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O N  T H E  D E G R E E  OF B O O L E A N  
F U N C T I O N S  AS R E A L  P O L Y N O M I A L S  

NOAM NISAN AND ~ A R I O  SZEGEDY 

Abstract .  Every Boolean function may be represented as a real poly- 
nomial. In this paper, we characterize the degree of this polynomial in 
terms of certain combinatorial properties of the Boolean function. 

Our first result is a tight lower bound of ~(logn) on the degree 
needed to represent any Boolean function that depends on n variables. 

Our second result states that for every Boolean function f ,  the fol- 
lowing measures are all polynomially related: 

o The decision tree complexity of f .  

o The degree of the polynomial representing f .  

o The smallest degree of a polynomial approximating f in the Lmax 
n o r m .  

Key words. Approximation; block sensitivity; Boolean functions; Fourier 
degree. 

Subject  classifications. 68Q05, 68Q99. 

1. Introduct ion 

1.1. B o o l e a n  f u n c t i o n s  as real p o l y n o m i a l s .  Boolean functions may be 
represented in various forms. Some of the simplest and most natural of these 
forms are representations as polynomials over various fields, and in particular 
over the real numbers. Let f : {F, T} = -~ {F, T} be a Boolean function. If 
we encode "true" as the real number 1, and "false" as the real number 0, then 
f becomes a function from a subset of R n to R. We say a real multivariate 
polynomial p:  R n -~ R represents f if, for every x E {0, 1} n, f ( x )  = p(x). 
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It is well known, and not difficult to see, that every Boolean function can 

be represented as a polynomial. Moreover, since for all x ~ {0, I} and integer 

k > i we have that x k = z, there is no need to ever raise a variable x~ to a 

power greater than i, and thus we can limit ourselves to polynomials p which 

are multilinear (i.e.. each variable x~ appears with degree at most I). The 

multilinear polynomials over any field form a 2 n dimensional space with respect 

to the addition and scalar multiplication over the field in question. Since the 

generalized AND functions (those Boolean functions that take value one at one 

particular point of the {0, I} n hypercube and take the value zero at any other 

point) naturally form a basis for this space, we also get that there is a unique 

multi-linear polynomial representing any given Boolean function. 

The choice of representing "true" as 1 and "false" as 0 is of course somewhat 

arbitrary, and is a matter of convenience. Another convenient choice is co 

represent "true" as -I and "false" as I. The representation of a function as a 

polynomial under these conventions is sometimes called the Fourier transform 

of the function (see. e.g., [8,9]). The degree of this polynomial is called the 

Fourier degree of the polynomial. The polynomials that arise when representing 

the same Boolean function using different encodings of the inputs "true" and 

"false" may look very different. For instance, one polynomial can be very sparse 

(having only a few non-zero coefficients), while the other is dense. The degree, 

however, remains invariant under any choice of two different real numbers to 

represent "'true" and "false". 

1.2. P r e v i o u s  work .  In their book "Perceptrons" [11], Minsky and Papert  
initiated the study of the computational properties of Boolean functions using 
their representation by polynomials. Recently, there have been many more 
studies that  use these representations (or approximations) in order to study 
various complexity measures of the Boolean functions. 

In [8], a relation between the influence of variables of Boolean functions 
and their Fourier coefficients was used that  we will apply in Section 2. In [9], 
Fourier transforms were used to study A C  ~ functions (functions computed by 
constant depth, polynomial size circuits). In [9,10], the same tool was used 
to devise learning algorithms. In [3], it was used to characterize "polynomial 
threshold" functions. 

In [5], a tight lower bound for the time required to compute a Boolean 
function on a CREW PRAM is given in terms of the degree of the function 
as a real polynomial. In [1,2], lower bounds for constant depth circuits are 
obtained using approximations by real polynomials. Earlier, [13,15] obtained 
similiar lower bounds using polynomials over finite fields~ 



comput complexity 4 (1994) The degree of Boolean functions 303 

Our paper is self-contained, but the cited papers, especially the introductory 
chapters of [8] and [9], provide more background information on the methods 
we use. 

