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We study a new method for proving lower bounds for subclasses of arithmetic circuits.
Roughly speaking, the lower bound is proved by bounding the correlation between the
coefficients’ vector of a polynomial and the coefficients’ vector of any product of two
polynomials with disjoint sets of variables. We prove lower bounds for several old and
new subclasses of circuits: monotone circuits, orthogonal formulas, non-canceling formulas,
and noise-resistant formulas. One ingredient of our proof is an explicit map that has
exponentially small discrepancy for every partition of the input variables into two sets
of roughly the same size. We give two additional applications of this explicit map: to
extractors construction and to communication complexity.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Arithmetic circuits are the standard model for computing polynomials. Proving super-polynomial lower bounds for the
size of arithmetic circuits and formulas is an outstanding open problem. Here we study a new method for proving lower
bounds for several subclasses of circuits. Roughly speaking, this method is based on bounding the correlation between the
coefficients’ vector of a polynomial and the coefficients’ vector of any product of two polynomials with disjoint sets of
variables.

We prove tight exponential size lower bounds for two previously studied models of arithmetic circuits: monotone circuits
(that are circuits that use only positive real numbers), and orthogonal multilinear formulas (that are formulas that are only
allowed to sum two polynomials whose coefficients’ vectors are orthogonal). We also prove nΩ(1) lower bounds for the depth
of two new models of multilinear formulas: non-canceling formulas, and noise-resistant formulas. Here are rough definitions
of these two models: Non-canceling formulas are formulas that are not allowed to sum two polynomials that almost cancel
each other – the non-canceling model is a generalization of both the monotone model and the orthogonal model. Noise-
resistant formulas are formulas that compute well even when some small noise occurred during the computation.

One important ingredient of our proof is an explicit map f : {0,1}n → {0,1} that has exponentially small maximal-
partition discrepancy (see Section 1.1.2 for a formal definition). This notion is also related to extractors construction and to
communication complexity, as we will describe below.
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1.1. Definitions and motivations

We start by giving the formal definitions of the notions needed to state our results. We also give some motivation for
considering these notions.

1.1.1. Arithmetic circuits
We start by some general definitions regarding arithmetic circuits. An arithmetic circuit Φ over the field of complex

numbers C and over the set of variables X = {x1, . . . , xn} is a directed acyclic graph as follows: Every vertex of in-degree
0 is labeled by either a field element or a variable. Every other vertex is of in-degree 2, and is labeled by either + or ×.
There is a unique vertex in Φ of out-degree 0. An arithmetic formula is an arithmetic circuit whose underlying graph is a
binary tree (whose edges are directed from the leaves to the root).

The size of Φ is the number of vertices in Φ . We denote the size of Φ by |Φ|. The depth of a vertex v in Φ is the length
of the longest directed path reaching v . We denote the depth of v by depth(v). The depth of Φ is the maximal depth of a
gate in Φ . The vertices of Φ are also called gates. Gates of in-degree 0 are also called input gates. Gates labeled by + are
called sum gates, and gates labeled by × are called product gates. The gate of out-degree 0 is called the output gate. If there
is a directed edge from a gate v to a gate u, then v is called a child of u.

An arithmetic circuit computes a polynomial in a natural way. An input gate computes the polynomial it is labeled by
(i.e., the variable or the field element). A sum gate computes the sum of the two polynomials computed by its two children.
A product gate computes the product of the two polynomials computed by its two children. For a gate v in Φ , denote by
Φv the sub-circuit of Φ rooted at v . Denote by Xv the set of variables that occur in Φv . Denote by Φ̂v the polynomial in
C[Xv ] computed by v in Φ . Denote by Φ̂ the polynomial computed by the output gate of Φ .

We now turn to the different models of arithmetic circuits we consider.

1.1.1.1. Monotone circuits A polynomial f ∈ R[X] is called monotone, if the coefficients of all the monomials in f are non-
negative. A well-known example of a monotone polynomial is the permanent. An arithmetic circuit is called monotone, if all
the field elements labeling its input gates are positive real numbers.

The model of monotone circuits has been studied in many papers, for example [23,26,25,11,24,27,28]. In particular,
Shamir and Snir proved a 2Ω(

√
n) lower bound for the size of monotone circuits [25], and this is the best lower bound

previously known. Moreover, Valiant showed that one ‘negation’ gate is exponentially powerful [28].

1.1.1.2. Multilinear formulas A polynomial f ∈ C[X] is called multilinear, if the degree of every variable in f is at most 1. We
say that an arithmetic circuit is multilinear, if the polynomial computed by each of its gates is multilinear. We say that an
arithmetic circuit is syntactically multilinear, if for every product gate v in it with children v1 and v2, the two sets Xv1 and
Xv2 are disjoint (for a discussion of the difference between these two notions of multilinear computation see [21]).

Multilinear polynomials are common (e.g., determinant, and permanent). The natural way to compute a multilinear
polynomial is via a multilinear computation, as the use of high powers during the computation requires non-intuitive
cancellations. We note, however, that this intuition is false for monotone circuits for example (where “a single minus gate
adds a lot of power”).

The multilinear model was first studied by Nisan and Wigderson [16]. Later [18] proved a super-polynomial lower bound
for the size of multilinear arithmetic formulas for the determinant and the permanent. Furthermore, [19] proved a super-
polynomial separation between the size of multilinear arithmetic circuits and formulas. The proof of this separation was
later simplified in [22], that also showed that syntactically multilinear arithmetic circuits of size poly(n) are (without loss
of generality) of depth O (log2(n)) ([22] following [29]).

Proving super-polynomial lower bounds for the size of multilinear arithmetic circuits is an open problem (the best lower
bound known for syntactically multilinear arithmetic circuits is Ω(n4/3/ log2(n)) [21]). Since syntactically multilinear arith-
metic circuits can be balanced [22], proving ω(log2(n)) lower bounds for the depth of syntactically multilinear arithmetic
formulas will give a super-polynomial lower bound for the size of syntactically multilinear arithmetic circuits. This motivates
proving lower bounds for the depth of subclasses of multilinear formulas, as we do here.

Before defining the rest of the models of circuits that we consider, we need to explain how to view a polynomial as a
vector.

1.1.1.3. Polynomials as vectors Let n ∈ N be an integer. We denote [n] = {1, . . . ,n}. For the rest of this paper, we will some-
times interchange between subsets of [n], subsets of X = {x1, . . . , xn} and monic multilinear monomials in the variables X
(a monic monomial is a monomial whose coefficient is 1). For example, a set T ⊆ [n] is also the set {xi: i ∈ T } as well as
the monomial

∏
i∈T xi .

We will focus on the following two vector spaces over the field C:

1. The vector space of multilinear polynomials in C[X ′], where X ′ ⊆ X (thinking of a polynomial as the vector of its
coefficients). For example, for a gate v in a multilinear formula Φ over the field C and over the set of variables X , we
think of the polynomial Φ̂v also as a vector.

2. The vector space of maps from {1,−1}T to C, where T ⊆ [n].



R. Raz, A. Yehudayoff / Journal of Computer and System Sciences 77 (2011) 167–190 169
For two vectors w, w ′ (as above), the inner product of w and w ′ is〈
w, w ′〉 = ∑

t

w(t)w ′(t),

where the sum is over all the coordinates t of the vectors (and for α ∈ C, we denote by α the complex conjugate of α).
Define the correlation of w and w ′ as

cor
(

w, w ′) = ∣∣〈w, w ′〉∣∣.
The vectors w and w ′ are called orthogonal, if cor(w, w ′) = 0. The norm of the vector w is

‖w‖ = √〈w, w〉.
1.1.1.4. Orthogonal and non-canceling formulas Orthogonal syntactically multilinear formulas were first defined and motivated
by Aaronson [1]. He suggested a connection between such formulas and a certain type of quantum computations. More
specifically, he defined a family of quantum states which he calls orthogonal tree states. He advocates that such states
represent ‘natural’ quantum states. Orthogonal tree states can also be thought of as polynomials that are computed by
orthogonal syntactically multilinear formulas. Aaronson studied the orthogonal model and proved lower bounds for what
he calls manifestly orthogonal formulas, that are a subclass of orthogonal formulas.

Part of the motivation for considering monotone circuits is to understand what can circuits do without any cancellations
of monomials. It seems natural to generalize this notion. One way to generalize this notion is given by the non-canceling
model. In fact, the non-canceling model is more general than both the monotone model (in which there are no cancellations
at all) and the orthogonal model (discussed above).

Every sum gate v in an arithmetic formula Φ sums two polynomials, say f1 and f2. Roughly, the non-canceling condition
says that the norm of f1 + f2 is not negligible compared to the norm of both f1 and f2. What does this mean? Well, in the
case where the norm of f1 + f2 is negligible compared to the norms of both f1 and f2, the two polynomials are ‘almost’
the same (with opposite signs), except for a negligible part in which they may differ. Loosely speaking, this condition could
be interpreted as a ‘deep’ understanding Φ (or the designer of Φ) has about the computation of Φ̂ .

The fact that we succeed in proving polynomial lower bounds for the depth of non-canceling syntactically multilinear
formulas, and not for (general) multilinear formulas, gives more ‘evidence’ to the ‘fact’ that we need to understand the
cancellations of monomials better.

Here are the formal definitions of these models. For τ > 0, we say that a sum gate v in an arithmetic formula Φ is
τ -non-canceling, if

‖Φ̂v‖ � τ · max
(‖Φ̂v1‖,‖Φ̂v2‖

)
, (1.1)

where v1 and v2 are the two children of v . Stated differently, v is non-canceling, if it does not subtract two polynomials
that are ‘almost’ the same. We say that Φ is τ -non-canceling, if every sum gate in Φ is τ -non-canceling.

We say that an arithmetic formula Φ is orthogonal, if for every sum gate v in Φ with children v1 and v2,

cor(Φ̂v1 , Φ̂v2) = 0;
that is, the polynomials Φ̂v1 and Φ̂v2 are orthogonal (as vectors of coefficients). So, an orthogonal arithmetic formula is, in
particular, 1-non-canceling.

Remark 1.1. We note that for every two vectors f and g , since

‖ f + g‖ �
∣∣‖ f ‖ − ‖g‖∣∣,

it holds that for τ � 1

‖ f + g‖ � τ · min
(‖ f ‖,‖g‖) ⇒ ‖ f + g‖ � τ

2
· max

(‖ f ‖,‖g‖).
So, using minimum instead of maximum in (1.1) is the same, up to a factor of 2.

