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Abstract

For each language L ⊆ 2∗ and non-zero monotonic function t ∶ N → N,
we define a language t∗L ⊆ 2∗ depending only on L and t. We then prove
that a language L lies in NL/poly if and only if there exists a polynomially
bounded t (as above), such that the projections (t ∗L) ∩ 2n are accepted
by nondeterministic finite automata of size polynomial in n. Therefore,
proving super-polynomial lower bounds for unrestricted nondeterminis-
tic branching programs is equivalent to proving super-polynomial lower
bounds for oblivious read-once nondeterministic branching programs i.e.
nondeterministic finite automata.

1 Introduction

In this paper we characterise the non-uniform complexity class NL/poly in terms
of nondeterministic finite automata. Recall that NL/poly consists of those lan-
guages accepted by non-uniform logspace-bounded nondeterministic Turing ma-
chines with polynomial advice [5]. It is known to coincide with those languages
L ⊆ 2∗ whose projections Ln = L∩2n are accepted by a sequence of nondetermin-
istic branching programs (nbps) of size polynomial in n [8, 2]. We cannot simply
replace nbps by nondeterministic finite automata (nfas) in the previous state-
ment, since the latter correspond to very restricted nondeterministic branching
programs i.e. oblivious read-once nbps. For example, an nfa accepting Ln may
only make n steps before terminating, and this lack of time very often forces its
width to become exponential in n, since it must ‘store’ potentially exponentially
many different computational paths.

To counter this problem, we use simple models of time i.e. non-zero mono-
tonic functions t ∶ N→ N. Then for each n, d ≥ 0 we define:

d ⋅Ln ∶= {wd ∶ w ∈ Ln} ⊆ 2nd t ∗L ∶= ⋃
n∈N

t(n) ⋅Ln ⊆ 2∗
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The finite language t(n) ⋅ Ln consists of all t(n)-powers of words from Ln and

the finite language t(n) ⋅Ln ⊆ 2nt(n) denotes its relative complement. Regarding
t(n) ⋅Ln, nfas accepting this language have depth n ⋅ t(n) which provides them
with extra time in which to work. Regarding t ∗L, the reason why we define it
in terms of the relative complements can be explained as follows.

1. It is well-known that the Immerman-Szelepcsényi theorem [4, 10] implies
nondeterministic branching programs can be complemented with only a
polynomial blow-up [8, 2]. In particular, given small nbps Bn for Ln

we can construct small nbps B′n for the relative complements Ln ⊆ 2n.
Define t(n) = d(B′n) to be the depth of these nbps, where one may assume
t ∶ N→ N is non-zero and monotonic (else add suitable dummy paths).

2. Crucially, given small nondeterministic branching programs B′n for Ln,

one can construct small nfas accepting the language t(n) ⋅Ln. For each
n ∈ N, the construction is performed in two steps: (i) translate B′n into an
nfa by replacing each edge by n suitable edges, (ii) put it in parallel with

a polynomially sized nfa accepting t(n) ⋅ 2n i.e. all those words of length
n ⋅ t(n) that are not t(n)-powers.

Let nfa(poly) contain those languages L ⊆ 2∗ such that there exist poly-size
nfas accepting the projections Ln. Then we can use the above argument to
prove half of our main result.

Theorem. L ∈ NL/poly if and only if there exists some polynomially bounded
non-zero monotonic t ∶ N→ N such that t ∗L ∈ nfa(poly).

This is equivalent to Theorem 4.3 below, which characterises languages ac-
cepted by poly-size nondeterministic branching programs, these being precisely
the languages in NL/poly as remarked above. The converse direction starts with
a sequence of poly-size nfas accepting the projections (t ∗ L)n. One translates
each nfa into a small nbp accepting Ln by (i) viewing nfas as special nbps and
constructing their complement, (ii) identifying variables in a suitable manner.