1.3. N e w  resu l t s .  In this paper, we study the most basic parameter of the 
representation of a Boolean function as a real polynomial, its degree. 

DEFINITION 1.1. For a Boolean function f ,  the degree off ,  denoted by deg(f) ,  
is the degree of the unique multilinear real polynomial that represents f (ex- 
actly). 

1.3.1. M i n i m u m  poss ib l e  degree .  Our first theorem answers the question 
of what is the smallest degree of a Boolean function that depends on n variables. 

THEOREM 1.2. Let f be a Boolean function that depends on n variables. 
Then, deg( / )  > log 2 n - O(loglogn).  

The proof of this theorem makes use of the relation between "influences" 
and the Fourier transform due to [8]. 

This result is tight up to the O(loglogn) term, as can be seen by the 
"address" function. 

1.3.2. D e g r e e  and  dec i s ion  t rees .  We next relate the degree of a Boolean 
function to several combinatorial and complexity measures of the function. 

The Boolean decision model is perhaps the simplest computational model 
for Boolean functions. In this model, the algorithm repeatedly queries input 
variables until it can determine the value of the function. The algorithm is 
adaptive, choosing which variable to query next based on the answers to the 
previous queries. The only cost in this model is the number of variables queried, 
and the cost of an algorithm is the number of queries made for the worst case 
input. The decision tree complexity of f ,  D( f ) ,  is defined to be the cost of the 
best algorithm for f .  

The decison tree complexity is well studied in the literature in many con- 
texts, tn particular, it is known that it is closely related to several other com- 
binatorial and complexity measures. The decision tree complexity is known 
to be polynomially related to the certificate complexity [17] and to the block 
sensitivity [12]. Furthermore, up to a constant factor, log D(f)  is equal to the 
time needed to compute f on a CREW PRAM [12]. We show that the degree 
of f is also polynomially related to all these measures. 
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THEOREM 1.3. For every Boolean function, we have 

deg(f)  _< D ( f )  < 16 deg(f)  s. 

The proof of this result requires results from real approximation theory 
[4,6,14]. 

We strongly suspect that the exponent 8 is not optimal~ The strongest 
separation we can obtain is a function for which D ( f )  = deg(f)  i'bs''' 

1.3.3. A p p r o x i m a t i o n  in L r ~  norm.  Our techniques are strong enough 
to allow us to give strong bounds on the degree needed even co approximate 
Boolean functions in the Lm~ norm 

DEFINITION 1.4. Let f be a Boolean function, and tet p be ~ tea1 polyno- 
mial. We say that p approximates f if, for every x E {0, 1} n, we have that 
Ip(x) - f (x) l  <_ 1/3. The appro~mate degree o f f ,  degff), is denned to be the 
minimum degree of p, over all polynomials p that approximate f . 

Note that  the constant 1/3 is arbitrary and can be replace by any constant 
0 < e < 1/2 without affecting our results. 

Perhaps surprisingly, we show that approximation is not much easier than 
exact representation. 

THEOREM 1.5. There exists a constant c such that for every Boolean function 
f ,  we have 

deg(f)  _< deg(f)  < O f f )  < c~eg(f)  8. 

This theorem has been recently used in [5] to show that randomization does 
not give extra power to CREW PRAMs. 

The best separation results that we know of between deg(f)  and deg(f)  are 
quadratic, and we conjecture that this is indeed the worst case. 

2. Minimum possible degree 

In this section, we prove the following theorem: 

THEOREM 2.1. Every Boolean function f that depends on n variables has 
degree deg(f )  _> log 2 n - O(log log n). 
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For the proof of this theorem, it will be convenient to use the Fourier 
transform representation, i.e., - 1  for true and 1 for false. (This is used in 
this section only.) Thus, a Boolean function will be viewed as a real func- 
tion f : { -1 ,1}  ~ -+ {-1 ,  1}. For a subset S C C_ {1 , . . . , n} ,  we will denote 
X s  = 1-Les zi. 

