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Abstract—Earlier, the author proposed rather general approaches and methods for obtaining high
accuracy and close to high accuracy asymptotic bounds on Shannon’s function for complexity in
various classes of circuits. Most of the results obtained with their aid were published in a number
of papers, except perhaps for the close to the high accuracy asymptotic bounds on Shannon’s
function for the complexity of circuits without restrictions on their structure. This paper fills this
gap and presents a modified and simplified version of one of the above-mentioned methods, which,
nevertheless, allows obtaining the bounds with the required accuracy.
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1. BASIC DEFINITIONS AND DENOTATIONS, FORMULATIONS OF RESULTS

Suppose that B = {0, 1}, Bn (where n = 1, 2, . . .) is the unit n-dimensional cube,1 that is, the
set of collections of lengths n of zeros and units, with the ith digit of which the Boolean variable xi,
i = 1, . . . , n, is related and P2(n) is the set of functions of the algebra of logic, in other words, of Boolean
functions depending on these variables and mapping Bn to B. Below, by default, under the function we
understand the function of algebra of logic, and under the variable we understand the Boolean variable.

We consider the formulas and circuits of functional elements over an arbitrary complete basis
B = {E1, . . . , Eb}, where an element Ei, i = 1, . . . , b, implements the function φi(x1, . . . , xki), which
in the case ki � 2 significantly depends on all its variables and whose complexity is characterized by
a positive real number Li, which is called the weight of the element Ei. For an element Ei, i ∈ [1, b],

such that ki � 2, we also define its reduced weight ρi, equal to the relation
Li

ki − 1
, and introduce the

value ρB = min
ki�2

ρi, which is considered the reduced weight of the basis B. By default, the circuit is the

circuit of functional elements in the basis B, and, as usual, the formulas are considered the special case
of circuits. In the standard way we determine the complexity L(Σ) of the circuit (formula) Σ as the sum
of its elements.

Without loss in generality, we assume that in the basis B there exists at least one so called amplifying
element Ei, for which ki = 1 and φi = x1. Here, under the amplifying circuit we understand the circuit
in which the outputs of the elements with the reduced weight ρB are not branched, that is, the circuit
with zeroth depth of branching. Note that a formula is an amplifying circuit.

*E-mail: lozhkin@cs.msu.ru
1 The concepts that are not defined in this work can be found, e.g., in [1–3].
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Consider the classes UΦ
B , UC

B , and UAC
B , which consist, respectively, of formulas, circuits, and

amplifying circuits in the basis B and are complete in the sense that we can implement any function in
each of them. Moreover, it is clear that UΦ

B ⊂ UAC
B ⊂ UC

B . For any of these classes of the form UA
B and an

arbitrary function f , in the common way we determin its complexity LA
B(f) as the minimal complexity

of circuits of UA
B implementing f , and, then, for a natural number n, n = 1, 2, . . ., we introduce the

corresponding Shannon function

LA
B(n) = max

f∈P2(n)
LA

B(f).

We recall that the asymptotic behavior of Shannon’s functions LΦ
B(n) and LC

B (n) was established by
Lupanov (see [4, 5] and also [2]); moreover, from the results obtained by him it follows that2

LC
B(n) ∼ LAC

B (n) ∼ ρB
2n

n
, LΦ

B(n) ∼ ρB
2n

log n
. (1)

In this case it appeared that the relative error of bounds of Shannon’s functions in (1) equal to the
ratio of the difference between the upper and lower bounds of Shannon’s function LA

B(n) to itself is

O

(
LA

B(n)

2n
log

(
2n

LA
B(n)

))
, that is, is O

(
log log n

log n

)
for the class UΦ

B and O

(
log n

n

)
for the classes

UC
B , UAC

B .