1.1.1.5. The noise-resistant model Our main motivation for this model is that it seems natural to assume that in any ‘real’
implementation of an arithmetic formula over C noise will occur. In fact, it seems that there are two ways to implement an
arithmetic computation over the field of complex numbers: either by an analog circuit, which are bound to have some noise
in it, or by a digital circuit, which yields the finite representation of complex numbers (floating point, for instance). Both of
these ways seem to have an intrinsic noise in them. So, in order to compute (or even approximate) a map g : {1,−1}n → C

in a way that will be resilient to the noise introduced by practical implementations, we want to find an arithmetic formula
that is noise-resistant to computing g .

It seems natural to think that if the noise is much smaller than the size of the formula, then the formula computes
almost the same polynomial even when noise occurs. Thus, one could expect that a polynomial size formula is always
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noise-resistant for exponentially small noise. This, however, is not necessarily true. In this paper, we prove lower bounds for
the size of formulas that are noise-resistant for exponentially small noise.

We note that in other computation models defined over C (such as quantum circuits) a noise model was studied, and
various interesting results were obtained.

Given an input t , say in {1,−1}n , an arithmetic formula Φ gives a natural way for computing the value of the polynomial
Φ̂ in t . Upon realizing this computation of Φ̂(t) in the ‘real world’, it seems reasonable to assume that some noise will occur.
A natural model for this noise is that each edge in the formula introduces a small noise into the computation. Given Φ we
will think of a noisy version of Φ as the same as Φ , except that each edge of the noisy version is multiplied by a value that
is close to 1 (that we think of as noise).

We note that, since we are proving lower bounds, if we assume a weaker noise model, our results become stronger.
Hence, we want the noise model to be as weak as possible. We hence assume that the noise have the following two
restrictions: only sum gates introduce noise, and the noise is a positive real number that is independent of the input.

We now turn to the formal definition of the noise model. For a gate v in an arithmetic formula Φ , and for 0 � ε � 1, we
will define below Nε(Φv ) to be the set of maps from {1,−1}Xv to C that are the outputs of all the noisy versions of Φv on
inputs in {1,−1}Xv . Elements of Nε(Φv ) will be called ε-noisy values of Φv . Before the definition, we make the following
remark.

Remark 1.2. The polynomial Φ̂v naturally defines a map φv from {1,−1}Xv to C. For t ∈ {1,−1}n , the value of φv(t) is the
value of the polynomial Φ̂v after substituting xi = ti . Since only variables in Xv occur in Φ̂v , the map φv is indeed from
{1,−1}Xv to C.

The definition of Nε(Φv ) is inductively as follows.

• If v is an input gate,

Nε(Φv) = {φv},
where φv is the map from {1,−1}Xv to C defined by Φ̂v – see Remark 1.2 (and so there is no noise in input gates). For
example, if Φ̂v = xi , then φv(1) = 1 and φv(−1) = −1.

Otherwise, v has two children v1 and v2. We note that although φvi is a map from {1,−1}Xvi to C we can naturally
think of it as a map from {1,−1}Xv to C (for every t ∈ {1,−1}Xv , set φvi (t) to be φvi (t

′), where t′ is the restriction of t to
the entries in Xvi ), and so the following is well defined.

• If v is a product gate,

Nε(Φv) = {
φv1 · φv2 : φv1 ∈ Nε(Φv1), φv2 ∈ Nε(Φv2)

}
(and so there is no noise in edges going into product gates).

• If v is a sum gate,

Nε(Φv) = {
(1 + α1) · φv1 + (1 + α2) · φv2 : φv1 ∈ Nε(Φv1), φv2 ∈ Nε(Φv2)

}
,

where α1,α2 are arbitrary real values such that

0 � α1 � ε and 0 � α2 � ε

(and so the edges going into sum gates introduce a noise of ‘magnitude’ at most ε).

For a map g : {1,−1}n → C, we say that Φ is ε-noise-resistant to computing g , if every ε-noisy value of Φ is ‘correlated’
with g; that is, for every φ ∈ Nε(Φ),

cor(φ, g) � ε · ‖φ‖ · ‖g‖ (1.2)

(where we think of φ and g as maps from {1,−1}n to C). So, for Φ to be noise-resistant to computing g , we only require all
noisy values of Φ to be weakly correlated with g . We note that we could have introduced a new parameter (other than ε,
that could, perhaps, be closer to 1) to bound the correlation in (1.2). We do not do so for simplicity of notation (and, once
again, this only makes the lower bounds stronger).

Reading the definition above the reader may ask herself whether noise-resistant formulas exist. One example of a formula
that is noise-resistant is a formula that is a sum of monomials – every two different multilinear monomials m and m′ in the
variables X admit cor(φm, φm′ ) = 0, where φm and φm′ are the maps from {1,−1}n to C defined by m and m′ respectively
– see Remark 1.2. Thus, a polynomial of the form

∑
i cimi is not very sensitive to small changes in the ci ’s (where the mi ’s

are distinct monic monomials and the ci ’s are their coefficients).
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1.1.2. Maximal-partition discrepancy
The discrepancy of a matrix is a well known and useful property, since it measures (in some sense) the amount of

pseudo-randomness in a matrix. In computer science, it is connected to randomized communication complexity, extractors
construction, and more. In combinatorics, it is connected to Ramsey theory.

The notion of maximal-partition discrepancy is a stricter measure of pseudo-randomness. We use known ideas to show
that maximal-partition discrepancy is connected to communication complexity and extractors construction. Furthermore,
we show a new connection between maximal-partition discrepancy and proving lower bounds for subclasses of arithmetic
formulas.

We first recall the definition of the discrepancy of a matrix. Let M be an N × N ′ matrix with entries in {0,1}. A rectangle
R in M is a set of the form R = Y × Z ⊆ [N] × [N ′]. The discrepancy of a rectangle R in M is the difference between the
number of 1’s and the number of 0’s in R divided by the size of M; that is,

DiscR(M) = 1

N · N ′ ·
∣∣∣∣ ∑
(y,z)∈R

(−1)M(y,z)

∣∣∣∣.
The discrepancy of M is

Disc(M) = max
R

DiscR(M),

where the maximum is over all rectangles R in M .
We now define maximal-partition discrepancy. Let f be a map from {0,1}n to {1,−1}, and let A be a subset of {1, . . . ,n}

of size k (we think of A as a partition of {1, . . . ,n} into A and {1, . . . ,n} \ A). For y ∈ {0,1}k and z ∈ {0,1}n−k , define f A
to be the 2k × 2n−k matrix whose (y, z) entry is f ((y, z)A), where (y, z)A is the unique vector in {0,1}n whose restriction
to the entries in A is y and restriction to the entries not in A is z. The maximal-partition discrepancy of f is the maximal
discrepancy of f A among all sets A of size n/3 � |A| � 2n/3.

1.1.3. Mixed-2-source extractors
Chor and Goldreich were among the first to consider weak sources of randomness, which are sources with min-entropy k

[9]. Extracting randomness from one weak source is impossible (as long as k � n − 1). So, other sources of randomness were
considered, such as two independent weak sources, and a few independent sources. We note that the study of extracting
randomness from a few independent sources has advanced significantly lately [2–4,20,17] due to the well-known sum-
product theorem [8].

We introduce and analyze a new class of sources, that is a generalization of two independent sources, which we call
mixed-2-sources. Given two independent sources of n/2 bits each and total min-entropy k, [9] showed that the Hadamard
matrix gives efficient extraction of one random bit for k > n/2 (we omit the dependency on the error term). The state of
the art, due to Bourgain [6], is a 2-source extractor that gives a linear number of almost perfect bits for k > n(1 − δ)/2 (for
some constant δ > 0).

One way of thinking of a mixed-2-source extractor is as an extractor that works also when the bits of the two random
sources arrive in a fixed but unknown order. This seems to be a natural relaxation of the well-known notion of 2-source
extractors, although, as far as we know, it has not been considered before. We also note that the Hadamard matrix does not
give a mixed-2-source extractor even for k = n − 4 (in fact, the Hadamard extractor can be made constant for such a k).

We start with a few preliminary definitions and notation. Let μ be a distribution on {0,1}n , and denote by t ∼ μ an
element distributed by μ. The min-entropy of μ is

H∞(μ) = min
t∈{0,1}n

log

(
1

μ(t)

)
;

that is, the min-entropy of μ is k > 0, if the most probable element in μ has probability 2−k . We denote by Un the uniform
distribution on {0,1}n . The statistical distance between μ and the uniform distribution Un is

‖μ − Un‖1 =
∑

t∈{0,1}n

∣∣μ(x) − Un(x)
∣∣.

For two vectors t and t′ in {0,1}n , denote by t ◦ t′ ∈ {0,1}2n the concatenation of t and t′ . For a one-to-one map π from
[2n] to [2n], denote by (t ◦ t′)π ∈ {0,1}2n the reordering of t ◦ t′ according to π ; that is, for every i ∈ [2n], the i’th entry in
(t ◦ t′)π is (t ◦ t′)π(i) .

We now give the definition of a mixed-2-source extractor. For n,m ∈ N and k, ε > 0, a map Ext : {0,1}2n → {0,1}m

is called a mixed-2-source extractor with k min-entropy requirement and error ε, if for every μ and μ′ , two independent
distributions on {0,1}n such that

H∞(μ) + H∞
(
μ′) � k,

and for every one-to-one map π from [2n] to [2n],∥∥Ext

((
t ◦ t′)

π

) − Um
∥∥

1 � ε,

where t ∼ μ and t′ ∼ μ′ .
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A mixed-2-source extractor is stronger than a 2-source extractor. More specifically, a 2-source extractor is promised to
extract random bits only when π is the identity map. We note that we think of π as being a fixed (but unknown) order in
which the bits from the two random sources arrive.

1.1.4. Best-partition communication complexity
Communication complexity was defined by Yao [31], and has been studied extensively since. Different models of commu-

nications complexity are related to various areas in computer science. In particular, best-partition communication complexity
is related to time/space tradeoffs for Very Large Scale Integration Circuits and to the width of branching programs (see [12]).
Lam and Ruzzo proved an Ω(n) lower bound for randomized best-partition communication complexity, with error polyno-
mially close to 1/2 [14].

We now define the framework of randomized best-partition communication complexity. There are two players, Alice and
Bob, that share a public random string of bits. There is a fixed boolean function g : {0,1}n → {0,1} that they both know
(and assume that n is even). Let A and B be a partition of [n] into two sets of equal size. Given an input x ∈ {0,1}n , Alice
gets xA ∈ {0,1}n/2 and Bob gets xB ∈ {0,1}n/2 (where xA is x restricted to the entries in A and xB is x restricted to the
entries in B). Alice does not know xB and Bob does not know xA . Their common goal is to compute g(x).