The next two subsections provide some necessary lemmas, and the proof of 
the theorem appears in the third subsection. 

2.1. D e g r e e  a n d  inf luences .  We will require the following definition and 
lemmas from [8]. 

LEMMA 2.2 (PARSEVAL'S EQUALITY). If  we represent a Boolean [uncion f as 
f = ~ s  a s X s ,  then 

E o ~ S  = 1. 
s 

DEFINITION 2.3. For a Boolean function f and a variable xi, the influence of 
xi on f ,  Infi(f),  is defined to be the following probability: 

P r [ f ( x l , . . . ,  xi-1, true, xi+l,. . . ,  x~) r f ( x l , . . . ,  xi_,,false, xi+l,. . ., x~)], 

where x l , . . . ,  xi-1, xi+l,. �9 xn are chosen at random in {false, true}. 

LEMMA 2.4 ([8]). For any Boolean function f on n variables, if we represent 
f = ~ s  o~sXs, then 

n 

i = l  S 

From these lemmas, we easily deduce the following result: 

COROLLARY 2.5. For any Boolean function f ,  

n 

~ I n ~ ( f )  ~ deg(f).  
i=1 

2.2. Ze roes  o f  a m u l t i l i n e a r  p o l y n o m i a l .  The following simple lemma 
gives an upper bound for the number of zeroes of any multilinear polynomial 
over { -1 ,  1} ~. It is known as the Lemma of Schwartz [16], but we prove it 
below for completeness. 
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LEMMA 2.6 (SCHWARTZ). Let p(x, , . . . ,  x~) be a non-zero multilinear polyno- 
mial of degree d. I f  we choose x~ , . . . ,  x ,  independently at r a n d o m  in { -111} ,  
then the following inequality hotds: 

Pr~v(xl ,  ..., x~) # 0] > 2 -d. 

PROOF. The  proof  is by induct ion on n. For n = 1, we jus t  have a l inear 
funct ion of one variable which may  have only one zero. 

For the  induct ion step, write 

p(Xl, . . . ,Xn) : Xng(Xl,.. . ,Xn_I) 2V h(xl , . . . ,Xn_i) .  

We can see t ha t  the non-zeroes of p over { - 1 ,  t} = yield non:zeroes of h + g 

or of h - g over { - 1 , ! } ~ - t :  if p ( x , , . . . , x ~ _ ~ , l )  # 0 then  h(x l , . . . , x~_~)  + 
g ( x l , . . . , X ~ - l )  # O, and if p ( x l , . . . , X n - l , - 1 )  gs 0 then  h ( x l , . . . , x n - 1 )  - 
g(Xl , . . . ,  Xn-1) 7 s O. W e  n o w  distinguish between three c a s e s .  

. h + g is identically equal to zero. In this case, p = (x~o - 1)g, where 
deg(g)  = d -  t and we use the induct ion hypothesis  on g for the  x ' s  

sat isfying x~ = - 1 .  

. h - g is identically equal to zero. In this case, f = (1 + xn)9, where 

deg(g)  = d -  1, and again we use the induction hypothes is  on g for the  
x ' s  sat isfying x~ = 1. 

. Both  h + g and h - g are not  identically equal to zero, The  degrees of 

h + g and of h - g are bo th  bounded  by d and thus we use the induct ion 
hypothesis  on h + g for the x ' s  satisfying xn = 1 and on h - g for the x ' s  

sat isfying xn = - 1 .  

2.3.  P r o o f  o f  T h e o r e m  2.1. We have now assembled all t ha t  we need in 
order to prove the theorem.  

For each i, 1 < i < n, define a function f i  on n - i variables  as follows: 

= 

f ( x l , . . . ,  xi-1, -1 ,  xi+~,. . . ,  x,~) - f ( x l , . . . ,  xi-1, 1, x i+ , , . . . ,  Xr,), 

Under  this nota t ion,  it is clear tha t  

In f , ( f )  = P r [ f f ( x t , . . . ,  xi_~, x ~ + i , . . . ,  x~) # 0], 
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where x l , . . . ,  xi-1,  x i + l , . . . ,  x,~ are chosen at random in { -1 ,  1}. 

