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Abstract 

Recently Pave1 Pudlak ( 1995) and independently Armin Haken and Steve Cook ( 1995) gave exponential lower bounds 
for the size of monotone real circuits computing clique type functions. In both cases, the lower bound was established in 
the monotone boolean case and then extended to the real case. This left open the question of whether monotone boolean 
circuits arc in general polynomially equivalent to monotone real circuits for boolean functions. By a simple construction, we 
show that monotone real circuits are exponentially more powerful than general boolean circuits by proving that linear-size 
log-depth fan in 2 monotone real circuits can compute any slice function. @ 1997 Elsevier Science B.V. 
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1. Introduction 

Monotone boolean circuits have been of interest for 
many years. It is in this powerful circuit setting that 
Razborov [ 81 first established an exponential lower 
bound for an explicit boolean function.* Berkowitz 
(see for example [ lo] ) intimately linked Monotone 
circuit complexity with general boolean circuit com- 
plexity by showing that negations are powerless on 
slice functions. Consequently, monotone lower bounds 
on slice functions are of interest as they imply lower 
bounds on general boolean circuits. Monotone circuits 
once again became of interest when circuit complexity 
and propositional proof complexity were linked [ 61. 
Bonet et al. [2] established that a bounded weight 

’ Email: amold@cs.toronto.edu. 
* Exponential lower bounds for non-explicit boolean functions 

had previously been established by Shannon [91. 

cutting plane proof of a clique related propositional 
tautology could serve as a framework for a polyno- 
mially larger monotone boolean circuit computing the 
clique function. Consequently, the known clique lower 
bounds [ 8,1] give rise to lower bounds on the lengths 
of proofs in the bounded weight cutting plane proof 
system. 

Interest in real monotone circuits arose recently 
when Pudlak [7] pointed out that a general cutting 
plane lower bound for the clique related tautologies 
could be realized if more general monotone lower 
bounds were established for the clique function. To 
this end, Pudlak generalized Razborov’s clique lower 
bound and proved the general cutting plane lower 
bound. At about the same time, Haken [ 41 introduced 
a new bottleneck counting technique and used it to 
obtain a simpler monotone boolean lower bound for a 
clique-like problem called the broken mosquito screen 
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problem. Cook [ 51 extended this to a monotone real 
lower bound for the same problem and so established 
another general cutting plane lower bound for broken 

mosquito screen tautologies. 

In the remainder of this note we prove that mono- 
tone real circuits are a very powerful. We construct 
linear-size, log-depth monotone real circuits for any 
slice function and show that there are lots of slice func- 
tions which can not be computed by polysize boolean 
circuits. 

2. Basic definitions 

A T-circuit c is an acyclic directed graph with la- 
beled vertices (called gates) and a single sink vertex 
called the output of the circuit. We consider only fan- 
in 2 circuits, so the in-degree of any vertex in c is 
at most 2. The inputs to c are those vertices with in- 
degree 0 and are labeled by a member of {~a, xi,. . .}. 
Non-input gates (those with in-degree > 0) are la- 
beled with the function computed at that gate (func- 
tions listed in T). The size oft, sometimes written 1~1, 
is the number of vertices in its associated graph. The 

depth of c is the length of the longest input/output 
path. If the largest input label in c is x,, then c com- 
putes a function on bit-strings (bo, bi , . . . , b,,) with 
m 2 n by assigning bi to xi and evaluating c in the 
usual way. C = {ce,ci, . . .} is a T-circuit family if 

each ci is a T-circuit and is defined on bit-strings of 
length i. C computes a function on inputs of length 
n by writing C(bo,. . . ,&_I) = c,_l(bo,. . .,b,,_l). 
The size ofC is the function ICI(i) = Icil, the depth of 
C is similarly defined. If 3 = {fc, . . .} is a family of 
boolean functions (3 is defined on inputs of length 
rr as above) then its corresponding T-circuit family 
C consists of a smallest T-circuit ci computing fi for 
each i. The T-circuit size of3 is then the size of its 
corresponding T-circuit family. 

For boolean circuits non-input gates of in-degree 1 
are labeled by 1, while those of in-degree 2 are labeled 
by either A or V. It should be clear that any boolean 
function family has an associated boolean circuit fam- 
ily and so the size notion is well defined in the boolean 
case. Real monotone circuits have each non-input node 
labeled by a nondecreasing real function of its inputs. 
More formally, define (x, y) < (a, b) + (x < a) 
and(y<b).Sof(x,y) :R*+lRisamonotonereal 

function if (x, y) 6 (a, b) + f( x, y) 6 f( a, b). 
For what follows, we will be considering inputs (bit 

strings) of length II. The kth slice of (0, 1)” (some- 

times written Bk when IZ is obvious) is the set of length 
n bit strings 

{x E (0, 1)” 1 x has exactly k bits set to 1). 