In work [6], for Shannon’s functions UΦ
B and UAC

B the high accuracy asymptotic bounds were

first obtained, that is, the bounds with the relative error O

(
1

log n

)
= O

(
LΦ

B(n)

2n

)
and O

(
1

n

)
=

O

(
LAC

B (n)

2n

)
, respectively. It was proved that following equalities are true3

LΦ
B(n) = ρB

2n

log n

(
1 +

æB log log n±O(1)

log n

)
, (2)

LAC
B (n) = ρB

2n

n

(
1 +

(2 + æB) log n±O(1)

n

)
, (3)

where æB = 1 if all elements of the basis B with the reduced weight ρB implements either only
disjunctions of variables, or conjunctions of variables, or linear functions, and æB = 0 in other cases.

In work [6–10] the authors considered another examples of classes of circuits in which for the corre-
sponding complexity Shannon’s functions it was succeeded to obtaining the high accuracy asymptotic
bounds.

Recall that in [6] the following upper bound is given without proof

LC
B(n) � ρB

2n

n

(
1 +

(1 + æB) log n+ log log n+O(1)

n

)
, (4)

which was proved in [7, Theorem 8]. Note that the upper bounds (4) are achieved on schemes with
the branching depth 1, that is, on schemes admitting the branching of output of the elements of the
reduced weight ρB, but not admitting the chains of length 2 of elements of the indicated form with
branching outputs. Here, it appeared (see [7, Lemma 22]) that bound (4) is the high accuracy bound
for the complexity of circuits of the given type.

2 All logarithms are taken to base 2 and the asymptotic equality a(n) ∼ d(n) of two functions of natural argument n,
n = 1, 2, . . ., occurs iff a(n) = (1 + o(1))d(n).

3 The presence in the right-hand side of equalities (2) and (3) of the term of the form ±a(n) means that for the left-hand side
of the corresponding equality the upper and lower bounds take place that are obtained from its right-hand side by replacing
the given term by the term |a(n)| and −|a(n)|, respectively.
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Note also, that the upper bound (4) in the case æB = 0 and (see, e.g., [6]) the lower bound

LC
B(n) � ρB

2n

n

(
1 +

log n−O(1)

n

)
(5)

can be considered the bounds of Shannon’s functions LC
B(n) close to the high accuracy asymptotic

bounds taking into account that their relative error is

o

(
log n

n

)
= o

(
LC

B(n)

2n
log

(
2n

LC
B(n)

))
, (6)

which is substantially lower than the relative error of the corresponding bounds (1).

Below in this work, we consider the circuits in the standard basis B0, which consists of elements E&,
E∨, E¬, EAC, having the weight 1 and implementing the functions x1 · x2, x1 ∨ x2, x1, x1, respectively.
Here, it is clear that the complexity functional L(Σ) of the circuit Σ is simply equal to the number of its
elements. The index of the basis B0 in the denotations of the above introduced complexity functionals
and the corresponding Shannon functions will be omitted.

The main result of the current work is a proof of the upper bound (4) for the basis B0 simpler than in
[7], that is, the proof of the next statement

Theorem. For all natural n, n = 1, 2, . . ., for Shannon’s function LC(n) the inequality

LC(n) � 2n

n

(
1 +

log n+ log log n+O(1)

n

)
(7)

is satisfied.

Note that the upper bound (7) and lower bound (5) have the relative error of form (6), that is, are the
bounds of Shannon’s function LC

B(n) close to the high accuracy asymptotic bounds.

2. UNIVERSAL SETS OF FUNCTIONS AND SELECTIVE PARTITIONS OF VARIABLES.
REPETITION-FREE FORMULAS WITH OPTIMAL COMPLEXITY AND BOUNDED

SELECTIVE ENTROPY

Recall that the main concepts and some results of [3, 6] related with the sets of functions universal
for a given function and their construction on the basis of special partitions of variables of this function.

For the collection σ = (σ1, . . . , σn) from Bn the number ν(σ) =
n∑

i=1
σi2

n−i prescribes its so called

lexicographic number. Under segment of the cube Bn we understand, as usual, such set of its
collections whose ν-numbers form the segment of integer numbers. The segment of even length
(power), which begins from the collection having an even number, we call even.