The randomized communication complexity of g with error 0 � ε � 1/2, with respect to A and B , is the number of bits Alice
and Bob need to exchange in order to compute g (as above) with two-sided error ε (the error means that the probability
of outputting the wrong answer is at most ε). The randomized best-partition communication complexity of g with error ε is the
minimal randomized communication complexity of g with error ε, with respect to A and B , among all partitions of [n] to
two sets A and B of equal size.

1.2. Results

We start with a construction of a ‘pseudo-random’ polynomial, which will be used in the proofs of all our other results.
For the rest of this section, n = 12sp is an integer, where p ∈ N is prime and s ∈ N is a large enough constant (given in
Theorem 2.1), and f is the multilinear polynomial over the set of variables X = {x1, . . . , xn} with coefficients in {1,−1}
defined below in Section 2.1. Roughly speaking, one can compute the coefficient of a monomial m in f as follows. Think
of m as a zero–one vector in the natural way. Partition m to a constant number of blocks of equal size. Think of each of
these blocks as a field element in the appropriate field. The coefficient of m in f is the first bit3 of the field element that is
obtained by multiplying all the blocks. In particular, f is in VNP, Valiant’s algebraic analog of NP. We will also use the map
g from {1,−1}n to {1,−1} defined by

∀t ∈ {1,−1}n g(t) is the coefficient of the monomial
∏

i∈[n]:
ti=−1

xi in f . (1.3)

The property of f that we use is given by the following theorem. A multilinear polynomial f ′ ∈ C[X] is called a product
polynomial, if there exist two disjoint sets X1, X2 ⊆ X of size at least n/3 each, and two polynomials f1 ∈ C[X1] and
f2 ∈ C[X2] such that

f ′ = f1 · f2 (1.4)

(see Section 3.1 for more details).

Theorem 1.3. Every product multilinear polynomial f ′ ∈ C[X] admits

cor
(

f , f ′) � 2−Ω(n)‖ f ‖∥∥ f ′∥∥,

where f is the polynomial defined in Section 2.1, and we think of f and f ′ as vectors of coefficients.

The proof of Theorem 1.3 is in Section 2.2. A key ingredient in the proof is an exponential sum estimate of Bourgain,
Glibichuk and Konyagin [7]. A corollary of Theorem 1.3 is that g has small maximal-partition discrepancy, the corollary
is proved in Section 2.1. To prove the corollary, we observe that correlation with product polynomials is a generalization
of maximal-partition discrepancy: roughly, every rectangle R can be represented by a product polynomial f ′ , in the sense
that the discrepancy with respect to R is the correlation with f ′ (for a formal statement see Section 2.1). We now ex-
plain the main difference between correlation with product polynomials and maximal-partition discrepancy. Every rectangle
can be thought of as its characteristic vector, which has zero–one entries. On the other hand, a product polynomial can
be thought of as a vector with arbitrary complex entries. The difference between these two notions is thus in that for
maximal-partition discrepancy we consider correlation with zero–one vectors, and in correlation with product polynomials
we consider arbitrary complex vectors.

3 More precisely, (−1)b , where b is the first bit of the field element that is obtained by multiplying all the blocks.
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Corollary 1.4. The maximal-partition discrepancy of g is 2−Ω(n) , where g is the map defined in (1.3).

We have learned that an alternative construction of a function with exponentially small maximal-partition discrep-
ancy – that is based on expanders graphs and the Hadamard matrix – is implicit in the work of Hayes [10] (unpublished
manuscript). The same construction was independently discovered and suggested to us by Wigderson [30].

We now turn to our results regarding arithmetic circuits. The polynomial f has negative coefficients, and so it cannot be
computed by a monotone circuit. However, we can use f to define a new polynomial F ∈ C[X] with coefficients in {0,1},
for which we will also be able to prove lower bounds. The polynomial F is defined as follows: for a monic monomial m in
the variables X , the coefficient of m in F is

fm + 1

2
∈ {0,1},

where fm is the coefficient of m in f .
The following theorem gives a tight lower bound for the size of monotone arithmetic circuits for F (a monotone multi-

linear polynomial always has a monotone circuit of size 2O (n)).

Theorem 1.5. Let Φ be a monotone arithmetic circuit over the field R and over the set of variables X computing the polynomial F
defined above. Then,

|Φ| = 2Ω(n).

We note that since F is multilinear, any monotone circuit for F is, in particular, syntactically multilinear. However,
monotone circuits are much more restricted than syntactically multilinear circuits, and indeed our results for monotone
circuits are much stronger. We also note that the lower bound proof for monotone circuits already gives the spirit of the
proofs for multilinear formulas (we explain it in more detail after Theorem 1.8 below). The proof of Theorem 1.5 is in
Section 3.2.

The following theorem gives a tradeoff between the depth and τ (the “amount of non-canceling”) for a syntactically
multilinear arithmetic formula computing f . For example, a 2−√

n-non-canceling syntactically multilinear arithmetic formula
that is at least 2−√

n correlated with f is of depth Ω(
√

n). Note that the smaller τ is, the less restricted the formula is. So,
for proving a lower bound, the smaller τ is, the stronger the lower bound is.

Theorem 1.6. Let τ , c > 0, and let Φ be a τ -non-canceling syntactically multilinear arithmetic formula of depth d ∈ N over the field
C and over the set of variables X such that

cor(Φ̂, f ) � c · ‖Φ̂‖ · ‖ f ‖,
where f is the polynomial defined in Section 2.1, and we think of Φ̂ and f as vectors of coefficients. Then,

|Φ| · τ−d � c · 2Ω(n).

In particular, if τ < 2 and c � 1/2,

d = Ω

(
n

log(2/τ )

)
,

and if τ � 1 and c � 1/2,

|Φ| = 2Ω(n).

Since we do not know how to balance arithmetic formulas in the non-canceling model, Theorem 1.6 does not imply an
exponential lower bound for the size (for small τ ). However, since every orthogonal arithmetic formula is 1-non-canceling,
we have the following exponential lower bound for the size of orthogonal syntactically multilinear arithmetic formulas
computing f .

Corollary 1.7. Let Φ be an orthogonal syntactically multilinear arithmetic formula over the field C and over the set of variables X
computing f , where f is the polynomial defined in Section 2.1. Then,

|Φ| = 2Ω(n).

A similar trade-off holds for a noise-resistant computation of f . For example, a syntactically multilinear arithmetic for-
mula that is 2−√

n-noise-resistant to computing g is of depth Ω(
√

n).
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Theorem 1.8. Let 0 < ε < 1, and let Φ be a syntactically multilinear arithmetic formula of depth d ∈ N over the field C and over the
set of variables X that is ε-noise-resistant to computing g, where g is defined in (1.3). Then,

d = Ω

(
n

log(2/ε)

)
.

The proofs of the lower bounds are in Section 3. We now describe the main ideas behind the proofs. To do so, we
focus on the lower bound proof for monotone circuits, as the proofs for multilinear formulas are more technical. The high-
level idea is the so called discrepancy method: roughly speaking, the proof follows by defining a notion of discrepancy for
monotone circuits so that a small circuit computes a polynomial with large discrepancy, and so every polynomial with small
discrepancy requires large monotone circuits. Here is a more detailed description of the proof.

The first step is showing that polynomials that are computed by monotone circuits have a ‘special’ structure: they can
be represented as a sum of what we call product polynomials (see Section 1.1.2 for the definition of product polynomials).
More specifically, a multilinear polynomial h that is computed by a monotone circuit of size roughly s can be written as
h = ∑s

i=1 hi for product polynomials h1, . . . ,hs . This representation of monotone circuits follows by an inductive argument.
Intuitively, it shows that small monotone circuits are well correlated with product polynomials.

The second step of the proof employs the fact that f (defined below) has ‘small’ correlation with any product polynomial
to conclude the lower bound: Let F be the monotone polynomial defined above using f , that is, Fm is ( fm + 1)/2 for every
monomial m. Assume that F has more 1’s than 0’s; that is, cor( f , F ) is large. Also assume that F can be computed by a
monotone circuit of size s. Using the first step, F = ∑s

i=1 hi for product polynomials h1, . . . ,hs . Thus, cor( f ,hi) � cor( f , F )/s
for some i. Since f has small correlation with any product polynomial, and in particular with hi , it follows that s must be
large.

We note that there are some subtleties that we did not address in the discussion above. We also note that correlation
between functions is usually defined with respect to the output of the functions. Here we define the correlation between
polynomial as the correlation between their coefficients.

To prove the lower bounds for multilinear formulas, we need a structural understanding, that is similar in nature to (but
more technical than) the one given in the first step above. To make this understanding formal, we define a new type of
formulas, which we call sum trees. The role of these sum trees is similar to the role of the sum given in the first step above.

Finally, we state the results regarding extractors and communication complexity.
The following theorem gives an efficient map that extracts a linear number of almost perfect random bits from a mixed-

2-source of randomness of high min-entropy.

Theorem 1.9. There exists a constant β > 0 such that the following holds. Let n = 12sp be an even integer, where p ∈ N is prime
and s ∈ N is the constant given in Theorem 2.1. Then, there exists an explicit mixed-2-source extractor Ext : {0,1}n → {0,1}m with
m = �βn�, that is computable in deterministic polynomial time with (n − 3m) min-entropy requirement and error 2−2m.

The proof of Theorem 1.9 is in Section 4.
The following theorem lower bounds the randomized best-partition communication complexity of g .

Theorem 1.10. There exists a constant β > 0 such that for every ε � 1/2 − 2−βn, the randomized best-partition communication
complexity of g with error ε is Ω(n), where g is the map defined in (1.3).

The proof of Theorem 1.10 follows using standard methods in communication complexity (see, e.g., [13]), and using the
exponentially small maximal-partition discrepancy of g .

2. The explicit construction

In this section we construct a multilinear polynomial f that is ‘uncorrelated’ with any multilinear product polynomial,
that is, every product multilinear polynomial f ′ ∈ C[X] admits

cor
(

f , f ′) � 2−Ω(n)‖ f ‖∥∥ f ′∥∥
(see Theorem 1.3).

2.1. Definition of f

We start with a few preliminaries.
Let p ∈ N be a prime integer, and let F = GF(2p) be the field of size 2p . Every y ∈ F can be thought of as a vector

(y1, . . . , yp) ∈ {0,1}p . The inner product of two field elements y = (y1, . . . , yp) and z = (z1, . . . , zp) is defined as

〈y, z〉 =
∑

yi zi ∈ {0,1}

i∈[p]
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(where the sum is modulo 2). For z ∈ F, define the map ψz : F → C as

∀y ∈ F ψz(y) = (−1)〈z,y〉.