Since f depends on all of its variables, we have that for every i, f i  is not 
identically zero, and thus, we can apply Lemma 2.6 and conclude that for all 
i, Infi(f)  > 2 -d. 

On the other hand, it follows from Corollary 2.5 that  ~ Inf,(f)  < d. Com- 
bining these two bounds, we get: 

n~ 2d <- E Infi(f) _< d. 
i 

Thus, d2 d > n, and the theorem follows. [] 

3. Degree  and decis ion trees  

We remind the reader that at this point, we return to the representation of 
true = t and false = O. 

3.1. T h e  M e t h o d  o f  S y m m e t r i z a t i o n .  We will use the method of sym- 
metrization, first used by Minsky and Papert [11]. 

DEFINITION 3.1. I f  p : R ~ --* R is a mult ivariate  polynomial ,  then the sym- 
metrization of p is defined as follows: 

pSym(Xl , . . . ,Xn  ) = E~rEsnp(XTr(1),...,X~r(n)) 
n! 

The important point is that if we are only interested in inputs x E {0, 1} ", 
then pSy,~ turns out to depend only upon zl + �9 �9 �9 + as. We can thus represent 
it as a univariate polynomial of Xl + . . .  + x,.  

LEMMA 3.2 ([11]). f f  p : R n --+ R is a mult ivariate  polynomial ,  then there 

exists  a unique univariate polynomial  ~ " R -~ R of  degree at mos t  n such that  
for all Xl , . . . ,  xn C {0, 1} n, we have 

F~(~ , . . . , ~ )=p (z~  + . . .+~) .  

Moreover, deg(~) < deg(p). 
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3.2. A t h e o r e m  f rom a p p r o x i m a t i o n  theory .  We will need the fo!lowing 
result of H. Ehlich and K. Zeller [6] and T. J. Rivlin and E. W. Cheney [141: 

THEOREM 3.3 (EHLICH, ZELLER; RIVLIN, CHENEY). Let p be a.polynomiaJ: 
with the following properties: 

1. For any integer 0 < i < n, we have bl < p(i)  < 52. 

2. For some real 0 < x < n, the derivative of  p satifies !p'(x)] > c. 

Then,  deg(p) >_ V/Cn/(c + b2 " bl). 

Again, for completeness, we prove this theorem. The proof is based on the 
following well known theorem of Markov [4]: 

THEOREM 3.4 (MARKOV). Let p : R ~ R be a univariate polynomial  of  
degree d such that any real number  al < x < as satisfies bx <_ p(x) < b2. T h e n  
for M1 al < * < a2, the derivative of p satis~es Ip'(x)l < d~(b~ - bl)/(a~ - al). 

The two theorems are similar, but in the former, we do not have the infor- 
mation on the value of p(n)  for all real x in the range but rather only for integer 
x. Thus, the theorem can be perceived as a generalization of that of Markov. 
There is a surprisingly simple proof of it, however, by Markov's theorem: 

PROOF OF THEOREM 3.3. Let c' = rnaac0_<x<~ ]p'(x)[ _> c. It is clear that 
for all real 0 < x < n, 

bx - d i e  _< p(x) _< b~ + c'/2. 

Using the Markov inequalty, we therefore have the following inequalities: 

deg(py(c'  + b2 - b , )  c e <_ 
n 

Ctn c n  

deg(p)2 > d + b 2 - b l  > " [] - - c W b 2 " b l  

3.3. Main l emma.  

LEMMA 3.5. Let f be a Boolean function such that f (O ,O, . . .  ~0) = 0 and for 
every Boolean vector Z of  Ha mmin g  weight i ,  f ( ~ )  = 1. Then, the following 
inequalities hold: 

deg(f) > ~/'n--/2; 

de~-g(f) > V/~-/6. 
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PROOF. We will prove the bound for deg(f) .  The sharper bound for deg(f)  
follows exactly the same lines. Let p be a polynomial approximating f ,  and 
consider/5 the univariate polynomial giving its symmetrization. /~ satisfies the 
following properties: 

1. deg(i~) _< deg(p). (By Lemma 3.2.) 