The rest of this paper is devoted to making this proof outline precise. How-
ever we first provide some motivation and suggestions for future work.

Recently there has been renewed interest in the construction of state-minimal
nfas accepting regular languages [3, 9, 11, 1, 6, 7]. Of course, every language
L ⊆ 2n is finite and hence regular. In turns out that any particular regular
language L has associated ‘canonical’ nondeterministic automata, see [6]. In
fact there is one for each locally finite variety containing a two element algebra
e.g. boolean algebras yield L’s átomaton [1], join-semilattices yield L’s canonical
residual nfa [3, 7], and vector spaces over Z2 yield L’s minimal xor nfa [11],
the latter being oblivious read-once nbps with the parity acceptance condition.
Various conditions are known on L such that the respective canonical nfa is
state-minimal. For example: the result proved in [9] yields conditions under
which the átomaton is state-minimal, and minimal xor nfas are always state-
minimal amongst xor nfas. Also, it was recently proved in [7] that if the closure
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of L’s left derivatives under unions forms a distributive lattice (i.e. its underlying
inclusion-ordered poset does), then the canonical residual nfa is state-minimal.

Our main result clearly motivates the search for state-minimal nfas. Indeed,
since poly-size nfas accepting t(n) ⋅Ln exist iff state-minimal nfas are poly-size,
it follows that:

L ∈ NL/poly iff there exists a non-zero monotonic t ∈ nO(1) such that

state-minimal nfas for t(n) ⋅Ln are of size polynomial in n.

Furthermore, the canonical nfa constructions now induce canonical nondeter-
ministic branching programs, so if they are also ‘small’ they provide an automatic
way of constructing small (non-uniform) algorithms.

We finish with a potentially interesting observation. By our main result,
proving super-polynomial lower bounds for nbps on an explicit language L ⊆ 2∗

is equivalent to proving super-polynomial lower bounds on the size of nfas ac-
cepting nk∗L, for each k ≥ 0. The latter are oblivious read-once nbps parametric
in n and k, so perhaps this open problem has been reduced to an easier one.

2 Nondeterministic Branching Programs

In this section we define nondeterministic branching programs, providing com-
parisons and a normal form. We first fix some notational conventions.

Notation 2.1. Let 2 = {0,1} be the booleans and N = {0,1,2, . . .} be the
set of natural numbers. For any language L ⊆ 2∗ let L̃ = 2∗ ∖ L denote its
complement, and for any finite language L ⊆ 2n write L = 2n ∖L for its relative
complement. Given any word w ∈ 2n and 1 ≤ i ≤ n let wi ∈ 2 be the ith letter of
w. For any d ∈ N let wd = w . . .w be the d-fold composition. Finally, fix a set
Xn = {x1, . . . , xn} of n variables for each natural n ∈ N.

Definition 2.2. (a) A nondeterministic branching program (nbp) over n vari-
ables is a quadruple B = (G,s, θ, τ) consisting of:

(i) a finite directed multigraph G = (V,E);
(ii) a source node s ∈ V ;

(iii) a node labelling i.e. a function θ ∶ V →Xn∪2 where every node labelled
with 0 or 1 is a sink (has out-degree 0);

(iv) an edge labelling i.e. a function τ ∶ E → 2.

We use the notation (u∥l) bÐ→ (v∥m) to indicate that node u has label l,
node v has label m, and there is an edge from u to v with label b.

(b) A deterministic branching program (dbp) is an nbp whose variable-labelled
nodes have degree 2, where one outgoing edge is labelled 0, the other by 1.

(c) The size s(B) of B is its number of nodes. For acyclic B, its depth d(B) is
the number of edges of any longest directed path starting at the source.
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(d) A word w = w1 . . .wn ∈ 2n is accepted by an nbp B if there exists some path:

(s∥xk0)
b0Ð→ (v1∥xk1)

b1Ð→ ⋯ bm−2ÐÐÐ→ (vm−1∥xkm−1)
bm−1ÐÐÐ→ (vm∥1)

consistent with w, i.e. bi = wki for every 0 ≤ i < m. The language LB ⊆ 2n

of B is the set of all words accepted by B.