So, every y and y′ in F admit

ψz
(

y + y′) = ψz(y) · ψz
(

y′). (2.1)

The map ψz is called an additive character of F. If z is non-zero, then ψz is called a non-trivial additive character of F. So,
the image of a non-trivial character is {1,−1}.

Let n = 12sp be an integer, where s ∈ N is the constant given in Theorem 2.1. Let X = {x1, . . . , xn} be a set of variables,
and let F be the field of size 2p . Recall that we think of field elements in F also as vectors in {0,1}p . For a multilinear
monomial m over the set of variables X and for i ∈ [12s], we denote by yi = yi(m) ∈ F the field element defined as

∀ j ∈ [p] (yi) j = the degree of xp(i−1)+ j in m.

Roughly speaking, given a monomial m, we interpret m as a {0,1}n vector, and then we cut m into 12s blocks of equal size;
these blocks are y1, . . . , y12s .

Let ψ be an arbitrary non-trivial additive character of F (we note that the fact that ψ is arbitrary will be used in
Section 4 in the proof that the extractor works).

We define the multilinear polynomial f ∈ C[X] by defining the coefficients of the monomials in f . Roughly speaking,
to define the coefficient of a monomial in f , we partition the monomial to 12s equal parts, each of size p, we view each
of these parts as a field element, and we multiply them. Formally, let m be a monic multilinear monomial over the set of
variables X . For every i ∈ [12s], let yi = yi(m) ∈ F be the field element defined above. Define the coefficient of m in f to be

ψ(y1 · y2 · · · y12s) ∈ {1,−1}.
Before proving Theorem 1.3, we show how small correlation with product polynomials implies low maximal-partition

discrepancy.

Proof of Corollary 1.4. The idea is to simulate a rectangle with a product polynomial.
Let A be a subset of [n] of size k, where n/3 � k � 2n/3, and let Ā = [n] \ A. Recall that g A is the 2k ×2n−k matrix whose

(y, z) entry, y ∈ {0,1}k and z ∈ {0,1}n−k , is g((y, z)A), where (y, z)A is the unique vector w in {0,1}n such that w A = y and
w Ā = z (the vector w A , e.g., is the restriction of w to the entries in A). Let R = Y × Z ⊂ {0,1}k × {0,1}n−k be a rectangle
so that Disc(g A) = DiscR(g A).

Let X1 be the set of variables xi so that i ∈ A, and let X2 be the complement of X1. Define the polynomial f1 ∈ R[X1]
so that it simulates Y , that is, the coefficient of the monomial

∏
i:yi=1 xi in f1 is 1 if and only if y ∈ Y (otherwise, it

is 0). Similarly, define the polynomial f2 ∈ R[X2] so that it simulates Z . The polynomial f1 f2 is a product polynomial that
simulates R . Theorem 1.3 implies

Disc(g A) = 2−n

∣∣∣∣ ∑
(y,z)∈R

(−1)g A(y,z)

∣∣∣∣ = 2−n

∣∣∣∣∑
w

f1(w A) f2(w Ā) f (w)

∣∣∣∣
= 2−n cor( f , f1 f2) � 2−n2−Ω(n)2n/22n/2 = 2−Ω(n),

where we used ‖ f ‖,‖ f1 f2‖ � 2n/2. The corollary follows, as A is arbitrary. �
2.2. Proof of Theorem 1.3

Before proving the theorem, we give a high level view of it. Since discrepancy is a well-known notion, to explain the
structure of the proof, we consider discrepancy rather than correlation with product polynomials. For every set A ⊂ [n]
of size roughly n/2, we have a matrix M A . Our goal is to prove that the discrepancy of every M A is small. How do we
show that the discrepancy of a matrix is small? Well, it is known that Hadamard matrices (i.e., matrices whose rows are
orthogonal) have low discrepancy (see, e.g., [15]). The matrix M A turns out to be close enough to a Hadamard matrix, so
that it also has small discrepancy: most of the rows of M A are almost orthogonal. To prove this we partition the rows of M A

to two sets S1, S2, according to Eqs. (2.5) and (2.6) below. The set S1 turns out to be small enough so that we can ignore
it; see Proposition 2.3 below. To prove that S2 consists of almost orthogonal vectors we use the following exponential sum
estimate4 from [7,5]; see Proposition 2.4 below. Roughly, the exponential sum estimate tells us that vectors of certain form
are orthogonal.

4 We state a weaker result than the result of [7].
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Theorem 2.1. There exist two constants, an integer s ∈ N and β > 0, such that for every prime p ∈ N, for every family of sets
A1, . . . , As ⊆ GF(2p) of size at least 2p/4 each, for every non-zero field element z ∈ GF(2p), and for every non-trivial additive character
ψ of GF(2p),∣∣∣∣ ∑

y1∈A1,...,ys∈As

ψ(z · y1 · y2 · · · ys)

∣∣∣∣ � 2−β·p · |A1| · |A2| · · · |As|.

Recall the Cauchy–Schwarz inequality: for every N ∈ N and for every two vectors (w1, . . . , w N ) and (t1, . . . , tN ) in CN ,∣∣∣∣ ∑
∈[N]

wt

∣∣∣∣2

�
( ∑

∈[N]
|w|2

)( ∑
∈[N]

|t|2
)

.

In this proof we use the following notation. For a multilinear polynomial F in C[X] and for a multilinear monomial m in
the variables X , we denote by F (m) ∈ C the coefficient of m in F . This may be misleading, as F is also a function, but we
do so for simplicity of notation. We note that in this section we will think of a polynomial always as a vector of coefficients,
and not as a function.

Let f ′ ∈ C[X] be a product multilinear polynomial. Thus, there exists a partition of X into two sets A and B (i.e.,
A ∪ B = X and A ∩ B = ∅) of size at least n/3 each, and two multilinear polynomials g ∈ C[A] and h ∈ C[B] such that

f ′ = gh.

The proof continues as follows. We will identify two sets A1 ⊆ A and B1 ⊆ B that will enable us to use the exponential
sum estimate of [7] to bound the correlation between f and f ′ . We will then give some notation, and finally we will bound
the correlation between f and f ′ .

2.2.1. Identifying A1 and B1
For i ∈ [12s], set

X(i) = {
x(i−1)p+ j: j ∈ [p]},

and set

A(i) = A ∩ X(i) and B(i) = B ∩ X(i).

The following proposition will give A1 and B1 (see (2.2) and (2.3) below).

Proposition 2.2. There exists a set I ⊆ [12s] of size s such that for every i ∈ I ,∣∣A(i)
∣∣ � p/4.

Proof. Let I ′ be the set of i ∈ [12s] such that |A(i)| � p/4. Since |A| � n/3, we have

4sp � |A| � ∣∣I ′
∣∣ · p + (

12s − ∣∣I ′
∣∣) · p/4,

which implies |I ′| > s. Set I to be a subset of I ′ of size s. �
Let I ⊆ [12s] be the set given by Proposition 2.2, and let J = [12s] \ I . Set

A1 =
⋃
i∈I

A(i) and A2 = A \ A1, (2.2)

and set

B1 =
⋃
i∈ J

B(i) and B2 = B \ B1. (2.3)

So, since |B| � n/3, every i ∈ I admits |B(i)| � p and |I| = s, we have

|B1| � |B| − sp � 3sp. (2.4)
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Notation. For a set of variables T ⊆ X , we write t (or t′) when t (or t′) is a monic multilinear monomial in the variables T .
For example, b1 (or b′

1) is a monic multilinear monomial in the variables B1. Recall that f (m) ∈ C is the coefficient of the
monomial m in f , and recall that for i ∈ [12s], the field element yi = yi(m) ∈ F is defined as

∀ j ∈ [p] (yi) j = the degree of xp(i−1)+ j in m.

For a monomial a2 over the set of variables A2, and for two monomials b1 and b′
1 over the set of variables B1, we denote

Z
(
a2,b1,b′

1

) =
∏
i∈ J

yi(a2b1) −
∏
i∈ J

yi
(
a2b′

1

) ∈ F.

Denote by S(a2) the set of pairs (b1,b′
1) such that Z(a2,b1,b′

1) = 0. Denote

S1 = {
a2:

∣∣S(a2)
∣∣ > 22|B1|−p/12}, (2.5)

and denote

S2 = {
a2:

∣∣S(a2)
∣∣ � 22|B1|−p/12} (2.6)

(the complement set of S1).
Here is some intuition for the definitions above. Recall the high-level description of the proof given in the beginning of

the section. To prove the theorem, we use the Cauchy–Schwarz inequality to “isolate” certain parts of the sum we wish to
bound. This is a common use of the Cauchy–Schwarz inequality, and the field element Z comes up naturally after applying
the Cauchy–Schwarz inequality. The reason we consider S1 and S2 separately is that the only case in which Theorem 2.1
does not hold is when z = 0. For S1, when many Z ’s are zero, we cannot use Theorem 2.1, and we need to use a different
consideration, which turns out to be a counting argument. For S2, when not many Z ’s are zero, we use Theorem 2.1 to
complete the proof.

2.2.2. Bounding the correlation between f and f ′
Recall that

cor
(

f , f ′) = cor( f , gh) =
∣∣∣∣ ∑
a1,a2,b1,b2

f (a1a2b1b2)g(a1a2)h(b1b2)

∣∣∣∣,
where the sum is over all monomials a1 in the variables A1, all monomials a2 in the variables A2, all monomials b1 in the
variables B1 and all monomials b2 in the variables B2.

Denote

C1 =
∣∣∣∣ ∑

a2∈S1

∑
a1,b1,b2

f (a1a2b1b2)g(a1a2)h(b1b2)

∣∣∣∣,
and

C2 =
∣∣∣∣ ∑

a2∈S2

∑
a1,b1,b2

f (a1a2b1b2)g(a1a2)h(b1b2)

∣∣∣∣.
Therefore,

cor
(

f , f ′) � C1 + C2.

We bound the correlation between f and f ′ by bounding C1 and C2.

Proposition 2.3. There exists a constant β1 > 0 such that

C1 � 2−β1 p‖ f ‖∥∥ f ′∥∥.

Proposition 2.4. There exists a constant β2 > 0 such that

C2 � 2−β2 p‖ f ‖∥∥ f ′∥∥.