Let f be a boolean function defined for inputs of length 
n. We say that f is a slice function if there is some k 

(0 < k < n) such that 

f(Bi) = 

(0) ifi<k, 

(1) if i > k. 

Note that f is unrestricted on the kth slice Bk. A family 
of boolean function { fi I i = 0, 1, . . .} is a slice family 
if each fi is a slice function. Again, it should be clear 
that any slice family has an associated real monotone 
circuit family and so the size notion for the family is 
well defined in the real monotone case. 

3. The result 

Theorem 1. Monotone real circuits can compute any 
slice family in log-depth, linear-size. 

Proof. Let 3 = { fi I i E N} be any slice family. We 

show that each fn has small monotone real circuits. 
Fix n and let k E N be such that 

fn(x) = i 

(0) if i < k, 

(1) if i > k. 

Consider now the two monotone real functions 
Order+ and Order_ defined by 

n-1 

Order+(x) =x(2”+’ + 2’)xi, 
i=Cl 

n-l 

Order_(x) =x(2”+’ - 2’)xi. 
i=O 

Each of Order+ and Order_ can be computed by linear 
size, log-depth monotone real circuits. 

Consider the partial order induced on (0, 1)” by 
setting 

x <y e (Order+(x),Order_(x)) 

< (Order+(y),Order-(y)) 
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We verify only the first of the following two properties 
of the above ordering, the second is straightforward. 
(1) IfI + y EBj then 

Order+ (x) < Order+ ( y) 

H Order_(x) > Order_(y) 

and so x d y and x 3 y 
(2) IfxEB,,andyEBbwitha<bthen 

Order+ (x) < Order+(y) and 

Order_ (x) < Order_ (y) 

and so x < y. 
Let Z? = Cr” xi2’ be the number whose binary rep- 
resentation is X. If x # Y E Bj then 

Order+ (X ) < Order+ ( y) 

H j2”+’ +X < j2n+’ +f 

@ x<y 

H -X>-5 

* j2”+’ _ X > j2”+’ _ 7 

w Order_(x) > Order_(y). 

The above properties say that the partial ordering in- 
duced on (0, 1)” orders the Bi as Bo < BI < . . . < 
B,_, < B, and within any slice, elements are incom- 

parable. 
Finally, we can compute fn as follows. Consider 

the monotone real circuit with output gate g, its first 
input being Order+ and its second input being Order_. 

g behaves as follows: 

g(Order+(x),Order_(x)) 

0 if x E B, with a < k, 

= 

{ 

1 if x E B, with a > k, 

f,,(x) if x E Bk. 

Note that properties ( 1) and (2) above allow such a 
monotone real g to be defined. 0 

Lemma 2. Most boolean slice families have size at 

least 2”f2/10n. 

Proof. We follow the proof of Muller as outlined in 
[ 31, only we apply the technique to slice functions. 

Without loss of generality, we can assume that any 
negations are at the inputs. If this is not the case, 

we can push the negations towards the inputs without 
increasing the circuit size. There are fewer than 

[2(s + 2n + 2>21" (1) 

boolean circuits of size s over {V, A, -}. To see this, 
note that each gate in the circuit can be either an V or 

A (2 choices). Its first input can either be connected 
to another gate (s choices), a literal (2n choices), or 
a constant (2 choices). In total, there are (s + 2n + 2) 
ways to connect the gates first input. Similarly, there 
are (s + 2n + 2) ways of connecting the gates second 
input,soforonegatewehaveatmost [2(s+2n+2)2] 
different choices. So there are at most ( 1) different 
possible circuits on s gates. 

Now for s = [2”/2/10nl and sufficiently large n, 

the above bound is less than 

22”J2/ 10 

But there are exactly 2(~172) > 22”‘2 different n/2 slice 

functions on inputs of length n. So at least 

2(,,‘;2) - 22’i’2/ia 

slice functions require circuits of size greater than 
2”i2/10n. 0 

Combining the above results we have the following 
theorem. 

Theorem 3. Monotone real circuits are exponentially 

more powerful than boolean circuits on slice families. 
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