Remark 2.3. Many authors make additional assumptions on the structure of
(nondeterministic) branching programs, e.g. that the graph is acyclic and every
node is reachable from the source. These restrictions emerge in Lemma 2.9.

Example 2.4. Here is an nbp B = (G,s, θ, τ) for n = 4:

s∥x4
0

yy
1

%%
v1∥x2

0 ��
0

%%

v2∥x3
0

yy 1��
v3∥x4

0 �� 1 %%

v4∥x2

0,1��

v5∥x1

0tt0∥0 1∥1

Then B accepts the language:

LB = {0000,1000,0010,1010,0001,0101,1001,1101,0011,0111}

i.e. the satisfying assignments of (x̄4∧ x̄2)∨(x4∧(x̄3∨(x3∧ x̄1))). For example,

1010 is accepted via the path (s∥x4)
0Ð→ (v1∥x2)

0Ð→ (v4∥x2)
0Ð→ (1∥1).

Remark 2.5. Nbps are closely related to switching-and-rectifier networks (srns)
[8]. An srn S = (G,s, t, µ) is a finite directed multigraph G = (V,E) equipped
with two vertices s, t ∈ V and a partial edge-labelling µ ∶ E ⇀ Xn × 2. A word
w ∈ 2n is accepted iff there exists a directed path from s to t such that for each
label (xi, b) we have wi = b. Define the size s(S) of an srn S to be the number
of nodes, although it is more standard to consider the number of labelled edges.

Every nbp B has an equivalent srn S with at most one more node. Every
srn S has an equivalent nbp B such that s(B) ≤ 1 + n ⋅ s(S). By ‘equivalent’ we
mean they accept the same language. The constructions resemble the translation
between Moore and Mealy machines, where we may assume n > 0.

(a) Given an nbp B = (G,s, θ, τ) one can assume it has exactly one 1-labelled
node 1 (else introduce a new 1-labelled node 1 and merge 1-labelled nodes).
Then an equivalent srn S is obtained by labelling each edge (u, v) in G by
(θ(u), τ(u, v)) and requiring s/1 to be the source/target node, respectively.
Therefore s(S) ≤ 1 + s(B).

(b) Given any srn S = (G,s, t, µ) we may assume that:

1. t is a sink, else add a new target t′ and unlabelled edge t→ t′.
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2. Any two labelled edges with the same source are labelled by the same
variable xi i.e. they have labels (xi, bj) for j = 1,2. One can force this
by adding unlabelled edges to ‘dummy’ nodes, used as the source of
conflicting edges. At most (n − 1) ⋅ s(S) new nodes are required.

3. All edges are labelled, else replace every unlabelled edge (u, v) by two
parallel edges (u, v), one labelled by (x1,0) and one labelled by (x1,1).

Then S and S ′ accept the same language and s(S ′) ≤ 1 + n ⋅ s(S). We
obtain B from S ′ as follows. Replace each (xi, b)-labelled edge (u, v) by the
b-labelled edge (u, v) and set θ(u) = xi (well-defined by (2)). Finally label
θ(t) = 1 and θ(v) = 0 for each sink v ≠ t, and let s be the source. Then B
accepts the same language as S, and s(B) = s(S ′) ≤ 1 + n ⋅ s(S).

We now define a ‘canonical form’ for nondeterministic branching programs.

Definition 2.6. An nbp B = (G,s, θ, τ) is called stratified if

(1) for any pair e ≠ e′ of parallel edges, one has τ(e) ≠ τ(e′);

(2) G is acyclic;

(3) every node is reachable from s;

(4) all sinks are labelled by 0 or 1;

(5) every path from s to a sink has length d(B).

