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Abstract. In his paper “On a Boolean matrix”, Nechiporuk gave an explicit example of a set of n 
homogeneous monotone Boolean functions of the first degree in n variables that require f2(n3’*) 
two-input gates in any monotone Boolean network computing them. ?n this note we show how this 
can be extended to f2(nS’3) two-input gates. 

1. Introduction 

In his paper “On a Boolean matrix”, Nechiporuk [S] gave an explicit construction 
for an n x n Boolean matrix that requires fI(n3’*) diodes in any network realizing it. 
(The notion of a diode network realizing a Boolean matrix is due to Lupanov [4], who 
showed by a counting argument that ‘almost all’ m x n Boolean matrices require at 
least nm/?ogz nm diodes when m = 2O(“) and n = 20(m’. An upper bound asymptotic 
to nm/logz nm has been given by Pippenger [6].) 

With any m x n Boolean matrix M we can associate a set of m Boolean functions 

of the n Boolean variables x1, . . . , xn. These functions are homogeneous monotone 
functions of degree 1, that is, each function is a disjunction over a subset of the 
variables. Nechiporuk’s n x n Boolean matrix translates in this way to an explicit 
construction for n homogeneous monotone Boolean functions of degree 1 that 
require O(n”“) gates in any monotone network computing them. (Without loss of 
generality, we shall assume every gate in a monotone network is either an OR-gate 
(two-argument disjunction) or an AND-gate (two-argument conjunction). The 
results of Lupanov and Pippenger cited above apply to monotone networks comput- 
ing Boolean functions of degree 1 as well as to diode networks realizing Boolean 
matrices.) 
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Our goal in this note is to show how 0(n 3’2) in the results cited above can be 

improved to L!( n “‘). This will be done as follows. With any m X n Boolean matrix we 
can associate a bipartite graph (with m inputs and !z outputs) in an obvious way. The 
conditions we desire for Boolean matrices can then be translated into conditions on 
bipartite graphs; specifically, we seek bipartite graphs that have many edges but no 
large complete bipartite subgraphs. Nechiporuk’s results then follow from a con- 
struction (due to Ki-ivari, Sos and Turin [3]) of a bipartite graph with n(n”‘) edges 
but no copy of K2,* (that is, no complete bipartite subgraph with 2 inputs and 2 
outputs). Our results follow from a similar construction (due to Brown [I]) with 
Qtn”‘) edges but no copy of K 3,3. (If we had further constructions, with n(n’-I”) 
edges but no copy of &, we could further improve our results, perhaps as far as 
n(n’l(log n )*). This would still fall short of the bounds obtained by counting 
arguments.) 

A key point in Nechiporuk‘s proof is that the functions associated with his matrix 
have *nothing in common’; as a consequence of this, nothing can be gained by using 
AND-gates or by having overlap among the subnetworks computing the various 
functions. As a generalization of this, the functions associated with our matrix will 
have *little in common’, and thus little can be gained by using AND-gates or overlap. 
Our results will follow from precise quantitative versions of these ideas. 

Wegener [7] has recently given an explicit construction for n homogeneous 
monotone Boolean functions of n Boolean functions that require 0(n */(log n)‘) 
gates in any monotone network computing them. {Me has also given an upper bound 
of O(n’/log n) for these functions.) This result does not supercede the results 
described above, however, since these functions have degree Llog2 n] rather than 
degree 1. 

In addition to using 09 - ) and o( l ) to denote error terms in the usual way, we shall 
use UC l ) to denote a factor of the form exp 0( l ) and u( .) to denote a factor of the 
form exp o( l ); these are equivalent to factors of the form 1 + 0( .) and 1 +o(. ), 
respectively, when the quantity denoted by the ellipsis tends to 0. Thus U( 1) 
denotes a factor bounded between positive constants, and u(l), a factor tending to 
unity. 

Our results will require upper bounds on the length of gaps between successive 
primes. These will take the following form: if p is the smallest prime not less than 5, 
then p = ~U(~-“). It is an open problem to determine the largest admissible value of 
8; the best result known is that of [2], which shows that any 0 in the range 0 < 8 < & is 
admissible. In what follows, 0 will denote some fixed admissible value. 