Following [3, 6], we say that the set of functions G ⊆ P2(m) is universal for the function
φ(y1, . . . , yp), or φ-universal set of order m if for any function g ∈ P2(m) there exist functions
g1, . . . , gp from G such that

φ(g1, . . . , gp) = g. (8)

In the case when equality (8) for an arbitrary function g from P2(m) and some functions g1, . . . , gp
from G is satisfied on some set of collections δ, δ ⊆ Bm, we say that the set G is φ-universal set (of
functions) of order m for sets of collections δ.

Note that the latter notion corresponds to the notion of φ-universal matrix of height |δ| from [6,
Sect. 4] if the rows of this matrix are in the one-to-one correspondence to the sets of the cube Bm

from the set δ and its columns are considered the columns of values of the functions from the set G on
the set of collections from δ.
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REFINED BOUNDS ON SHANNON’S FUNCTION 147

Suppose that a function φ is considerably dependent on all its variables Y = {y1, . . . , yp} and
D = (Y1, . . . , Yd) is the partition of the set Y into nonempty pairwise nonintersecting subsets Y1, . . . , Yd.
The partition D is called the selective partition of the variables of the function φ [6, Sect. 3] if for each
i, 1 � i � d and for any variable yj ∈ Yi there exist Boolean constants α

(j)
1 , . . . , α

(j)
i−1, α

(j)
i+1, . . . , , α

(j)
d ,

at the substitution of which instead of all variables from Y1, . . . , Yi−1, Yi+1, . . . , Yd, respectively, the
function φ turns into the function of the form yj ⊕ βj , where βj is another constant. Note that the
trivial partition of variables of the function φ into p components is selective.

The entropy of a partition D of a set Y into the components Y1, . . . , Yd is understood as the value

H(D) = − 1

|Y |

d∑
i=1

|Yi| log
|Yi|
Y

.

It appeared (see [6, Sect. 3]) that, using the selective partition D of the indicated type for the set of
variables Y of a function φ(y1, . . . , yp) having a “small” entropy H(D), we can construct a “good” set
of functions φ-universal for the given set of collections δ, δ ⊆ Bm. For this purpose, we need to take the
partition Δ = (δ1, . . . , δp) of the set δ related with the partition D of the set of variables Y of the function
φ as follows: the variable yi, i = 1, . . . , p, corresponds to the component δi, and for any k, k ∈ [1, d], for
any i such that yi ∈ Yk, the equality |δi| = sk is satisfied. Note that, in this case p1s1 + . . .+ pdsd = |δ|,
where pk = |Yk| for all k, k = 1, . . . , d.

On the basis of partitions D and Δ we can construct the so called standard set of functions G,
G ⊆ P2(m), φ-universal for the set of collections δ such that

G = G1 ∪ . . . ∪ Gd, |G| = 2s1 + . . .+ 2sd , (9)

where the set Gk consists of 2sk functions.
The matrix M corresponding to the set G consists of d vertical “bands” π1, . . . , πd having the lengths

2s1 , . . . , 2sd and related with the components Y1, . . . , Yd and with the sets G1, . . . ,Gd, respectively.
On the other side, the matrix M includes d “large” horizontal bands Π1, . . . ,Πd, having the heights
p1s1, . . . , pdsd and related with the components Y1, . . . , Yd, respectively. In this case the band Πi,
i = 1, . . . , d, is divided into pi main horizontal bands of local height si, related, as we have said above,
with the different variables from Yi and with the components of partition Δ corresponding to them and
giving the matrix in the intersection with the band πi whose columns are all collections of the cube
Bsi arranged by their increasing ν-numbers in the assumption that the top digits of the ν-numbers are
located at the top. Each of the remaining blocks of the matrix M lying at the intersection between one
vertical and one of the main horizontal bands is filled with the same constant of form α

(i)
j related with

the selectivity of partition D. We assume that all functions from G outside δ are 0. We call the number
s = max

1�i�d
si the maximal local height of the matrix M and set G.

The set of functions G and matrix M that are obtained from G and M when removing a part of
collections from the set δ and eliminating the corresponding rows of the matrix M and still are φ-
universal for the set of remaining collections (rows) are considered the result of applying the reduction
operation to G and M. We speak of evenness of the matrix M (set G) if the heights of all main horizontal
bands of M are even numbers (respectively, the components of the partition of Δ related with G are even
segments).