Remark 2.7. Assuming that (3) holds, the conditions (2) and (5) are equivalent
to the existence of a (necessarily unique) partition V = V0 ∪V1 ∪ . . .∪Vd(B) such
that V0 = {s}, all sinks are contained in Vd(B), and every edge of B goes from Vi
to Vi+1 for some 0 ≤ i < d(B). In fact, choose Vi to be the nodes reachable from
s via a path of length i.

Example 2.8. The nbp in Example 2.4 is stratified.

Lemma 2.9. Every nbp B has an equivalent stratified nbp of size O(s(B)4).

Proof. For 1 ≤ k ≤ 5, we show that every nbp B = (G = (V,E), s, θ, τ) satisfying
the first k − 1 conditions of Definition 2.6 can be turned into an equivalent nbp
satisfying the first k conditions.

k = 1: Whenever an nbp B has parallel edges with the same label, delete all
but one of them. This yields an equivalent nbp satisfying (1).

k = 2: If B satisfies (1), construct the nbp B′ = ((V ′,E′), s′, θ′, τ ′) where:

V ′ = V × {0, . . . , s(B)} E′ = {((u, i), (v, i + 1)) ∶ 0 ≤ i < s(B), (u, v) ∈ E}
s′ = (s,0) θ′(v, i) = θ(v) τ ′((u, i), (v, i + 1)) = τ(u, v)
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Clearly B′ satisfies (1) and (2). Furthermore B′ is equivalent to B: if w ∈ LB
then there exists a w-consistent path (s∥xk0)

b0Ð→ (v1∥xk1)
b1Ð→ ⋯ bm−1ÐÐÐ→ (vm∥1) in

B of length m ≤ s(B), which immediately yields the w-consistent path:

((s,0)∥xk0)
b0Ð→ ((v1,1)∥xk1)

b1Ð→ ⋯ bm−1ÐÐÐ→ ((vm,m)∥1)

in B′. This shows LB ⊆ LB′ and the reverse inclusion is proved analogously.

k = 3: Given an nbp satisfying (1) and (2), restrict to those nodes reachable
from the source via directed paths.

k = 4: Now assume that B satisfies (1)-(3). Then relabelling all variable-labelled
sinks with 0 yields an equivalent nbp satisfying (1)-(4).

k = 5: We may assume that every sink is reachable from s via a path of length
d(B), else merge sinks with the same label, so that the resulting nbp has at
most two sinks, and add dummy 0,1-labelled paths of length d(B) from s to
each sink. In view of Remark 2.7, define the partition:

Vi = {v ∈ V ∶ i is the length of any longest directed path s
∗Ð→ v}

for each 0 ≤ i ≤ d(B). Clearly V0 = {s} and Vd(B) contains all sinks. Furthermore,
every edge goes from Vi to Vj for some i < j. By replacing any such edge by a
0,1-labelled path of length j − i, one makes sure that every edge goes from V ′

i

to V ′
i+1 for some i < d(B). By Remark 2.7, the resulting nbp satisfies (1)-(5).

Observe that in steps 2 and 5, the size of the constructed nbp is at most
quadratic in the size of the given one, while in the other steps the size does not
increase. Therefore, starting from any nbp B we have shown how to construct
an equivalent stratified nbp of size O(s(B)4)

3 From Stratified Nbps to Nfas

In this section we associate to each stratified nbp B a nondeterministic finite
automaton NB of size polynomial in s(B). Although NB does not accept the
same language as B, they are closely related. We start by recalling the classical
notion of a nondeterministic finite automaton.