2. Matrices and diode networks 

If F. is a bipartite graph, # (F) will denote the number of edges in F, and L(F) will 
denote the minimum possible number of diodes in a network realizing the matrix 
associated with F. 
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Lemma 1. If F contains no copy of &+I.,+I, %en 

L(F) a # (F)/t*. 

Proof. Let G be a network that realizes the matrix associated with F using L(F) 
diodes. The network G can be regarded as a directed graph (not necessarily bipartite) 
with 

(1) the same inputs as F, 
(2) the same outputs as F, 
(3) the same paths as F (that is, a directed path from an input to an output if and 

only if there is a corresponding edge in F), and 
(4) #(G) = L(F) edges. 

We must show that 

#(G)a #(F)/t*. 

We shall establish an accounting scheme whereby edges in F are ‘charged against’ 
edges in G. The scheme will be such that 

(I) at most t* edges in F are charged against each edge in G, and 
(II) each edge in F is charged against some edge in G. 

The lemma will then follow immediately. 
Let (a, b) be an edge in F. Since G has the same paths as F, there must be at least 

one path from a to b in G. Let 

a = vo, III,. . . , vk = b 

be the vertices of such a path and let 

h, ol), h 02)~. l l 9 (ok-1, uk) 

be its edges. 
We shall say that an edge (vi+ vi) in G is ‘eligible’ if 
(i) there are paths from at most t inputs of G to vi-1, and 

(ii) there are paths from vj to at most t outputs of G. 
Our accounting scheme is as follows: an edge (a, b) in F will be charged against all 
eligible edges that lie on paths from a to b in G. We must now show that conditions (1) 
and (II) are satisfied. 

Let (vi-1 9 t)j) be an edge in G. If (vi- 1, vi) is not eligible, then no edges in F are 
charged against it. If (vi-1, vi) is eligible, then the set A of inputs from which there are 
paths to vi-1 contains at most t inputs; similarly, the set B of outputs to which there 
are paths from vj contains at most t outputs. If the edge (a, b) in F is charged against 
(vi-1, vi), then (vj-i, vi) lies on a path from a to b in G. Thus a appears in A, b 
appears in B, and (a, b) appears in A x B, which contains at most t’ edges. This 
verifies condition (I); it remains to show that condition (II) is satisfied. 

Let (a, b) be an edge in F and consider a path from a to b in G. The set of all edges 
(vi-1, vi) on this path that satisfy condition (i) forms an initial segment of the path, for 
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if there are paths from more than t inputs to Vi-19 there will be paths from these inputs 
to u, as well. Similarly, the set of all edges on the path that satisfy condition (ii) forms 
a final segment of the path. If these two segments have an edge in common, this edge 
will be eligible and the edge (a, 6) in F will be charged against it; this will verify 
condition (II). If the two segments do not have an edge in common, the>re must be a 
vertex t’i that separates them, that is, a vertex vi such that 

(1) j s i for all edges (tli-1, Vi) that satisfy (i), and 
(2) i si- 1 for all edges (q+ ui) that satisfy (ii). 

It follows that the set A of inputs from which there are paths to vi contains at least 
z + 1 inputs and, similarly, that the set 61 of outputs to which there are paths from vi 
contains at least t + 1 outputs. Since G contains paths from all the inputs that appear 
in A to all the outputs that appear in B, F contains all the edges that appear in A x B. 
Thus F contains a copy of $+ I ,:+ 1, a contradiction. This completes the verification of 
condition (II) and the proof of the lemma. 

Construction 1. Given m and n, the graph Hz(m, n) is constructed as follows. Let 
w = max{m, n). Define 6 by e2 + e+ 1 = w so that 

8 = w”2u(w-1’2)_ 

Let p be the smallest odd prime not less than 6, so that 

p = &U(<-‘) = w 1’21 J( w +i2). 

! ct H be the bipartite graph corresponding to the projective plane of order p: the 
inputs correspond to the points of the plane, the outputs correspond to the lines, 
and there is an edge from an input to an output if and only if the corresponding point 
and lines are incident. This graph has 

p2+p+1 
bW 

= wIJ(w-"~) 

inputs and outputs, each of which is incident with 

p + 1 = w 1’2u(w -e’2) 

edges. Since any two points are incident with exactly one line in a projective plane, H 
contains no copy of K 2,2. (The foregoing is a slight modification of a construction due 
to Kovari, Sos and Turk: [3].) 