The proof of Proposition 2.3 is in Section 2.2.3, and the proof of Proposition 2.4 is in Section 2.2.4. Using Propositions 2.3
and 2.4, since p = Ω(n), we have

cor
(

f , f ′) � 2−Ω(n)‖ f ‖∥∥ f ′∥∥,

which completes the proof of Theorem 1.3. �
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2.2.3. Proof of Proposition 2.3
Recall that we want to bound from above

C1 =
∣∣∣∣ ∑

a2∈S1

∑
a1,b1,b2

f (a1a2b1b2)g(a1a2)h(b1b2)

∣∣∣∣,
where

S1 = {
a2:

∣∣S(a2)
∣∣ > 22|B1|−p/12}.

First, we will bound the size of S1 from above. We denote by S the set of triplets (a2,b1,b′
1) such that Z(a2,b1,b′

1) = 0.
To bound the size of S1 we bound the size of S .

Claim 2.5. For every large enough p,

|S| � 22|B1|+|A2|−p/6.

Proof. We will first bound the number of triplets (a2,b1,b′
1) such that∏

i∈ J

yi
(
a2b′

1

) = 0. (2.7)

Since

A2 ∪ B1 =
⋃
i∈ J

X(i),

and since | J | = 11s, all the monomials of the form a2b′
1 are all the 211sp monomials in the variables

⋃
i∈ J X(i). Note that

for every monomial a2b′
1,

∀i ∈ J yi
(
a2b′

1

) �= 0 ⇔
∏
i∈ J

yi
(
a2b′

1

) �= 0,

and that for every i ∈ J , the number of pairs (a2,b′
1) for which yi(a2b′

1) = 0 is 2|B1|+|A2|−p . So, by the union bound, the
number of pairs (a2,b′

1) for which (2.7) holds is at most

| J |2|B1|+|A2|−p = 11s2|B1|+|A2|−p .

Hence, the number of triplets (a2,b1,b′
1) for which (2.7) holds is at most

2|B1| · 11s2|B1|+|A2|−p = 11s22|B1|+|A2|−p .

We will now bound the number of triplets in S for which (2.7) does not hold. Since |B1| � 3sp (see (2.4)), there exists
j ∈ J such that∣∣B( j)

∣∣ � p/4.

The number of triplets in S for which (2.7) does not hold is at most the number of triplets (a2,b1,b′
1) in S such that

y j
(
a2b′

1

) =
∏

i∈ J yi(a2b1)∏
i∈ J\{ j} yi(a2b′

1)

(note that
∏

i∈ J\{ j} yi(a2b′
1) is non-zero). So, the number of triplets in S for which (2.7) does not hold is at most

22|B1|+|A2|−p/4.

We conclude that, for large enough p,

|S| � 11s22|B1|+|A2|−p + 22|B1|+|A2|−p/4 � 22|B1|+|A2|−p/6. �
The following corollary bounds the size of S1.

Corollary 2.6. For every large enough p,

|S1| � 2|A2|−p/12.
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Proof. Using Claim 2.5, for every large enough p,

22|B1|+|A2|−p/6 � |S| =
∑
a2

∣∣S(a2)
∣∣ > |S1| · 22|B1|−p/12.

So, for large enough p,

|S1| � 2|A2|−p/12. �
Back to the proof of Proposition 2.3. Recall that

C1 =
∣∣∣∣ ∑

a2∈S1

∑
a1,b1,b2

f (a1a2b1b2) f ′(a1a2b1b2)

∣∣∣∣.
By the Cauchy–Schwarz inequality,

C1 �
√ ∑

a2∈S1

∑
a1,b1,b2

∣∣ f (a1a2b1b2)
∣∣2

√ ∑
a2∈S1

∑
a1,b1,b2

∣∣ f ′(a1a2b1b2)
∣∣2

.

Since the coefficients of f are in {1,−1} and since the sum is only over a2 ∈ S1,

C1 �
√

|S1|2|A1|+|B1|+|B2|∥∥ f ′∥∥.

By Corollary 2.6, for every large enough p,

C1 � 2(|A1|+|A2|+|B1|+|B2|)/2−p/24
∥∥ f ′∥∥.

Thus, since ‖ f ‖ = 2n/2 and since |A1| + |A2| + |B1| + |B2| = n, there exists a constant β1 > 0 such that

C1 � 2−β1 p‖ f ‖∥∥ f ′∥∥,

which completes the proof of the proposition. �
2.2.4. Proof of Proposition 2.4

Recall that we want to bound from above

C2 =
∣∣∣∣ ∑

a2∈S2

∑
a1,b1,b2

f (a1a2b1b2)g(a1a2)h(b1b2)

∣∣∣∣,
where

S2 = {
a2:

∣∣S(a2)
∣∣ � 22|B1|−p/12}.

We first prove the following claim.

Claim 2.7. There exists a constant β3 > 0 such that for every multilinear monomial a2 over the set of variables A2 , and for every
multilinear monomial b2 over the set of variables B2 ,∑

b1,b′
1

∣∣∣∣∑
a1

f (a1a2b1b2) f
(
a1a2b′

1b2
)∣∣∣∣2

� 22|A1|(∣∣S(a2)
∣∣ + 22|B1|−β3 p)

.

Proof. Let a2 be a multilinear monomial over the set of variables A2, and let b2 be a multilinear monomial over the set
of variables B2. For every i ∈ J , we have that yi does not depend on the variables in either A1 or B2. Similarly, for every
i ∈ I , we have that yi does not depend on the variables in either A2 or B1. Let a1 be a multilinear monomial over the set
of variables A1, and let b1 and b′

1 be two multilinear monomials over the set of variables B1. Thus,∏
i∈[12s]

yi(a1a2b1b2) −
∏

i∈[12s]
yi

(
a1a2b′

1b2
) =

∏
i∈I

yi(a1b2)
∏
i∈ J

yi(a2b1) −
∏
i∈I

yi(a1b2)
∏
i∈ J

yi
(
a2b′

1

)
=

∏
i∈I

yi(a1b2)

(∏
i∈ J

yi(a2b1) −
∏
i∈ J

yi
(
a2b′

1

))
= Z

(
a2,b1,b′

1

)∏
yi(a1b2)
i∈I
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(by the definition of Z(a2,b1,b′
1)). Recall that

Z
(
a2,b1,b′

1

) = 0 ⇔ (
b1,b′

1

) ∈ S(a2). (2.8)

Thus, by the definition of f , since ψ is an additive character of F (using (2.1)),∣∣∣∣∑
a1

f (a1a2b1b2) f
(
a1a2b′

1b2
)∣∣∣∣ =

∣∣∣∣∑
a1

ψ

(
Z
(
a2,b1,b′

1

)∏
i∈I

yi(a1b2)

)∣∣∣∣.
Denote by i1, . . . , is the elements of I . For all j ∈ [s], denote

A1( j) = A1 ∩ X(i j).

So, A1(1), . . . , A1(s) is a partition of A1. In the following sums a1( j) is a monomial in the variables A1( j). By Proposition 2.2,
for all j ∈ [s],∣∣A1( j)

∣∣ � p/4.

Therefore, if (b1,b′
1) /∈ S(a2), then, by (2.8) and by Theorem 2.1, there exists a constant α > 0 such that∣∣∣∣∑

a1

f (a1a2b1b2) f
(
a1a2b′

1b2
)∣∣∣∣ =

∣∣∣∣ ∑
a1(1),...,a1(s)

ψ

(
Z
(
a2,b1,b′

1

)∏
i∈I

yi(a1b2)

)∣∣∣∣
< 2−αp+|A1(1)|+|A1(2)|+···+|A1(s)|

= 2−αp+|A1|.

Also if (b1,b′
1) ∈ S(a2), then∣∣∣∣∑

a1

f (a1a2b1b2) f
(
a1a2b′

1b2
)∣∣∣∣ � 2|A1|.

Therefore,∑
b1,b′

1

∣∣∣∣∑
a1

f (a1a2b1b2) f
(
a1a2b′

1b2
)∣∣∣∣2

�
∣∣S(a2)

∣∣22|A1| + 22|B1|2−2αp+2|A1|.

So, there exists a constant β3 > 0 such that∑
b1,b′

1

∣∣∣∣∑
a1

f (a1a2b1b2) f
(
a1a2b′

1b2
)∣∣∣∣2

� 22|A1|(∣∣S(a2)
∣∣ + 22|B1|−β3 p)

. �

We will use the following corollary.

Corollary 2.8. There exists a constant β4 > 0 such that∑
a2∈S2

∑
b2

∣∣∣∣∑
a1,b1

f (a1a2b1b2)g(a1a2)h(b1b2)

∣∣∣∣2

� 2|A1|+|B1|−β4 p‖g‖2‖h‖2.

Proof. Denote

R =
∑

a2∈S2

∑
b2

∣∣∣∣ ∑
a1,b1

f (a1a2b1b2)g(a1a2)h(b1b2)

∣∣∣∣2

.

So,

R =
∑

a2∈S2

∑
b2

∣∣∣∣∑
a1

g(a1a2)
∑
b1

f (a1a2b1b2)h(b1b2)

∣∣∣∣2

.

Using the Cauchy–Schwarz inequality,
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R �
∑

a2∈S2

∑
b2

(∑
a1

∣∣g(a1a2)
∣∣2

)(∑
a1

∣∣∣∣∑
b1

f (a1a2b1b2)h(b1b2)

∣∣∣∣2)

=
∑

a2∈S2

∑
b2

(∑
a1

∣∣g(a1a2)
∣∣2

)( ∑
b1,b′

1

∑
a1

f (a1a2b1b2) f
(
a1a2b′

1b2
)
h(b1b2)h

(
b′

1b2
))

=
∑

a2∈S2

∑
b2

(∑
a1

∣∣g(a1a2)
∣∣2

)( ∑
b1,b′

1

h(b1b2)h
(
b′

1b2
)∑

a1

f (a1a2b1b2) f
(
a1a2b′

1b2
))

.

Again, using the Cauchy–Schwarz inequality,

R �
∑

a2∈S2

∑
b2

(∑
a1

∣∣g(a1a2)
∣∣2

)√√√√∑
b1,b′

1

∣∣h(b1b2)h
(
b′

1b2
)∣∣2

√√√√√∑
b1,b′

1

∣∣∣∣∑
a1

f (a1a2b1b2) f
(
a1a2b′

1b2
)∣∣∣∣2

.

So, using Claim 2.7,

R �
∑

a2∈S2

∑
b2

(∑
a1

∣∣g(a1a2)
∣∣2

)√√√√∣∣∣∣∑
b1

∣∣h(b1b2)
∣∣2

∣∣∣∣2√
22|A1|(∣∣S(a2)

∣∣ + 22|B1|−β3 p
)
.