Definition 3.1. A nondeterministic finite automaton (nfa) is a tuple N =
(Z,Rb, F, I) where Z is a finite set of states, Rb ⊆ Z×Z is a relation representing
b-transitions (one for each b ∈ 2), F ⊆ Z is the set of final states, and I ⊆ Z is the
set of initial states. The size s(N) of N is the number of states, and the depth
d(N) of N is the length of any longest path starting in an initial state (defined
for acyclic nfas). N accepts the language L(N) ⊆ 2∗ in the usual manner:
w ∈ L(N) iff there exists a w-path from some initial state to some final state.
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Remark 3.2. In analogy to Definition 2.6, we call an nfa N stratified if (i)
N is acyclic and reachable, (ii) N has exactly one initial state, (iii) a state is
final iff it is a sink, and (iv) all paths from the initial state to a final state
have the same length d(N). It is easy to see that every nfa accepting a finite
language L ⊆ 2n can be turned into an equivalent stratified nfa with no more
states. Moreover, a stratified nfa can be viewed as a stratified nbp: label final
states with 1, label any nonfinal state with xi+1 if it is reachable via any word
of length i, and choose the initial state as the source node. The resulting nbp
is an instance of an oblivious read-once nbp: all paths from the source to a sink
read each variable exactly once and in the same order.

Definition 3.3. Given a stratified nbp B = (G,s, θ, τ) over n variables, the nfa
NB is constructed as follows:

(1) Replace every edge (u∥xi)
bÐ→ (v∥l) of B by a path of length n from u to v,

where the i-th transition has label b and all others have labels 0 and 1.

u○
0,1Ð→,

0,1Ð→ ⋯ 0,1Ð→,
bÐ→,

0,1Ð→ ⋯ 0,1Ð→,
0,1Ð→ v○

(2) The source s is the only initial state of NB, and a state is final if and only
if it is labelled with 1.

Example 3.4. For the nbp B of Example 2.4 we obtain the following nfa NB:

0,1
//

0,1
// 1 // v2

0,1
//

0,1 !!

0,1
// 1 //

0,1
// v5

0 //
0,1
//

0,1
//

0,1

��
0,1
//

0
//

0,1 ��

0 //
0,1
//

0,1
��

// s

0,1

GG

0,1

��

v4

0,1
??

0,1 ��

1

0 //
0,1
//

0,1
??

1 //
0,1
//

0,1 ??

0,1
//

0,1
//

0
// v1

0,1
//

0,1
==

0
//

0,1
//

0,1
// v3

0,1
//

0,1
//

0,1
//

0
//

1

KK

0

Lemma 3.7 below describes various relevant properties of NB. But first we
need a simple (yet crucial) definition.

Definition 3.5. For each n, d ∈ N and finite language L ⊆ 2n define:

d ⋅L ∶= {wd ∶ w ∈ L} ⊆ 2nd.

i.e. we take collection of all d-powers of words from L.

Remark 3.6. It follows that d ⋅L = d ⋅ L ∪ d ⋅ 2n for any n, d ≥ 0 and L ⊆ 2n.
That is, this relative complement consists of (a) those d-powered words wd where
w ∉ L, and (b) those words in 2nd which are not d-powers.

Lemma 3.7. For any stratified nbp B over n variables, we have:

(a) s(NB) = O(n ⋅ s(B)2);



8

(b) d(NB) = n ⋅ d(B);

(c) L(NB) ⊆ 2n⋅d(B);

(d) d(B) ⋅LB = L(NB)∩ (d(B) ⋅2n). That is, the d(B)-powers of words accepted
by B are precisely those d(B)-powered words that NB accepts.

Proof. (a)-(c) follow directly from the construction of NB.
(d) Let d = d(B). To prove ‘⊇’, suppose w ∈ LB so there exists some path:

s = (v0∥xk0)
b0Ð→ (v1∥xk1)

b1Ð→ . . .
bd−1ÐÐ→ (1∥1) (∗)

in B with bi = wki for all i. This yields accepting paths of the form

(s = v0
c0,1ÐÐ→ . . .

c0,nÐÐ→)(v1
c1,1ÐÐ→ . . .

c1,nÐÐ→) . . . (vd−1
cd−1,0ÐÐÐ→ . . .

cd−1,nÐÐÐ→ 1) (∗∗)

in NB where ci,j = bi for j = ki, and ci,j ∈ 2 is arbitrary otherwise. In particular,
choosing ci,j = wj for all i yields an accepting path for the word wd. Hence
wd ∈ L(NB) ∩ d ⋅ 2n.