The results of [6, Sect. 4] imply the validity of the following statement.
Lemma 1. Suppose that δ is an even segment of a cube Bm and D = (Y1, . . . , Yd) is the selective

partition of a set of variables Y = {y1, . . . , yp} of a function φ(y1, . . . , yp). Then for any even s such
that s > log p and |δ| � p(s−H(D)), there exists an even (reduced) standard set of functions G

φ-universal for the set δ with the maximal local height s for which4

|G| � 2s+2, L(G) � 3|G| +O(d2m+ s
2 ). (10)

4 For a set of functions G, G ⊆ P2(m), by G we denote the system of functions of the form (g1, . . . , gλ), where λ = |G|,
composed of all distinct functions of the set G.

MOSCOW UNIVERSITY MATHEMATICS BULLETIN Vol. 77 No. 3 2022



148 LOZHKIN

Remark. The set G = G1 ∪ . . . ∪Gd is obtained as a result of reduction of the original set G of form
(9) for which, due to the lemma hypothesis, in choosing the even local height si, i = 1, . . . , d, from the

real segment of length 2 with the center
(
s− log p

pi
+ 1

)
, where pi = |Yi|, the relations are satsfied:

p1s1 + . . .+ pdsd � |δ| + 2p, pi2
s+2 � p|Gi| = p2si . (11)

Moreover, due to (11) the indicated reduction comes to the possible decrease by 2 of a part of local
heights and possible removal of 2 rows from some main horizontal bands of the matrix M related with
the set G.

It follows from [6, Sect. 3] that in the basis {E&, E∨} we can construct a sequence of repetition-
free formulas with increasing number of varaibles and bounded selective entropy of the functions they
implement.

Lemma 2. For any natural p in the basis {E&, E∨} there exists a repetition-free formula Φp

that implements the function φp(y1, . . . , yp) having the selective partition Dp of the set of all its
variables; moreover, 5

L(Φp) = p− 1, H(Dp) � e1.

3. SYNTHESIS OF AMPLIFYING CIRCUITS AND HIGH ACCURACY ASYMPTOTIC
UPPER BOUNDS ON SHANNON’S FUNCTION FOR THEIR COMPLEXITY

Using Lemmas 1 and 2, we can prove the following statement that provides (see [6]) the high
accuracy upper asymptotic bound on Shannon’s function LAC(n).

Lemma 3. For an arbitrary function f , f ∈ P2(n), there exists a circuit Σf , Σf ∈ UAC,
implementing it such that

L(Σf ) � 2n

n

(
1 +

2 log n+O(1)

n

)
. (12)

Proof. For constructing the circuit Σf , we select the natural parameters m, s, and p so that s is even
and

m < n, m+ e1 � s � 2m, p =

⌈
2m

s− e1

⌉
. (13)

By Lemma 2 we construct the formula Φ = Φp implementing the function φ = φp for which there
exists a selective partition of variables D such that H(D) � e1. Note that, due to (13) for a partition D
of the function φ the conditions of Lemma 1 are satisfied, that is, there exists a set G that is φ-universal
for the entire cube Bm and satisfies (10).

Let us divide the collection of variables (x1, . . . , xn) into the subcollections

x = (x1, . . . , xm), z = (z1, . . . , zn−m) = (xm+1, . . . , xn)

and consider the Shannon decomposition of the function f by the variables z

f(x, z) =
∨

σ∈Bn−m

Kσ(z)fσ(x), (14)

where for the collection σ = (σm+1, . . . , σn) the elementary conjunction Kσ(z) has the form x
σm+1

m+1 · . . . ·
xσn
n and fσ(x) = f(x, σ) is the so called remainding function of the function f .

Note that, representation (14) can be transformed using the so called standard multiplexor function
μq of order q of address variables x1, . . . , xq and informative variables y0, . . . , y2q−1 that can be defined
by the equation

μq(x1, . . . , xq, y0, . . . , y2q−1) =
∨

σ∈Bq

Kσ(x1, . . . , xq)yν(σ).