So, by the definition of S2, for large enough p, there exists a constant β4 > 0 such that

R �
∑

a2∈S2

∑
b2

(∑
a1

∣∣g(a1a2)
∣∣2

)(∑
b1

∣∣h(b1b2)
∣∣2

)√
22|A1|(22|B1|−p/12 + 22|B1|−β3 p

)
� 2|A1|+|B1|−β4 p‖g‖2‖h‖2. �

Back to the proof of Proposition 2.4. Recall that

C2 =
∣∣∣∣ ∑

a2∈S2

∑
b2

1
∑
a1,b1

f (a1a2b1b2)g(a1a2)h(b1b2)

∣∣∣∣.
So, using Corollary 2.8 and the Cauchy–Schwarz inequality,

C2 �
√ ∑

a2∈S2

∑
b2

12

√√√√ ∑
a2∈S2

∑
b2

∣∣∣∣ ∑
a1,b1

f (a1a2b1b2)g(a1a2)h(b1b2)

∣∣∣∣2

� 2|A2|/2+|B2|/22|A1|/2+|B1|/2−β4 p/2‖g‖‖h‖.
By Claim 3.2, we have ‖ f ′‖ = ‖g‖‖h‖. Thus, since ‖ f ‖ = 2n/2 and since |A1| + |A2| + |B1| + |B2| = n, there exists a constant
β2 > 0 such that

C2 � 2−β2 p‖ f ‖∥∥ f ′∥∥,

which completes the proof of the proposition. �
3. Lower bounds for arithmetic circuits

3.1. Product polynomials and norms

Let n � 3 be an integer, and let X = {x1, . . . , xn}. We say that a multilinear polynomial f ∈ C[X] is a product polynomial,
if there exist two disjoint sets X1, X2 ⊆ X of size at least n/3 each, and two polynomials f1 ∈ C[X1] and f2 ∈ C[X2] such
that

f = f1 · f2 (3.1)

We say that a variable x ∈ X occurs in a polynomial f ∈ C[X], if the degree of x in f is at least 1.
We will use the following claim.

Claim 3.1. Let n � 3 be an integer, and let X = {x1, . . . , xn}. Let f ∈ C[X] be a product polynomial. Let T ⊆ X be such that |T | � n/3.
Let g ∈ C[T ] be a polynomial such that f · g is multilinear. Then, the polynomial f · g is a product polynomial as well.



182 R. Raz, A. Yehudayoff / Journal of Computer and System Sciences 77 (2011) 167–190
Proof. Let f = f ′ · f ′′ , where f ′ ∈ C[X ′] and f ′′ ∈ C[X ′′] are the two polynomials given by the fact that f is a product
polynomial. Let T ′ ⊆ X ′ be the set of variables in X ′ that occur in f ′ , and let T ′′ ⊆ X ′′ be the set of variables in X ′′ that
occur in f ′′ . So, f ′ is in C[T ′] and f ′′ is in C[T ′′]. Assume without loss of generality that |T ′| � |T ′′|. Since f ′ · f ′′ · g is
multilinear, the sets T ′, T ′′ and T are pairwise disjoint. Consider two cases:

1. |T ′′| � n/3 (and hence |T ′| � n/3). Thus, f · g = f ′ · ( f ′′ · g) is a product polynomial (with the sets T ′ and T ′′ ∪ T ).

2. |T ′′| < n/3. Thus, |T ′′ ∪ T | < 2n/3. Since f is a product polynomial, |T ′| � 2n/3. So, let S ′′ be a subset of X \ T ′ of size
at least n/3 and at most 2n/3, such that T ′′ ∪ T ⊆ S ′′ , and let S ′ = X \ S ′′ . Thus, f · g = f ′ · ( f ′′ · g) is a product polynomial
(with the sets S ′ and S ′′). �

The following claim shows that the norm is multiplicative (in a certain case).

Claim 3.2. Let f and g be two polynomials in C[X] such that f · g is multilinear. Then,

‖ f · g‖ = ‖ f ‖ · ‖g‖.

Proof. For a polynomial F and a monomial m, we denote by Fm the coefficient of m in F . Denote by A the set of variables
that occur in f , and denote by B the set of variables that occur in g . Since f · g is multilinear, the sets A and B are disjoint.
Furthermore,

‖ f · g‖2 =
∑
a,b

∣∣[ f · g]a·b
∣∣2 =

∑
a,b

| fa · gb|2 =
(∑

a

| fa|2
)(∑

b

|gb|2
)

= ‖ f ‖2 · ‖g‖2,

where the sums are over all multilinear monomials a in the variables A, and all multilinear monomials b in the vari-
ables B . �
3.2. Monotone arithmetic circuits

In this section we prove Theorem 1.5 that gives a tight lower bound for the size of monotone arithmetic circuits. The
proof of this theorem already gives a lot of the details needed to prove the lower bounds for the various other models we
consider.

3.2.1. The structure of monotone circuits
In this section we prove the following lemma about the structure of monotone syntactically multilinear circuits.

Lemma 3.3. Let n � 3 be an integer. Let Φ be a monotone syntactically multilinear arithmetic circuit with s ∈ N edges over the field R

and over the set of variables X = {x1, . . . , xn}. Then, there exist s + 1 monotone product polynomials g1, . . . , gs+1 ∈ R[X] such that

Φ̂ =
∑

i∈[s+1]
gi

(the definition of a product polynomial is in Section 3.1).

Proof. The proof follows by induction on the number of edges in Φ .
Assume without loss of generality that Φ has a unique output gate v computing Φ̂ .

Induction base: The gate v is an input gate.

Since n � 3, the polynomial Φ̂ is a product polynomial. Thus, the lemma follows with g1 = Φ̂ .

Induction step: The gate v is not an input gate.

If |Xv | � 2n/3, then Φ̂ is a product polynomial, and the lemma follows with g1 = Φ̂ (since s � 0).
Assume that |Xv | > 2n/3. Every gate u in Φ with children u1 and u2 admits |Xu| � |Xu1 | + |Xu2 |. Thus, there exists a

gate u in Φ such that

n/3 � |Xu| � 2n/3

(u is the first gate that satisfies the above, going down in Φ from v , when each step is to the child with the maximal
number of variables).

Let Ψ be the circuit Φ after substituting a new variable y instead of u. Since Φ is monotone and syntactically multilinear,
there exists a monotone multilinear polynomial h1 in the set of variables X \ Xu such that

Ψ̂ = h1 · y + h2,

Jukna
Line
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where h2 is the polynomial computed by Ψ after substituting y = 0. By the definition of Ψ ,

Φ̂ = h1 · Φ̂u + h2.

Since Φ̂u is monotone and since n/3 � |Xu| � 2n/3, the polynomial h1 · Φ̂u is both monotone and a product polynomial.
Denote by Ψ0 the circuit Ψ after substituting y = 0. The circuit Ψ0 is a monotone syntactically multilinear circuit for h2

and it has at most s − 1 edges. By induction, there are s monotone product polynomials g1, . . . , gs ∈ R[X] such that

h2 =
∑
i∈[s]

gi .

Thus, setting gs+1 = h1 · Φ̂u , the lemma follows. �
3.2.2. Proof of Theorem 1.5

For a monomial m in the variables X and a polynomial h ∈ R[X], we denote (in this section) by h(m) the coefficient of
m in h (this may be misleading, as h is also a function, but we do so for simplicity of notation). Let f be the polynomial
defined in Section 2.1, and let F be the polynomial defined as

F (m) = f (m) + 1

2
∈ {0,1},

for every monomial m in the variables X . Let Φ be a monotone arithmetic circuit over the field R and over the set of
variables X computing F . Since Φ is monotone and F multilinear, we can assume without loss of generality that Φ is also
syntactically multilinear. By Lemma 3.3, since the in-degree of Φ is at most 2, there exist at most s = 2|Φ| + 1 monotone
product polynomials g1, . . . , gs ∈ R[X] such that

F =
∑
i∈[s]

gi .

By the definition of F , since∑
m

f (m) � 0,

where the sum is over all multilinear monomials in the variables X , we have (recall that | f (m)| = 1),

〈F , f 〉 =
∑

m

f (m) + 1

2
f (m) =

∑
m

1

2
+

∑
m

f (m)

2
� 2n−1.

Since the polynomials g1, . . . , gs are monotone, for every monomial m the following holds:

• If f (m) = −1 (which implies F (m) = 0), then gi(m) = 0, for every i ∈ [s].
• If f (m) = 1 (which implies F (m) = 1), then 0 � gi(m) � 1, for every i ∈ [s].

Thus, for every i ∈ [s], we have 〈gi, f 〉 � 0 and ‖gi‖ � ‖ f ‖. Hence, since∑
i∈[s]

〈gi, f 〉 = 〈F , f 〉 � 2n−1,

there exists j ∈ [s] such that

〈g j, f 〉 � 2n−1/s.

Since g j is a product polynomial and since ‖g j‖ � ‖ f ‖, using Theorem 1.3,

〈g j, f 〉 � 2−Ω(n)‖g j‖‖ f ‖ � 2−Ω(n)‖ f ‖2 = 2−Ω(n)2n.

So, since s � 2|Φ| + 1,

|Φ| = 2Ω(n),

and the theorem follows. �
3.3. Sum trees

In this section we define and study sum trees. We first show that every syntactically multilinear arithmetic formula can
be thought of as a sum tree with certain properties. We then show that sum trees do not increase the correlation with a
given polynomial during their computation. This will enable us to bound the correlation between the polynomials computed
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by non-canceling or noise-resistant syntactically multilinear arithmetic formulas and a certain family of polynomials. In
the next section we will use this bound on the correlation to prove lower bounds for non-canceling and noise-resistant
arithmetic formulas.

A sum tree Ψ over the field C and over the set of variables X = {x1, . . . , xn} is a directed binary tree (whose edges are
directed from the leaves to the root) as follows: Every leaf in Ψ is labeled by a polynomial in C[X]. All vertices of in-degree
2 in Ψ are labeled by +.

The notation and definitions of sum trees are the same as of arithmetic formulas. We will now give a few examples.
Every gate v in a sum tree computes a polynomial Ψ̂v in C[Xv ] (where leaves compute the polynomials they are labeled
by). A sum tree Ψ is τ -non-canceling if every sum gate v with two children v1 and v2 in it (these are all the inner gates
of Ψ ) admits

‖Ψv‖ � τ · max
(‖Ψv1‖,‖Ψv2‖

)
.