2. For every integer 0 < i < n, - 1 / 3  _</~(i) ~ 4/3. (Since for every Boolean 
vector 3, p(~) is within 1/3 of a Boolean value.) 

3. 15(0) _< 1/3. (Since f ( 0 , 0 , . . . , 0 )  = 0.) 

4. /~(1) _> 2/3. (Since for all Boolean vectors S of Hamming weight 1, 
f ( s )  = 1.) 

Properties (3) and (4) together imply that  for some real 0 _< z _< 1, the 
derivative ~'(z) >_ 1/3. We can now apply Theorem 3.3 to obtain the lower 
bound for deg(15), 'and thus also for deg(p). We remark that  the bound for 
deg(f)  is proven exactly the same way, except that  the inequalities that  corre- 
spond to (2)-(4) contain different constants. [] 

The examples given below in Section 3.5 show that  the bound for deg(f)  is 
tight (up to a constant factor). We do not know whether the bound for deg(f)  
is tight. 

3.4. G e n e r a l  B o o l e a n  f u n c t i o n s .  Although the main Lemma concerns very 
special types of Boolean functions, it turns out that  it is enough to give good 
bounds for all Boolean function. This is done by relating the degree to other 
combinatorial properties of Boolean functions. But first, let us introduce a new 
notation: For a string x G {0, 1} ~ and a set S C_ {1 , . . . ,  n}, we define x (s) to 
be the Boolean string which differs from x on exactly the bits in S. 

DEFINITION 3.6 ([12]).  For a Boolean function f the block sensitivity of f ,  
bs(f) ,  is defined to be the maximum number t for which there exists an input 
x E {0, 1} ~ and t disjoint subsets S 1 , . . . , S t  C { 1 , . . . , n }  such that for a11 
1 < i < t, f ( x )  r I(x(Sd). 

The block sensitivity of a function is known to be related to its decision 
tree complexity, D(f ) .  

LEVMa a.r  ([12]). For every Boolean function f ,  bs(f) _< D(f) < bs4(f). 
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We can easily get lower bounds for the degree in terms of the block sensi- 
tivity. 

LEMMA 3.8. For every Boolean function f ,  the following inequalities hold: 

deg(f)  > ~ ] ) - / 2 ,  

de (S) >_ 

PROOF. Let f be a Boolean function, and let ~ and $ 1 , . . . ,  St be the input 
and sets achieving the block sensitivity. Let us assume without loss of generality 
that f(ff) = 0. We define a function f ' ( Y l , . . . ,  yt) as follows: 

f ' (Yl ,  . . . ,Yt)  = f(c~ O ylS~ 0 ". .  �9 ytSt),  

i.e., the j ' t h  bit fed to f is xj | Yi if j E Si, and is xj if j is not in any of the 
Si's (the | operator adds bits or vectors of bits modulo 2). The following facts 
can easily be verified: 

1. deg(f ' )  < deg(/) .  (The bits xj are constants in the definition of f ' , )  

2. ff satisfies the conditions of Lemma 3.5. 

Our lemma thus follows from Lemma 3.5. [] 

Combining Lemmas 3.7 and 3.8 we get the following result: 

THEOREM 3.9. For every Boolean function f we have 

deg(f)  < D ( f )  < 16deg(f)  8, 
de--'g(f) _< deg(f)  _< D ( f )  < 1296deg(f) 8. 