5 The letter e with different subscripts denotes some positive constants.
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Indeed, representation (14) is equivalent to the representation

f(x, z) = μn−m(z, f(0,...,0)(x), . . . , fσ(x), . . . , f(1,...,1)(x)). (15)

On the basis of representation (15) for the function f and representation (8), for each of its remainder
functions of type fσ, σ ∈ Bn−m, in the basis B̃0 = {E&, E∨, E¬} we construct the circuit Σ̃f that
implements f . We compose it of the following subcircuits:

(1) the subcircuit ΣG of variables x implementing the system of functions G;

(2) the subcircuit Σ̂ for each collection σ from Bn−m impelmenting the function fσ(x) presented in
the form (8), by means of the formula Φ whose input variables are connected to the outputsΣG according
to this representation;

(3) the subcircuit Σ̌ implementing the function μn−m(z, y0, . . . , y2n−m−1), the information input yσ,
σ ∈ Bn−m, which is connected, according to (14) and (15), to the output Σ̂, where the function fσ(x) is
implemented.

Inequalities (10), Lemma 2, and the known (see, e.g., [3]) bounds on the complexity of multiplexor
functions imply that

L(ΣG) � 3|G| +O(p · 2m+ s
2 ), L(Σ̂) = 2n−m(p − 1), L(Σ̌) � 3 · 2n−m, (16)

L(Σ̃f ) � 2n−m(p− 1) +O(p · 2m+ s
2 + 2s + 2n−m). (17)

To obtain the sought amplifying circuit Σf from the circuit Σ̃f , we need to pass through the amplifying
elements EAC both the “branching” outputs of hte “internal” elements of its subcircuits ΣG, Σ̌, and the
outputs of its subcircuit ΣG “branching” in Σ̃f . Here, for the complexity of a circuit Σ̃f bound (17) still
holds.

Choosing the parameter values so that

m = 	2 log n
 , s = 2

⌈
n− 2 log n

2

⌉
, p =

⌈
2m

s− e1

⌉

and proving that in this case for some n0 and any n, n � n0, conditions (13) are met, by substituting the
indicated values into (17), we obtain (12).

The lemma is proved.

4. METHOD FOR SYNTHESIS OF CIRCUITS THAT ALLOWS OBTAINING CLOSE TO
HIGH ACCURACY ASYMPTOTIC BOUNDS OF SHANNON’S FUNCTION FOR THEIR

COMPLEXITY

Before we proceed to the proof of the theorem, we outline the approach to synthesizing the circuits in
the class UC that allows obtaining the upper bound (7) instead of the upper bound (12).

This approach consists in perofrming the decomposition of functions and construction of the circuits
ΣG, Σ̂, similarly to the way it was done in proving Lemma 3, but not for all collections σ from Bn−m, but

for those of them for which ν(σ) < N = O

(
2n−m

log n

)
. The goal of this “partial” implementation of the

function f consists in the following: to implement the functions from the new “wider” universal set that
can be applied in implementation of remainder functions fσ(x) for the case ν(σ) � N at the outputs of
the certain part of elements used in the formulas of type F = Fp.

The validity of the theorem is implied by the following statement.
Lemma 4. For an arbitrary function f , f ∈ P2(n), there exists a scheme Σf , Σf ∈ UC,

implementing it such that

L(Σf ) � 2n

n

(
1 +

log n+ log log n+O(1)

n

)
. (18)
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Proof. Similarly to the proof of Lemma 3, for each p, p = 1, 2, . . ., by Lemma 2 we construct
the formula Φp(y1, . . . , yp) = Φ of complexity (p− 1) implementing the function φp(y1, . . . , yp) = φ
which has such a selective partition D = (Y1, . . . , Yd) of the set of its variables Y = {y1, . . . , yp} for
which |Yi| = pi for all i, i = 1, . . . , d, and H(D) = H(φ) � e1. Suppose that Y ′ = {y′1, . . . , y′p}, Y ′′ =

{y′′1 , . . . , y′′p}, and the partitions D′ = (Y ′
1 , . . . , Y

′
d) and D′′ = (Y ′′

1 , . . . , Y
′′
d ) are the result of applying D

to the sets of variables Y ′ and Y ′′, respectively.