The set of noisy values of a sum tree Nε(Ψv) is defined the same as for formulas. We note that in the case of sum tree an
input gate u computes an arbitrary polynomials Ψ̂u , and so the set of noisy values of u is composed of a single element
which is the map from {1,−1}Xu to C defined by Ψ̂u (see Remark 1.2).

3.3.1. Multilinear arithmetic formulas as sum trees
We now show that every syntactically multilinear arithmetic formula can be transformed to a sum tree in which the

input gates are labeled by product polynomials (for the definition of a product polynomial see Section 3.1). We note that for
every polynomial, there is a sum tree Ψ of size 1 computing it. However, the input gate of Ψ is not (necessarily) labeled by
a product polynomial.

Theorem 3.4. Let n � 3 be an integer, and let τ , ε > 0. Let Φ be a τ -non-canceling syntactically multilinear arithmetic formula over
the field C and over the set of variables X = {x1, . . . , xn}. Then, there exists a τ -non-canceling sum tree Ψ of size at most |Φ| and of
depth at most the depth of Φ over the field C and over the set of variables X computing Φ̂ such that every input gate in Ψ is labeled
by a product polynomial. Furthermore,

Nε(Ψ ) ⊆ Nε(Φ).

Proof. We will in fact prove the following claim. Let v be a gate in Φ . Then, there exists a τ -non-canceling sum tree Ψv of
size at most |Φv | and of depth at most depth(v) over the field C and over the set of variables Xv computing Φ̂v such that
every input gate in Ψv is labeled by a product polynomial. Furthermore,

Nε(Ψv) ⊆ Nε(Φv).

The proof will follow by induction on the size of Φv . Consider the following four cases:

Case one: v is an input gate. Set Ψv to be an input gate labeled Φ̂v . So, Ψv is a sum tree of size 1 and of depth 0 over the
set of variables Xv computing Φ̂v such that (since n � 3) the input gate of Ψv is labeled by a product polynomial. Since Ψv
has no sum gates, it is τ -non-canceling. Furthermore, since there is no noise in input gates, Nε(Ψv) ⊆ Nε(Φv ).

Case two: v is a sum gate with children v1 and v2. By induction, there exist two sum trees Ψv1 and Ψv2 with the above
properties. Set Ψv = Ψv1 + Ψv2 . By induction,

Ψ̂v = Ψ̂v1 + Ψ̂v2 = Φ̂v1 + Φ̂v2 = Φ̂v .

Furthermore, since Φ is τ -non-canceling,

‖Ψ̂v‖ � τ · max
(‖Ψ̂v1‖,‖Ψ̂v2‖

)
.

So, by induction, Ψv is a τ -non-canceling sum tree of size at most |Φv | and of depth at most depth(v) over the set of
variables Xv computing Φ̂v such that the input gates of Ψv are labeled by product polynomials. Furthermore, let ψv ∈
Nε(Ψv). Thus, there exist α1,α2 ∈ R that admit 0 � α1 � ε and 0 � α2 � ε such that

ψv = (1 + α1) · ψv1 + (1 + α2) · ψv2 ,

where ψv1 ∈ Nε(Ψv1 ) and ψv2 ∈ Nε(Ψv2 ). By induction, ψv1 ∈ Nε(Φv1 ) and ψv2 ∈ Nε(Φv2 ), and so ψv ∈ Nε(Φv ). Thus,
Nε(Ψv) ⊆ Nε(Φv ).

Case three: v is a product gate with children v1 and v2 such that the sets Xv1 and Xv2 are of size at least n/3 each. Since

Φ is syntactically multilinear, Xv1 ∩ Xv2 = ∅. So, the polynomial Φ̂v = Φ̂v1 · Φ̂v2 is a product polynomial. Set Ψv to be an
input gate labeled by Φ̂v . So, Ψv is a sum tree of size 1 and of depth 0 over the set of variables Xv computing Φ̂v such that
the input gate of Ψv is labeled by a product polynomial. Since Ψv has no sum gates, it is τ -non-canceling. Furthermore,
since there is no noise in input gates, Nε(Ψv) ⊆ Nε(Φv ).

Case four: v is a product gate with two children v1 and v2 such that (without loss of generality) |Xv2 | < n/3. By induction,
there exists a sum tree Ψ ′ = Ψv1 satisfying the above properties with respect to v1. Recall that for a gate u in Ψ ′ , we



R. Raz, A. Yehudayoff / Journal of Computer and System Sciences 77 (2011) 167–190 185
defined Ψ̂ ′
u to be the polynomial in C[Xv1 ] that u computes in Ψ ′ . Set Ψ = Ψv (we denote Ψv by Ψ , for simplicity of

notation) to be the same as Ψ ′ , except that each input gate u in Ψ ′ is labeled in Ψ by

Ψ̂ ′
u · Φ̂v2 .

There is a one-to-one correspondence between gates in Ψ ′ and gates in Ψ . We think of a gate u both as a gate in Ψ ′ and
as a gate in Ψ . It follows by induction (on the structure of Ψ ) that each gate u admits

Ψ̂u = Ψ̂ ′
u · Φ̂v2 .

So, if u1 and u2 are the children of u, using Claim 3.2, since Xv1 ∩ Xv2 = ∅, and since Ψ ′ is τ -non-canceling,

‖Ψ̂u‖ = ∥∥Ψ̂ ′
u

∥∥ · ‖Φ̂v2‖ � τ · max
(‖Ψ̂u1‖,‖Ψ̂u2‖

)
.

So, Ψ is τ -non-canceling. By induction, Ψ̂ ′ = Φ̂v1 , which implies Ψ̂ = Φ̂v . For every input gate u in Ψ , since Ψ̂ ′
u is a product

polynomial in C[Xv1 ], since Xv1 ∩ Xv2 = ∅, and since |Xv2 | < n/3, using Claim 3.1, it follows that Ψ̂u = Ψ̂ ′
u · Φ̂v2 is a product

polynomial. So, Ψ is a sum tree of size at most |Φv | and of depth at most depth(v) over the set of variables Xv computing
Φ̂v such that the input gates of Ψ are labeled by product polynomials.

Furthermore, let ψ ∈ Nε(Ψ ), and let φv2 ∈ Nε(Φv2 ) be the map defined by Φ̂v2 . It follows by induction (on the structure
of Ψ ) that there exists ψ ′ ∈ Nε(Ψ

′) such that

ψ = ψ ′ · φv2 .

By induction, ψ ′ ∈ Nε(Φv1 ), and so ψ ∈ Nε(Φv ). Thus, Nε(Ψ ) ⊆ Nε(Φv ). �
3.3.2. Sum trees do not increase correlation

In the previous section we showed that without loss of generality every syntactically multilinear arithmetic formula is
a sum tree, whose input gates are labeled by product polynomials. We now bound the correlation between a polynomial
computed by a sum tree and a given polynomial, using the correlations in the input gates. The intuition behind the theorem
is that sum trees, as their name suggests, are just a sum of input polynomials. Now, if a given polynomial has small
correlation with all the input polynomials, then a small sum tree should not increase the correlation by much. However,
when the input polynomials have huge coefficients, the correlation upper bound is meaningless. Nevertheless, when the
sum tree is either non-cancelling or noise-resistant, this does not happen (as the output polynomial has small coefficients).

Theorem 3.5. Let n ∈ N be an integer, let τ > 0 and let 0 < ε � 1. Let Ψ be a τ -non-canceling sum tree of depth d over the field C

and over the set of variables X = {x1, . . . , xn}. Let δ > 0, and let f be a polynomial in C[X] such that for every input gate u in Ψ ,

cor(Ψ̂u, f ) � δ · ‖Ψ̂u‖ · ‖ f ‖.
Then,

cor(Ψ̂ , f ) � δ · ‖Ψ̂ ‖ · ‖ f ‖ · |Ψ | · τ−d.

Furthermore, let g be a map from {1,−1}n to C such that for every input gate u in Ψ ,

cor(ψu, g) � δ · ‖ψu‖ · ‖g‖,
where ψu : {1,−1}n → C is the unique element of Nε(Ψu) (recall that ψu is the map defined by the polynomial Ψ̂u – see Remark 1.2).
Then, there exists ψ ∈ Nε(Ψ ) such that

cor(ψ, g) � δ · ‖ψ‖ · ‖g‖ · (ε/6)−d.

Proof. The proof follows by induction on the size of Ψ . Let v be the root of Ψ , and consider the following two cases:

Case one: v is an input gate.
Since |Ψ | = 1 and since d = 0,

cor(Ψ̂ , f ) � δ · ‖Ψ̂ ‖ · ‖ f ‖ = δ · ‖Ψ̂ ‖ · ‖ f ‖ · |Ψ | · τ−d,

and

cor(ψ, g) � δ · ‖ψ‖ · ‖g‖ · (ε/6)−d,

where ψ ∈ Nε(Ψ ).

Case two: v is a sum gate with children v1 and v2.
By induction,

cor(Ψ̂v1 , f ) � δ · ‖Ψ̂v1‖ · ‖ f ‖ · |Ψv1 | · τ−d+1
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and

cor(Ψ̂v2 , f ) � δ · ‖Ψ̂v2‖ · ‖ f ‖ · |Ψv2 | · τ−d+1.

So,

cor(Ψ̂ , f ) = cor(Ψ̂v1 + Ψ̂v2 , f ) � cor(Ψ̂v1 , f ) + cor(Ψ̂v2 , f )

� δ · max
(‖Ψ̂v1‖,‖Ψ̂v2‖

) · ‖ f ‖ · (|Ψv1 | + |Ψv2 |
) · τ−d+1.

Since Ψ is τ -non-canceling,

max
(‖Ψ̂v1‖,‖Ψ̂v2‖

)
� τ−1‖Ψ̂ ‖.

So, since |Ψv1 | + |Ψv2 | � |Ψ |,
cor(Ψ̂ , f ) � δ · ‖ f ‖ · ‖Ψ̂ ‖ · |Ψ | · τ−d.

Similarly, there exist ψv1 ∈ Nε(Ψv1 ) and ψv2 ∈ Nε(Ψv2 ) such that

cor(ψv1 , g) � δ · ‖ψv1‖ · ‖g‖ · (ε/6)−d+1

and

cor(ψv2 , g) � δ · ‖ψv2‖ · ‖g‖ · (ε/6)−d+1.

