 1.
\circ What about larger approximation factors r > 1?

Note that, when restricted to the boolean domain \{ 0, 1\} , (min,+, - ) circuits have the
entire power of unrestricted boolean (\vee ,\wedge ,\neg ) circuits: x \wedge y = min(x, y), x \vee y =
min(1, x+ y), and \neg x = 1 - x. The point, however, is that (min,+, - ) circuits must
correctly work over the entire real domain \BbbR +.

Appendix A. Greedy algorithms. Since we compared the approximation
power of tropical circuits (and pure DP algorithms) with that of the greedy algorithm,
here we specify what we actually mean by ``the"" greedy algorithm.

Let F \subseteq 2E be some family of feasible solutions forming an antichain (no two
members of F are comparable under set inclusion). Given an ordering e1, . . . , en of
the elements of E, there are two trivial heuristics to end up with a member of F by
treating the elements one by one in this fixed order.
First-in. Start with the empty partial solution, treat the elements one by one, and, at

each step, add the next element to the current partial solution if and only if
the extended partial solution still lies in at least one feasible solution.

First-out. Start with the entire set E as a partial solution, treat the elements one
by one, and, at each step, remove the next element from the current partial
solution if and only if the reduced partial solution still contains at least one
feasible solution.

Recall that an optimization (maximization or minimization) problem on F is,
given an assignment of nonnegative real weights to the ground elements, to compute
the maximum or the minimum weight of a feasible solution, the latter being the sum
of weights of its elements.

In this paper, by the greedy algorithm we always mean the algorithm which, on
every input weighting x : E \rightarrow \BbbR +, starts with the heaviest-first ordering x(e1) \geqslant 
x(e2) \geqslant \cdot \cdot \cdot \geqslant x(en) of the elements of E, and uses

- the first-in heuristic (``best-in"" strategy) in the case of maximization;
- the first-out heuristic (``worst-out"" strategy) in the case of minimization.

That is, at each step, the ``oracle"" of the maximizing greedy algorithm decides whether
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the current set is still contained in at least one feasible solution, while that of the
minimizing greedy algorithm decides whether the current set still contains at least one
feasible solution.

We denote the approximation factor achieved by the greedy algorithm on a
corresponding optimization (minimization or maximization) problem on F by r\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{d}(F).
It is well known (see, for example, [23, Theorem 1.8.4]) that r\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{d}(F) = 1 if and only
if F is (the family of bases of) a matroid. If F is not a matroid, then greedy algorithms
can only approximate the corresponding optimization problems. In this case, it is
already crucial what greedy strategy is used.

Example A.1. The choice of these special heuristics (first-in for maximization and
first-out for minimization) is not an accident. Namely, a greedy algorithm starting with
the lightest-first ordering x(e1) \leqslant x(e2) \leqslant \cdot \cdot \cdot \leqslant x(en), and using the first-out heuristic
(``worst-out"" strategy) for maximization or first-in heuristic (``best-in"" strategy) for
minimization would be unable to approximate some optimization problems within
any finite factor. To give a simple example, consider the path with three nodes

\bullet \bullet \bullet 
a b c , and let F be the family consisting of just two sets \{ a, c\} and \{ b\} (the
maximal independent sets in this path). If we take an arbitrarily large number M > 1
and give weights x(a) = 0, x(b) = 1, and x(c) = M , then both these greedy algorithms
will treat the vertices in the order a, b, c. The worst-out maximizing greedy on F will
output x(b) = 1, while the optimum is M , and the best-in greedy for minimization
will output x(a) + x(c) = 0 +M , while the optimum is 1. In both cases, the achieved
approximation factor is r \geqslant M (unbounded).

If, however, the greedy algorithm uses the ``right"" strategies for maximization and
for minimization, then the approximation factor is always bounded (albeit possibly
growing with the size of feasible solutions). Say that a family F of sets is m-bounded
if | S| \leqslant m holds for all S \in F.