In the following, we consider the formula Ψ(y′, y′′) = Ψ, where y′ and y′′ are collections of variables
y′ = (y′1, . . . , y

′
p) and y′′ = (y′′1 , . . . , y

′′
p), respectively, and the formula Ψ(y′, y′′) is obtained from the

formula Φp(y1, . . . , yp) by replacement of yi, i = 1, . . . , p, by the disjunction y′i ∨ y′′i and implements
the function ψp(y

′, y′′) = ψ(y′, y′′) = φ(y′1 ∨ y′′1 , . . . , y
′
p ∨ y′′p) of variables Y = Y ′ ∪ Y ′′.

Following the proof of Lemma 3, we set

x = (x1, . . . , xm), z = (z1, . . . , zn−m) = (xm+1, . . . , xn),

and, then, to construct the circuit Σf implementing the function f(x, z) from P2(n), similarly to (13),
we choose the natural parameters m, s′, s′′, and p so that s′ and s′′are even numbers and, moreover,

m < n, s′ + s′′ � 2m, min{s′, s′′} � m+ e1 + 2, p =

⌈
2m

s′ + s′′ − 2e1

⌉
. (19)

Note that, due to (19), for the function φ, partition D′, and maximal local height s′ (respectively, D′′

and s′′), the conditions of Lemma 1 are met. According to Remark, we construct the even standard
nonreduced matrix M ′ to it that is φ(y′)-universal for the segment δ′ = [0, t′) of the cube Bm and has
local heights s′1, . . . , s

′
d, where t′ = p1s

′
1 + . . .+ pds

′
d and the analogous set G′ of variables x related

with it, together with its representation G′ = G′
1 ∪ . . . ∪G′

d of form (9). We set t′′ = 2m − t′ and, by
Lemma 1 and Remark, construct the standard (reduced) matrix M ′′ that is φ(y′′)-universal for the
segment δ′′ = [t′, 2m) of the cube Bm of length t′′ and the set of functions G′′ of variables x related
with it, together with its representation G′′ = G′′

1 ∪ . . . ∪G′′
d of form (9).

Here, to construct the sets G′ and G′′, we use the partitions Δ′ and Δ′′ into even sequential segments
of segments δ′ and δ′′, respectively, and the sets G′ and G′′ themselves by their construction consist of
functions taking 0 on the sets of collections δ′′ and δ′, respectively. Hence, the set G′ ∪G′′ is a ψ-
universal set of functions of order m, and, in addition to that, due to (10)

t′ � p(s′ − e1), t′′ � p(s′′ − e1), |G′| � 2s
′+2, |G′′| � 2s

′′+2 (20)

and

LC(G′) � 3|G′|+O
(
p · 2m+ s′

2

)
, LC(G′′) � 3|G′′|+O

(
p · 2m+ s′′

2

)
. (21)

Similarly to (14) and (15), for the function f(x, z) we consider its Shannon expansion in variables z

f(x, z) =
∨

σ∈Bn−m

Kσ(z)fσ(x) = μn−m(z, f(0,...,0)(x), . . . , fσ(x), . . . , f(1,...,1)(x)), (22)

where fσ(x) = f(x, σ). Here, due the above said, for any remainder function fσ(x), from decomposition
(22) for certain functions g′1,σ, . . . , g

′
p,σ from G′ and certain functions g′′1,σ, . . . , g

′′
p,σ from G′′, the equality

is satisfied

fσ(x) = ψ(g′1,σ , . . . , g
′
p,σ, g

′′
1,σ , . . . , g

′′
p,σ). (23)

Consider representation (23) for all collections σ from the initial segment I of length N of the cube
Bn−m of variables z. In this case, for any function g′ from G′ we define its multiplicity as the number
of enterings of this function to representations (23) for σ ∈ I at the place of any of the first p variables

of the function ψ. Note that, the average value of the indicated multiplicity over the entire set G′ is
Np

|G′|
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and, dut to (10) is not less than S′ =
Np

2s′+2
, and its average value over the set G′

i for any i, 1 � i � d, is

Npi
|G′

i|
, and, consequently, according to (11), not less than S′.