Assume without loss of generality that ‖ψv1‖ � ‖ψv2‖. There are two possibilities:

1. ‖ψv1 + ψv2‖ � ε/2 · ‖ψv1‖.
Then, we set ψ = ψv1 + ψv2 , and so ψ ∈ Nε(Ψ ). Thus,

‖ψ‖ � ε/2 · ‖ψv1‖.
2. ‖ψv1 + ψv2‖ < ε/2 · ‖ψv1‖.

Then, we set ψ = (1 + ε)ψv1 + ψv2 , and so ψ ∈ Nε(Ψ ). Thus,

‖ψ‖ � ε · ‖ψv1‖ − ‖ψv1 + ψv2‖ > ε/2 · ‖ψv1‖.
So, since ε � 1,

cor(ψ, g) � (1 + ε) · cor(ψv1 , g) + cor(ψv2 , g) � 3δ · ‖ψv1‖ · ‖g‖ · (ε/6)−d+1 � δ · ‖ψ‖ · ‖g‖ · (ε/6)−d. �
3.4. Lower bounds for multilinear formulas

In this section we prove the two lower bounds for non-canceling and for noise-resistant syntactically multilinear arith-
metic formulas.

Proof of Theorem 1.6. By Theorem 3.4, there exists a τ -non-can celling sum tree Ψ of size at most |Φ| and of depth at
most d over the field C and over the set of variables X computing Φ̂ such that every input gate in Ψ is labeled by a product
multilinear polynomial. So, by Theorem 1.3, every input gate u in Ψ admits

cor(Ψ̂u, f ) � 2−Ω(n) · ‖Ψ̂u‖ · ‖ f ‖.
So, by Theorem 3.5, since Ψ̂ = Φ̂ ,

c · ‖Ψ̂ ‖ · ‖ f ‖ � cor(Ψ̂ , f ) � 2−Ω(n) · ‖Ψ̂ ‖ · ‖ f ‖ · |Ψ | · τ−d.

Thus, since |Ψ | � |Φ|,
|Φ| · τ−d � c · 2Ω(n).

Furthermore, since |Φ| � 2d , setting c = 1/2 and assuming τ < 2,

d = Ω

(
n

log(2/τ )

)
. �

Proof of Theorem 1.8. By Theorem 3.4, there exists a sum tree Ψ of size at most |Φ| and of depth at most d over the
field C and over the set of variables X such that every input gate in Ψ is labeled by a product polynomial, and such that
Nε(Ψ ) ⊆ Nε(Φ).
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Let u be an input gate in Ψ , and let ψu be the unique element of Nε(Ψu) (recall that ψu is the map defined by the
polynomial Ψ̂u – see Remark 1.2). Since Ψ̂u is a product polynomial, ψu is the vector of coefficients of a product polynomial
(different than Ψ̂u). So, by Theorem 1.3, and by the definition of g ,

cor(ψu, g) � 2−Ω(n) · ‖ψu‖ · ‖g‖.
So, since Φ is ε-noise-resistant to computing g , and by Theorem 3.5, there exists ψ ∈ Nε(Ψ ) such that

ε · ‖ψ‖ · ‖g‖ � cor(ψ, g) � 2−Ω(n) · ‖ψ‖ · ‖g‖ · (ε/6)−d.

So,

d = Ω

(
n

log(2/ε)

)
. �

4. Mixed-2-source extractors

In this section we construct a mixed-2-source extractor.

4.1. The extractor

Let n = 12sp be an integer, where p ∈ N is prime and s ∈ N is the constant given in Theorem 2.1. Let β0 be the constant
in the Ω(·) in Corollary 1.4 and set

β = β0/8

(also assume that β � 1/8). Let

m = �β · n� and k = n − 3m.

Recall that m is the length of the output of the extractor and that k is the min-entropy requirement.
We think of {0,1}p as the field F of size 2p (see Section 2.1). For t ∈ {0,1}n and i ∈ [12s], define yi = yi(t) ∈ F as

∀ j ∈ [p] (yi) j = tp(i−1)+ j.

Define the map F from {0,1}n to F by

F (t) = F (y1, . . . , y12s) = y1 · y2 · · · y12s.

Roughly, F cuts the input into 12s blocks of equal size, and multiplies these blocks as field elements. The extractor Ext :
{0,1}n → {0,1}m is defined as the m most significant bits of F (·). That is,

Ext(t) = (
F1(t), . . . , Fm(t)

)
,

where Fi(·) is the i’th coordinate of F (·), for every i ∈ [m]. Note that Ext(·) can be computed in deterministic polynomial
time. Also note that m and k are as required by Theorem 1.9.

4.2. Proof of Theorem 1.9

The proof of the theorem follows by an argument known as Vazirani’s XOR lemma.
Let μ1 and μ2 be two independent distributions on {0,1}n/2 (recall that n is even) such that

H∞(μ1) = k1 H∞(μ2) = k2 and k1 + k2 � k.

Assume without loss of generality that μ1 is a uniform distribution on a set A1 ⊆ {0,1}n/2, that μ2 is a uniform distribution
on a set A2 ⊆ {0,1}n/2, and that

|A1| · |A2| �
(
2k1 − 1

)(
2k2 − 1

)
� 2k−1,

where the last inequality follows since both k1 and k2 are at most n/2 and since 6m + 4 � n (μ1 and μ2 can be written as
a convex combination of such distributions – see Remark 4.1 below).

Remark 4.1. The set of distributions with min-entropy k′ form a convex body. Thus, every distribution with min-entropy k′
can be written as a convex combination of the extreme points of this body. In addition, if 2k′

is an integer, then the extreme
points of this body are exactly the distributions that are uniform on a set of size 2k′

.
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Let t1 ∼ μ1 and let t2 ∼ μ2. Thus, t1 is a uniform element of A1 and t2 is a uniform element of A2. Let π be a one-to-
one map from [n] to [n], and denote t = (t1 ◦ t2)π (recall that the i’th entry in (t1 ◦ t2)π is (t1 ◦ t2)π(i)). Thus, t is the input
for the extractor.

Denote by W the random variable Ext(t). To prove Theorem 1.9 we need to show that W is close to uniform; i.e.,

‖W − Um‖1 � 2−2m

(W means the distribution on {0,1}m defined by W ). The proof has three main steps. The first step is to show that every
XOR of the bits of W is almost uniform. The second step is to use Parseval’s equality and conclude that the distance in
2-norm of W from uniform is small. The third step is to use Cauchy–Schwarz inequality to conclude that the statistical
distance of W from uniform is small.

4.2.1. Every XOR of the bits of W is almost uniform
We will denote by W S the XOR of all the entries of W that are in S . Formally, for S ⊆ [m], denote

F S =
⊕
i∈S

Fi,

and denote

W S = F S(t),

where t = (t1 ◦ t2)π , t1 ∼ μ1 and t2 ∼ μ2.
In this section we will prove that for every non-empty S ⊆ [m],

‖W S − U1‖1 � 2−3m (4.1)

(W S means the distribution on {0,1} defined by W S ). The proof will follow using the small maximal-partition discrepancy
of f (see Section 1.1.2 for definitions).

The map π defines a partition of [n] to two sets π−1({1, . . . ,n/2}) and π−1({n/2 + 1, . . . ,n}). This partition defines a
2n/2 × 2n/2 matrix M whose (r1, r2) entry is F S ((r1 ◦ r2)π ), where r1, r2 ∈ {0,1}n/2.

Recall that f (·) is defined as ψ(F (·)), for an arbitrary non-trivial character ψ , and note that (−1)F S (·) = ψ(F (·)), where
ψ(·) is a non-trivial character of F. Corollary 1.4 tells us that the maximal-partition discrepancy of F S is at most 2−β0n ,
which implies that

Disc(M) � 2−β0n.

The sets A1 and A2 define a rectangle R in M . The random variable W S is a uniform element of R . Thus,

‖W S − U1‖1 = 2n

|A1||A2|DiscR(M) � 2n−(k−1)−β0n � 2−3m,

as claimed (where the last inequality follows since 6m + 1 � β0n).

4.2.2. Distance of Ext from Um in 2-norm is small
By Parseval’s equality and by (4.1),∑

g∈{0,1}m

(
Pr[W = g] − Um(g)

)2 = 2−m
∑

S⊆[m]:S �=∅

(‖W S − U1‖1
)2 � 2−6m (4.2)

(the following remark gives additional details, for completeness).

Remark 4.2. We recall some definitions regarding Fourier transform. We think of G
def= {0,1}m as an abelian group (with

addition of vectors over GF(2)). For every S ⊆ [m], the map ψS from G to C defined as

∀g = (g1, . . . , gm) ∈ G ψS(g) = (−1)
∑

i∈S gi

is a character of G. The set of characters of G, {ψS}S⊆[m] , form an orthonormal basis for the vector space of maps from G to
C with respect to the inner product〈

χ,χ ′〉 = 2−m
∑
g∈G

χ(g) · χ ′(g),

where χ and χ ′ are maps from G to C. Thus, every map χ : G → C can be written as

χ =
∑

χ̂ (S) · ψS ,
S⊆[m]
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where

χ̂ (S) = 〈χ,ψS〉
(the map χ̂ (·) is called the Fourier transform of χ ), and we have Parseval’s equality:∑

g∈G

∣∣χ(g)
∣∣2 = 2m

∑
S⊆[m]

∣∣χ̂ (S)
∣∣2

.

Denote by U
def= Um the uniform distribution on G. Since U = 2−m · ψ∅, for every S ⊆ [m],

Û(S) =
{

0 S �= ∅,

2−m S = ∅.

By Parseval’s equality,∑
g∈G

(
Pr[W = g] − U(g)

)2 =
∑
g∈G

([P − U](g)
)2 = 2m

∑
S⊆[m]

(
̂[P − U](S)

)2
,

where P(g) = Pr[W = g]. Note that

P̂(∅) = 2−m

and that

P̂(S) = 2−mE
[
(−1)W S

] = 2−m‖W S − U1‖1,

for every non-empty S ⊆ [m]. Thus, by linearity of Fourier transform,∑
g∈G

(
Pr[W = g] − U(g)

)2 = 2m
∑

S⊆[m]:S �=∅

(
P̂(S)

)2 = 2−m
∑

S⊆[m]:S �=∅

(‖W S − U1‖1
)2

.

4.2.3. Completing the proof
By Cauchy–Schwarz inequality, using (4.2),( ∑

g∈{0,1}m

∣∣ Pr[W = g] − Um(g)
∣∣)2

� 2m
∑

g∈{0,1}m

(
Pr[W = g] − Um(g)

)2 � 2−5m.

Thus,

‖W − Um‖1 � 2−2m,

which completes the proof. �
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