Let Hz(m, n ) be a graph obtained from H by first deleting p2 + p + 1 - m inputs 
and all the edges incident with them, then deleting p2 +p + 1 - n of the outputs that 
are incident with the fewest remaining edges, and all these edges incident with them. 
The resulting graph contains m inputs, n outputs, at least 

mn(p+ 1) mn 
= T7dJbV-e’2~ = 

p2+p+l w 
mn~U((max{m, n})-“l’) 

(mdm, n}) 

edges, and no copy of K2.2. 
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Combining this construction with Lemma 1 we obtain 

Theorem 1. 

and, in particular 

L(H2(n, n)) = O(n”“>. 

This is the result of Nechiporuk [S]. 
The following lemma shows that Lemma 1 is very nearly the best possible. 

Lemma 2. For every positive integer t, and every E > 0, there are graphs Fand G as in 
the proof of Lemma 1 for which 

Proof. Let G be the graph obtained by identifying each input of H2(n, n) with the 
output of a copy of K t,l, and each output of the resulting graph with the input of a 
copy of &,. Let F be the bipartite graph with the same paths. 

If there were a set A of t + 1 inputs and a set B of t + 1 outputs such that A and B 
induce a copy of K t+l,t+l in F, then there must be paths in G from each input of A to 
each output of B. These paths must pass through at least 2 distinct inputs of H&z, n ) 

and also through at least 2 distinct outputs of &(n, n ). Thus H&z, n ) must contain a 
copy of K2,2, which is impossible. It follows that F does not contain a copy of Kt+ l,t+l, 
and therefore that F and G are as in the proof of Lemma 1. 

On the other hand, 

#(G) = 2tn + n3’2U(n-e’2), 

so the conclusion of the lemma holds for all sufficiently large n. 

Construction 2. Given m and n, the graph H3(m, n) is constructed as follows. Let 
w = max{m, n}. Define 6 = We’d. Let p be the smallest prime not less than 5, so that 

p = &u(g+q = w 1’3u( w -e’3). 

Let d be a non-zero element of GF( p) (the field of integers modulo p) such that d is 
a quadratic non-residue modulo p if p = 1 (mod) 4, and a quadratic residue modulo p 
if p = 3 (mod) 4. Let H be the bipartite graph with inputs corresponding to the points 
of the 3-dimensional affine space over GF(p), with outputs corresponding to the 
points of the same space, and with an edge from the input a = (al, a2, a3) to the 
output b = (bl, bz, b3) if and only if 

(al - bl)2 + (a2 - b2)2 + (a3 - b# = d (mod) p. 
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Brown [1] has shown that this graph has 

1 SW 
P3 ’ = wU( wpei3j 

inputs and outputs, each incident with 

edges, and that it contains no copy of K3.3. 
Let H3(m, n ) be a graph obtained from H by first deleting p3 - m inputs and all the 

edges incident with them, then deleting p3- n of the outputs that are incident with 

the fewest remaining edges, and all these edges incident with them. The resulting 
graph contains m inputs, n outputs, at least 

mn(p2-p) mn = -U( w-“~) = - mn 
P3 W (maxim, n}) 

,,,U((max{m, n})“‘“) 

edges, and no copy of K3.3. 

Combining this construction with Lemma 1 we obtain 

Theorem 2. 

UHdm, 4) 2 
mn 

4(max{m, n 1) 
1,3u(l) 

and. in particular 

UH3(n, n)) = f2(n”“). 

This i3 the result we have sought. 
A comment is in order concerning the extent to which the foregoing constructions 

may be regarded as explicit. It will certainly be admitted that they are more explicit 
than Lupanov’s lower bound of fi(n 2/lag n). Nevertheless, three objections may be 
advanced. First, they assume the ability to find 3 prime not much larger than a 
prescribed real number. In fact, we know of no way to find such a prime without some 
exhaustive searching which can hardly be considered explicit. Second, the lower 
bound of a<~, s’3) assumes the ability to find a quadratic non-residue module a 
prescribed prime. This can be avoided (at the cost of some deterioration in the error 
factors) by confining attention to primes congruent to 3 (mod) 4, for which only a 
quadratic residue (such as 1) is needed. Finally, these constructions assume the 
ability to delete from a graph a prescribed number of the vertices having the lowest 
degrees. This is not a completely explicit specification of the vertices to be deleted, 
but this too can be avoided (again at the cost of some deterioration in the error 
factors): since the original graphs are regular, it does not matter much which vertices 
are deleted. 
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3. Functions and monotone networks 

First we shall consider monotone networks containing only OR-gates. If F is a 
bipartite graph, &(F) will denote the minimum possible number of gates in such a 
monotone network computing the functions associated with the matrix associated 
with F. 