Conversely, any accepting path in NB is induced by some path (∗) in B and
has the form (∗∗). If a word wd (w ∈ 2n) is accepted in NB via (∗∗), we have
bi = ci,ki = wki for all i, so the path (∗) in B is consistent with w. It follows that
w ∈ LB, which proves ‘⊆’.

4 Characterisation of NL/poly
We are now ready to prove the announced characterisation of NL/poly via nonde-
terministic finite automata. We first introduce the relevant complexity classes.

Notation 4.1. For any language L ⊆ 2∗ and n ≥ 0, let Ln ∶= L ∩ 2n.

Definition 4.2. The complexity class nbp(poly) contains those L ⊆ 2∗ such
that each Ln is accepted by some nbp Bn, where s(Bn) ∈ nO(1) i.e. their size
is bounded polynomially in n. The complexity classes dbp(poly) and nfa(poly)
are defined analogously: replace ‘nbp’ by ‘dbp’ or ‘nfa’, respectively.

The following relationships are well-known:

dbp(poly) = L/poly nbp(poly) = NL/poly

where L/poly (resp. NL/poly) consists of those languages accepted by some single
log-space bounded deterministic (resp. nondeterministic) Turing machine with
‘polynomial advice’ [5]. These results are mentioned in [8], where our dbps
correspond to ‘BPs’ and their notion of size agrees up to a linear factor. On
the other hand, although our nbps are not quite the same as the switching-and-
rectifier networks used in [8] (their size is the number of labelled edges), the
above correspondence nevertheless holds, see [2, Theorem 1].
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For any language L ⊆ 2∗ and non-zero monotonic function t ∶ N→ N, define:

t ∗L ∶= ⋃
n≥0

t(n) ⋅Ln ⊆ 2∗

Recall that a function t ∶ N → N is monotonic if m ≤ n implies t(m) ≤ t(n). We
consider non-zero monotonic functions t ∶ N → N to ensure that n ↦ n ⋅ t(n) is
injective, so that t ∗L is actually a disjoint union.

Theorem 4.3. L ∈ nbp(poly) if and only if there exists a poly-bounded non-zero
monotonic function t ∶ N→ N such that t ∗L ∈ nfa(poly).

The proof uses the following two results. The first is a corollary of the
Immerman-Szelepcsényi theorem, as mentioned in [8].

Theorem 4.4 ([4, 10]). The class nbp(poly) is closed under complement:

L ∈ nbp(poly) iff L̃ ∈ nbp(poly)

for any language L ⊆ 2∗.

The second result provides poly-size nfas for certain finite languages.

Lemma 4.5. For all n, d ≥ 0, there exists an nfa with O(n2d3) states accepting
the language d ⋅ 2n ⊆ 2nd.

Proof. d ⋅ 2n consists of all words w ∈ 2nd such that there exists 1 ≤ i < j ≤ n ⋅ d
where (i) i = j mod n, and (ii) wi ≠ wj . The following nfa with O(nd) states
accepts all such words for a fixed pair (i, j):

xi+1
0,1
// . . .

0,1
// xj

0

!!
// y1

0,1
// . . .

0,1
// yi

1
==

0 !!

yj+1
0,1
// . . .

0,1
// ynd+1

zi+1
0,1
// . . .

0,1
// zj

1

==

Taking the disjoint union of these nfas yields an nfa accepting d ⋅ 2n. Since there
are n(d

2
) = O(nd2) pairs (i, j) satisfying (i), this nfa has O(n2d3) states.