Proposition A.1. For every m-bounded family F, we have r\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{d}(F) \leqslant m, and
there exist m-bounded antichains F for which r\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{d}(F) = m.

Proof. To show the upper bound, take an arbitrary weighting x : E \rightarrow \BbbR +.
Consider the heaviest-first ordering x(e1) \geqslant \cdot \cdot \cdot \geqslant x(ei) \geqslant \cdot \cdot \cdot \geqslant x(en). Let ei be the
first element accepted by the greedy algorithm. Let S \in F be an optimal solution
for the input x, and let A \in F be the solution found by the algorithm. Let also
x(S) =

\sum 
i\in S x(ei) and x(A) =

\sum 
i\in A x(ei) be their weights.

If this is the maximizing (best-in) greedy, then ei is the first element belonging to
at least one feasible set. So, S \cap \{ e1, . . . , ei - 1\} = \emptyset , implying that x(S) \leqslant | S| \cdot x(ei) \leqslant 
m \cdot x(ei) \leqslant m \cdot x(A), as desired.

If this is the minimizing (worst-out) greedy, then \{ ei+1, . . . , en\} cannot contain
any feasible solution (for otherwise ei would not be accepted). So, some element ej
with j \leqslant i must belong to the optimal solution S. But then x(S) \geqslant x(ej) \geqslant x(ei),
whereas x(A) \leqslant | A| \cdot x(ei) \leqslant m \cdot x(ei), implying that x(A) \leqslant m \cdot x(S), as desired.

To show that r\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{d}(F) \geqslant m holds for some m-bounded antichains F, take an
arbitrarily small number \epsilon > 0, and consider the star K1,m centered in a and with
leaves b1, . . . , bm. Let F consist of the only two maximal independent sets \{ a\} and
\{ b1, . . . , bm\} in this graph. Give the weight c := 1/(1  - \epsilon /2) > 1 to the center 1,
and weights 1 to the leaves. The maximizing (best-in) greedy will output c, while
the optimum is m, and the minimizing (worst-out) greedy algorithms will output
m, while the optimum is c. In both cases, the achieved approximation factor is
r \geqslant m/c > (1 - \epsilon )m.
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Appendix B. Sidon sets: Proof of Theorem 5.4. A set A \subset \BbbN n of vectors is
a Sidon set if, for all vectors a, b, c, d \in A, if a+ b = c+d, then \{ a, b\} = \{ c, d\} . That is,
knowing the sum of two vectors in A, we know which vectors were added. Let (as before)
Maxr(A) denote the minimum size of a tropical (max,+) circuit r-approximating the
problem f(x) = maxa\in A\langle a, x\rangle on A.

Let m be an odd integer and n = 4m. Our goal is to show that then there is an
explicit Sidon set A \subseteq \{ 0, 1\} n such that Max1(A) \geqslant 2n/4 but Max2(A) \leqslant n. For this,
consider the cubic parabola C = \{ (z, z3) : z \in \{ 0, 1\} m\} \subseteq GF(22m). As is customary,
we view vectors in z \in \{ 0, 1\} m as coefficient-vectors of polynomials of degree at most
m - 1 over GF(2) when raising them to a power. Note, however, that in the definition
of Sidon sets, the sum of vectors is taken over the semigroup (\BbbN ,+)---not over GF(2);
in particular, a+ a = 0 holds only for a = 0.

For a finite set A \subset \BbbN n of vectors, let L(A) denote the minimum size of a Minkowski
(\cup ,+) circuit producing A. We will use the following three facts. Recall that a set
A \subseteq \{ 0, 1\} n is uniform if all of its vectors have the same number of ones.

(1) The cubic parabola C \subseteq \{ 0, 1\} 2m is a Sidon set [21, Theorem 2].
(2) L(A) \geqslant | A| holds for every Sidon set A \subset \BbbN n [12, Theorem 1].
(3) If A \subseteq \{ 0, 1\} n is uniform, then Max1(A) \geqslant L(A) [15, Theorem 2.9].