Lemma 3. L I (F) 3 $(F). 

Proof. Consider a monotone network, containing only OR-gates, that computes 

f 1 9 l l l 9 fm from x1,. . . , xn. From this monotone network we can construct a directed 
graph which has a vertex for each of the variables x1, . . . , xn (these n vertices will be 
the outputs of the graph), a vertex for each OR-gate (the vertices corresponding tn 
the gates computing the functions fl, . . . , fm will be the inputs of the graph), and two 
edges for each OR-gate (from the vertex corresponding to the gate to the vertices 
corresponding to its arguments). This directed graph cgn be regarded as a diode 
network, and it is easy to see that it realizes the matrix associated with E Since the 
number of diodes is just twice the number of gates, the lemma follows. 

‘Let us now consider monotone networks containing AND-gates as well as 
OR-gates. If F is a bipartite graph, L*(F) will denote the minimum possible number 
of gates in such a monotone network computing the functions associated with the 
matrix associated with F. 

Lemma 4. If Fcontains no copy of Kr+l,r+l, then 

Lz(F) z&(F)/max{t - 1, 1). 

Proof. Consider a monotone network that computes f!, . . . , fm from x1, . . . , xn. We 
shall describe a surgical procedure that eliminates an AND-gate, introduces t - 1 or 
fewer OR-gates, and preserves the property of computing fl, . . . , f,,, from 

Xl, * l l , xn. The lemma will then follow immediately by induction on the number of 
AND-gates in the network. 

Let the network be topologically sorted so that the arguments of a gate precede the 
gate itself. We shall eliminate the AND-gate that appears last in this order, so that 
any gate intervening between this AND-gate and a gate computing one of the 
functions f 1, . . . , fm must be an OR-gate. Suppose that this AND-gate computes 
g A h from g and h. 

Let r denote the number of variables among x1, . . . , xn that imply g A h (this is just 
the number of terms of degree 1 in the disjunctive normal form of g A h), and let s 
denote the number of functions among fl, . . . , fm that are implied by g A h. Then we 
must have r s t or s G t, else F would contain a copy of Kt+l,r+ 1. 
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If r G z, the disjunction of the terms of degree 1 in g A h can be computed by a 
subnetwork of r - 1:~ t - 1 OR-gates. If the AND-gate computing g A h is replaced 
by this subnetwork, the overall network will still compute fl, . . . , fm, else one of these 
functions would contain a term of degree 2 or greater. Thus the AND-gate can be 
replaced by o - 1 or fewer OR-gates. 

if on the other hand s s t, let the AND-gate computing g A h be replaced by the 
constant 0 and simplify the resulting network. Suppose the network now computes 

I 
I ,,...,j~.Wemusthavefi=/r; except possibly for the s values of i for which g A h 

implies fr. For the exceptional values of i, either g or h must imply fi, else the latter 
would contain a term of degree 2 or greater. Thus for these vagues of i we must have 
either fi = fl v g or .t;: =f: v h. This shows that the AND-gate can be replaced by t 
OR-gates. In fact it can be replaced by t - 1 OR-gates, since if no OR-gate was 
eliminated during the simplification, the AND-gate computed one of the functions 
f . Ir . l . , fm ; in this case there can be at most one exceptional value of i, for which f: = 0 
and thus for which fi = g or fi = h. This completes the proof. 

Combining these lemmas with Theorem 1 yields 

Theorem 3. &(&(n, n)) = ll(n3’*). 

result of Nechiporuk 
yields 

Theorem 4. L2(H3(t~, n)) = f2(1~~‘~). 

This is the result we have sought. In these applications, t = 1 or 2, and 
max(t - 1,l) = 1, so nothing can be gained by using AND-gates. 
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