Remark 4.6. On the other hand, poly-size nfas do not exist for the relative
complements d ⋅2n ⊆ 2nd. In fact, a state-minimal nfa for d ⋅2n is obtained from
its state-minimal dfa by deleting the state accepting the empty language. The
latter is exponential in n for any fixed d > 1. To see this, one can use the fact
that d ⋅ 2n defines a linear code i.e. a linear subspace of Znd

2 .

Proof of Theorem 4.3. Let L ∈ nbp(poly). Then also L̃ ∈ nbp(poly) by Theorem
4.4, so there exists a family of nbps Bn (n ≥ 0) such that Bn accepts (L̃)n = Ln

and sn ∶= s(Bn) is polynomially bounded in n. By Lemma 2.9, we may assume
that the nbps Bn are stratified. Moreover, we assume that the depths dn ∶=



10

d(Bn) are non-zero and grow monotonically (otherwise add dummy paths). Let
Nn ∶= NBn be the nfa associated to Bn (see Definition 3.3). Then:

dn ⋅Ln = dn ⋅Ln ∪ dn ⋅ 2n see Remark 3.6

= dn ⋅LBn ∪ dn ⋅ 2n since LBn = Ln

= (L(Nn) ∩ dn ⋅ 2n) ∪ dn ⋅ 2n by Lemma 3.7(d)
= (L(Nn) ∪ dn ⋅ 2n) ∩ (dn ⋅ 2n ∪ dn ⋅ 2n)
= L(Nn) ∪ dn ⋅ 2n

By Lemma 3.7, Nn has O(ns2n) states. Moreover, by Lemma 4.5 there exists
an nfa N ′

n accepting dn ⋅ 2n with O(n2d3n) states, this being polynomial in n
because dn ≤ sn. Taking the disjoint union of the nfas Nn and N ′

n yields a
polynomial-sized nfa N ′′

n for L(Nn) ∪ dn ⋅ 2n = dn ⋅Ln.
Define the non-zero monotonic function t ∶ N → N as t(n) = dn. Then we

obtain a polynomial-sized family of nfas Mk accepting (t ∗ L)k as follows. If
k = ndn for some n (unique because t is non-zero and monotonic), we have
(t ∗ L)k = dn ⋅Ln, so take Mk = N ′′

n . The size of N ′′
n is polynomial in n, hence

also in k = ndn. If k is not of the form ndn for some n then (t ∗L)k = ∅, so let
Mk be a one-state nfa accepting ∅. This proves t ∗L ∈ nfa(poly).

For the converse, suppose we have t∗L ∈ nfa(poly) for some non-zero mono-
tonic function t ∶ N→ N. Then there exists a family of polynomial-sized nfas Nk

(k ≥ 0) accepting (t ∗ L)k. By Remark 3.2, we can turn Nk into an equivalent
stratified (oblivious read-once) nbp Bk of the same size. Then by Theorem 4.4,
there also exists a family of polynomial-sized nbps B′k accepting (t̃ ∗L)k. If

k = n ⋅ t(n) for some n (necessarily unique), then (t̃ ∗L)k = t(n) ⋅ Ln and the
size of B′k is polynomial in n, since it is polynomial in k = n ⋅ t(n) and t(n) is
polynomial in n. The nbp B′k has n ⋅ t(n) variables x1, . . . , xn⋅t(n), and replacing
all node labels xm⋅n+i (where 0 ≤m < t(n) and 1 ≤ i ≤ n) by xi yields an nbp B′′n
accepting Ln whose size is polynomial in n. It follows that L ∈ nbp(poly).