3.5. Sepa ra t i ons .  The best separation results we know of between D ( f ) ,  

deg(f) and deg(f) are given by the following examples. 
Let E12(xl, x2, x3) be the symmetric function taking value true if exactly 

one or two of the input bits are true. It is not difficult to see that deg(E12) = 2 
(we can write E12 = xl + x2 + x3 - xlx2 - x2x3 - xlx3).  On the other hand, 
D(EI~) = 3. For every integer k, we define the function E~2 on 3 k variables as 
a composition of E~2 on three disjoint copies (on separate inputs) of: E ~  -1. We 
now have the following result: 

EXAMPLE 3.10. The function E~2 on n = 3 k variables satisfies the following 
relations: 

D ( E f 2 )  = 3 k = n ,  

deg(E~2) = 2 k = n l~ = n0.63... 
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PROOF. The value of the degree simply follows by induction from the defini- 
tion of E~2. The lower bound on the decision tree complexity follows from the 
fact that  on input (0, 0 , . . . ,  0), the decision tree must look at every bit because 
if even one bit is changed to 1, the value of Ek2 changes from false to true. [] 

Consider the function OR~ on n variable returning true if at least one of 
the inputs is true. Using Chebyshev polynomials, we can approximate ORn by 
a rather low degree polynomial. 

EXAMPLE 3.11. The function ORn satisfies the following equalities: 

deg(OR~) = n, 

deg(OR~) = O(v/-~). 

PROOF. We will use Chebyshev polynomials. The k'th Chebyshev polyno- 
mial, Tk(x), is a real polynomial of degree k having the following properties 
(see [4]): 

1. For every - 1  < x < 1, [Tk(x)[ _< 1. 

2. For all x _> 1, the derivative satisfies T~(x) >_ k 2. 

Now choose k = 2 v ~  and c = 1/Tk x n / ( n -  1), and define the polynomial 
p(x) = 1 - c T k ( x / ( n -  1)). Property (2) insures that c _< 1/4. By property (1), 
we have that [p(x) - 11 _< 1/3 for all 0 < x < n - 1, and p(n) = 0. It follows 
that  p(xl  + �9 �9 �9 + x,~) approximates OR~. [] 

4. Open problems 

Besides the intriguing questions that remain open about the exact relation 
between deg(f), deg(f), and D(f), we would like to mention three related 
open problems. 

The first question is known as the question of "sensitivity versus block 
sensitivity." The sensitivity of a Boolean function f ,  S ( f ) ,  is the maximum of 
Sx( f )  over all inputs x, as defined below: Let x i be the input that we obtain 
from x by negating its i th bit but leaving all the other bits intact; Sx( f )  is 
the number of i's such that f ( x )  # f (xi) .  For example, the sensitivity of the 
:'OR" function is n, because for its "most sensitive input", (0 ,0 , . . . , 0 ) ,  the 
value of OR changes from 0 to 1 if we exchange any of the input zeros by 1. 
Clearly, bs(f)  k S( f ) .  Is it true that there is a polynomial relation between 
the sensitivity and the block sensitivity (say, S2(f )  >_ bs(f))? 
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The second question was asked recently by Lance Fortnow: What if we 
express f as a rational function (p(x)/q(x)) rather than as a polynomial (p 
and q are multivariate polynomials and we can take them to be multilinear). 
Can max(deg(p), deg(q)) be much less than deg(f)? Again, does a polynomial 
relation hold between deg(f) and max(deg(p), deg(q))? An answer would have 
interesting applications in structural complexity theory. 

The third question is related to the degree of symmetric Boolean functions. 
Suppose that  f is a symmetric Boolean function, but not identically zero or 
one. Give a lower bound on deg(f) in terlns of the number of variables, n~ tt 
is easy co see that  n/2 is always a lower bound, but apparently better bounds 
can be obtained. Recently, J. yon zur Gathen and Jim Roche [7] showed that  
if the number of variables, n, is a prime minus 1, then deg(f) = n. It is easy to 
construct symmetric functions for any odd n such that  deg(f)  = n - L in [7] 
it is shown that  there are infinitely many symmetric nontrivial f ' s  such that  
deg(f)  = n - 3, and the authors conjecture that  n - 3 is a general }ower bound. 
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