Below, we introduce an auxiliary unit cube Bm+1 of variables (x0, x) consisting of m-dimensional
subcubes Bm+1(0, x) and Bm+1(1, x), the first of which is “identified” with the cube Bm(x). At the
outputs of the “upper” elements of disjunction of formulas Ψ, used in implementation of representa-
tions (23) for σ ∈ I, we attempt at obtaining all the functions from the standard set of functions G
that is φ-universal for some initial segment δ of the subcube Bm+1(1, x) of the above introduced cube
Bm+1(x0, x), has maximal local height s, where s = h+ s′, and is related with the partition D so that
the representation G = G1 ∪ . . . ∪Gd of form (9) is true.

Let us first consider the case when the above introduced multiplicities of the functions from G′ are

“almost” identical, that is, not less than 2h, where h is an even number and h = 2

⌊
1

2
logS′

⌋
. In this

case we continue the functions from G′ to the subcube Bm+1(1, x) so that the variable x0 is fictituous
for them and increase all local heights s′′ of the set G′′ by h.

It follows from the above described peculiarities of the standard universal sets of functions and
matrices related with them that the matrix M ′′ related with the set G′′ transforms to the matrix M ′′

+

with l = |G′′|2h columns and t′′ + ph rows in this case. In each of the main horizontal bands of the
matrix M ′′

+, we separate a subband composed of its h lower rows, join all these subbands into a matrix⌊
M ′′

+

⌋
of the same length l and height ph, and relate its rows with the segment δ̃′′ of length ph of the

subcube Bm+1(1, x) starting from the collection with the index 2m + t′ − 1 and divided into p sequential
segments of length h by the partition Δ̃′′. We leave the remaining rows of the matrix M ′′

+ generating its
submatrix

⌈
M ′′

+

⌉
at the same positions that are related with the segment δ′′ of the cube Bm(x) and have

been occupied by the rows of the matrix M ′′.
Note that, the matrix

⌈
M ′′

+

⌉
is obtained by 2h-multiple duplication of each column of the matrix M ′′

and that the matrix
⌊
M ′′

+

⌋
, in its turn, also is a result of a certain duplication of columns in the standard

φ(y′′)-universal matrix M∗ constructed based on the partition D′′ with local heights h. Here, all 2h

duplicates of the same column of the submatrix
⌈
M ′′

+

⌉
of the matrix M ′′

+ located in the ith vertical band
of M ′′ in the intersection with any main horizontal band of the matrix

⌊
M ′′

+

⌋
, which is related with the

variable from Y ′′
i , yield the submatrix consisting of all 2h columns of height h.

Now, we consider the so constructed sets of functions G′ and G′′
+ of variables (x0, x) and then

set x0 = χI(z), where χI(z) is the characteristics function of the segment I of the cube Bn−m. We
prove that at the outputs of the upper elements of disjunction of formulas Ψ used in implementation of
representations (23) for σ ∈ I, where the functions g′′i are taken from the set G′′

+, in the case σ /∈ I we
obtain the standard set of functions G that is φ-universal for the segment δ = [0, t′ + ph) of the cube
Bm = Bm+1(1, x) and related with the partition D and also with the partition Δ of the segment δ whose
jth component, j = 1, . . . , p, is obtained as a result of joining jth components of partitions Δ′ and Δ̃′′.

Indeed, suppose that G∗ = G∗
1 ∪ . . . ∪G∗

d is a set of functions of variables x the columns of whose
values correspond to the columns of the matrix M∗ under the assumption that the rows of this matrix
are related to the segment δ̃′′ and that are equal to 0 outside δ̃′′. Then, each function g from G can be
represented as g = g′ ∨ g∗, where g′ ∈ G′

i, g
∗ ∈ G∗

i , and g ∈ Gi for some i, 1 � i � d. Suppose that in
this case the function g∗ corresponds to such a column y from the ith vertical band of the matrix M∗

related with Y ′′
i , which, in the intersection with any main horizontal band related with the variable from

Y ′′
i yields the collection γ from Bh.