Note 4.7. Consequently, for any language L ∈ dbp(poly) there exists a non-zero
monotonic t ∈ nO(1) such that t∗L ∈ nfa(poly). However one can also prove this
without using the Immerman-Szelepcsényi theorem i.e. without Theorem 4.4.
For suppose L ∈ dbp(poly), so we have poly-sized dbp’s B′n accepting Ln with
depth dn = d(B′n). Then by Lemma 3.7(d) we have L(NB′n)∩(dn ⋅2n) = dn ⋅LB′n ,
so taking the relative complement we obtain:

dn ⋅LB′n = L(NB′n) ∪ dn ⋅ 2n

By Lemma 4.5 a small nfa accepting dn ⋅ 2n exists, but there is also a small nfa
accepting L(NB′n): (i) we have a small nfa accepting L(NB′n) via Definition 3.3,
and (ii) the latter nfa is a partial deterministic automaton since we started with
a dbp. To accept the complement one makes 1-labelled states non-final and
0-labelled states final. Since LB′n = Ln the rest of the proof proceeds as before.
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5 Encoding Unreachability

To illustrate our constructions we start by considering reachability : given a finite
directed graph (V,E) and vertices s, t ∈ V , decide whether there exists a directed
path from s to t. Since reachability is in NL (in fact NL-complete), it necessarily
lies in NL/poly and therefore has poly-size nondeterministic branching programs.
Given Vk = {v1, . . . , vk} take the lexicographic ordering on [k]× [k] where [k] =
{1, . . . , k}. Next, consider the finite language:

W (k) = {w ∈ 2k2

∶ there is a directed path v1 →∗ vk in (Vk,Ew)}

where if w = e(1,1) . . . e(k,k) then Ew = {(vi, vj) ∈ (Vk)2 ∶ e(i,j) = 1}, so that w
is the adjacency matrix of the graph (Vk,Ew). Then W (k) is accepted by a
stratified nbp Bk of size polynomial in k, shown below in the case where k = 4:

x(1,1)
0,1

xx 0,1��
0,1

&&
x(1,2)

1��
1

xx

x(1,4)
1��

x(1,3)
1��

1

&&
x(2,3)

1 &&

x(2,4)
1

&&

x(1,4)
0,1��

x(3,4)

1xx

x(3,2)

1xx
x(3,4)

1 &&

x(1,4)
0,1��

x(2,4)

1xx
1

B4 has depth d(B4) = 4 and is defined over n = k2 = 16 variables. It induces the
nfa N = NB4 where: (i) edges labelled by 0,1 are replaced by 16 such edges, (ii)

edges labelled by 1 are replaced by 16 edges ( 0,1Ð→)r1 1Ð→ ( 0,1Ð→)r2 in a suitable
manner. Next, recall the language 4 ⋅ 2n ⊆ 2n⋅4 = 264. It is accepted by the
pointed nfa N ′ obtained by taking the disjoint union of 16 ⋅ (4

2
) = 96 nfas i.e. for

each 1 ≤ i < j ≤ 64 with i = j mod n, one needs an nfa accepting all w ∈ 264 such
that wi ≠ wj . Let N ′′ be the disjoint union of N and N ′. Then:

L(N ′′) = L(N) ∪ 4 ⋅ 2n = L(N) ∩ 4 ⋅ 2n = {w4 ∈ 264 ∶ w ∈W (4)}

because w4 is not accepted by N iff w ∉W (4). Then we have encoded unreach-
ability in the nfa N ′′, which may be understood in two ways:

1. By Remark 3.2 we can view N ′′ as an oblivious read-once nbp and apply
Theorem 4.4 to obtain an nbp accepting L(N ′′) with only a poly-sized
blow up. Then we can restrict from 64 to 16 variables as in the proof of
Theorem 4.3, yielding an nbp accepting W (4).

2. That unreachability has been ‘encoded’ can also be seen directly. Make
final states non-final in N ′′, and add to each initial state q the structure:

q
0,1
// q1

0,1
// ⋯

0,1
// q64

0,1
// q65

0,1
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where the qi are new states. The resulting nfa accepts L(N ′′) via universal
acceptance. Thus w ∈ 216 represents a directed graph with no directed
path from v1 to v4 iff w4 is accepted by this universal machine.
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