The cubic parabola C is not uniform, and we cannot apply (3) to it. But, using a
simple trick (suggested by Igor Sergeev, personal communication), we can extend
this set to a uniform Sidon set. For a 0-1 vector a, let a denote the componentwise
negation of a. For example, if a = (0, 0, 1), then a = (1, 1, 0). Consider the following
set of vectors:

A = \{ (c, c) : c \in C\} =
\bigl\{ 
(a, a3, a, a3) : a \in \{ 0, 1\} m

\bigr\} 
\subseteq \{ 0, 1\} n .

This set is already uniform: every vector of A has exactly 2m ones. The set A is
also a Sidon set because, by (1), the set C was such. So, (2) and (3) imply that
Max1(A) \geqslant | A| = 2m = 2n/4.

It remains therefore to prove the upper bound Max2(A) \leqslant n. We have n = 4m
variables x1, . . . , x4m. Our approximating circuit will solve the maximization problem
on the set B = B\prime \cup B\prime \prime , where

B\prime = \{ (a, 0, a, 0) : a \in \{ 0, 1\} m\} and B\prime \prime = \{ (0, a, 0, a) : a \in \{ 0, 1\} m\} .

The maximization problem on B is to compute f(x) = max\{ g(x), h(x)\} , where

g(x) = max

m\sum 
i=1

aixi +

3m\sum 
i=2m+1

(1 - ai)xi ,

h(x) = max

2m\sum 
i=m+1

aixi +

4m\sum 
i=3m+1

(1 - ai)xi ,

with both maximums taken over all vectors a \in \{ 0, 1\} 4m. Since g(x) is just the sum
max\{ x1, x2m+1\} +max\{ x2, x2m+2\} + \cdot \cdot \cdot +max\{ xm, x3m\} , and similarly for h(x), the
maximization problem f can be solved using only 4m = n gates.

It remains to show that f indeed approximates the maximization problem on A
within factor r = 2. As we have shown in subsection 6.2 (see Lemma 6.4), this happens
precisely when the set B lies below A, and the set 1

2 \cdot A lies below the convex hull
Conv(B) of B. It is clear that the first subset B\prime of B lies below A. We have to show
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that this holds also for the second subset B\prime \prime . For this, it is enough to show that B\prime \prime 

coincides with the set of all vectors (0, a3, 0, a3) for a \in \{ 0, 1\} m.
It is known that a polynomial xk permutes GF(q) if and only if q  - 1 and k are

relatively prime; see, for example, Lidl and Niederreiter [20, Theorem 7.8]. In our case,
we have q = 2m and k = 3. Since m is odd, we have m = 2t+ 1 for some t \in \BbbN . Easy
induction on t shows that p(t) := 22t+1 + 1 is divisible by 3: the basis t = 0 is obvious,
because p(0) = 3, and the induction step p(t+ 1) = 22(t+1)+1 + 1 = 4(22t+1 + 1) - 3 =
4 \cdot p(t)  - 3 follows from the induction hypothesis. So, q  - 1 = p(t)  - 2 cannot be
divisible by 3; that is, q - 1 and 3 are relatively prime, and, hence, the mapping a \mapsto \rightarrow a3

is a bijection. This gives us a crucial fact:\bigl\{ 
(0, a3, 0, a3) : a \in \{ 0, 1\} m

\bigr\} 
= \{ (0, a, 0, a) : a \in \{ 0, 1\} m\} = B\prime \prime .

Hence, the entire set B = B\prime \cup B\prime \prime lies below A; that is, every vector of B is covered
by at least one vector of A. By Lemma 6.4, it remains to show that the set 1

2 \cdot A lies
below the convex hull Conv(B). So, take an arbitrary vector u = 1

2 \cdot (a, a3, a, a3) in
1
2 \cdot A. This vector is a convex combination 1

2 \cdot v + 1
2 \cdot w of vectors v = (a, 0, a, 0) and

w = (0, a3, 0, a3) of B, as desired.
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