We consider the occurrence with the index q, q ∈ [1, 2h], of the function g′ into one of representa-
tions (23), where σ ∈ I, instead of the variable y′j from Y ′

i of the function ψ(y′, y′′) and in the same
representation find the occurrence of the function g′′ from G′′

i instead of the variable y′′j from Y ′′
i . In

implementation of this representation, instead of the function g′′ we take its “continuation” to the cube
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Bm+1(1, x) such that its column of values in any of the main bands of the partition Δ̃′′ related with Y ′′
i

is γ.
Note that, in the case σ /∈ I the mentioned representation provides the implementation of the function

g′ ∨ g∗ at the output of the disjunction element connecting the variables y′j and y′′j in the formula Ψ, that
is used to implement representation (23) at consideration.

In the case when the multiplicities of the functions from G′ can “strongly” differ from each other,
instead of the matrix M ′ related with the system of functions G′, we use the matrix M ′

+ that is obtained
from M ′ by t times duplicating the column related with the function g′, g′ ∈ G′, if the multiplicity g′ is

not less than (t− 1)
pN

|G′| , but less than t
pN

|G′| .

We can easily see that the number of columns in the matrix M ′
+ is not larger than 2|G′| and that,

by replacing the multiple occurrences of the columns of the matrix M ′ (more acucrately, the functions
from G′ corresonponding to them) in decomposition (23) at σ ∈ I in the appropriate manner by the
occurrences of the columns of the matrix M ′

+, we can achieve the reduction in the maximal multiplicity

to the level not greater than S′. Hence, not less than
1

4
of columns of the matrix M ′

+ have a multiplicity

not less than
1

4
S′. It is these columns of the matrix M ′

+ that are continued to the subcube Bm+1(1,m)

so that, in the rows related with its initial segment δ̃′ of length t̃′, we place the canonical φ(y′)-universal
matrix M̃ ′

+ of maximal local height s̃′, s̃′ = s′ − 3, corresponding to the even standard set G̃′
+ φ′-

universal for the segment δ̃′. Using the reasoning similar to the above given one, this allows proving
that in the case at consideration it is possible to implement the functions from the set G of maximal local
height s, s = s̃′ + h̃, where h̃ = h− 2, at the outputs of the upper elements of the disjunction of formulas
Ψ used in (23) for σ ∈ I.

In a way similar to that we done it in Lemma 3, we first construct the circuit Σ̌ implementing, on the
basis of representations (22) and (23), the function f̌ = f(x, z) · χI(z). Here, instead of the functions
from G′ and G′′, we use the functions from G′

+ and G′′
+, respectively, so that, at the outputs of some

upper elements of disjunctions of formulas Ψ, we provide the implementation of the functions which at
χI(z) = 1 coincide with the required functions from the set G φ-universal for the segment δ.

Consider a binary collection τ of length Q = 2m(2n−m −N) which consists of (2n−m −N) columns
of values of remainder functions fσ = f(x, σ), written in increasing order of indices ν(σ), σ ∈ Bn−m \ I,

and partitioned into T =

⌈
Q

l

⌉
sequential segments of length l = t′ + ph. We construct the circuit Σ̃

of input variables (x, z) that, using the collection of their values (β, σ), computes the collection (γ, θ)
of values of its output variables (u, v), where u = (u1, . . . , uk), v = (v1, . . . , vm), and k = 	log T 
, so
that the numbers ν(γ) + 1 and ν(θ) + 1 prescribe the number of the segment of the collection τ which
contains the value f(β, σ) and the number of the position in it in which this value is written, respectively.

The circuit Σf contains the circuits Σ̌, Σ̃ as subcircuits, implements the feeding of the collection of
variables x to the first m inputs of the subcircuit Σ̌ if χI(z) = 0 and the collection of variables v of the
subcircuit Σ̃ if χI(z) = 1. In the latter case it also implements the function f̂(x, z) = f(x, z) · χI(z) on
the basis of decomposition

f̂(x, z) =

T∨
i=1

χi(x, z)φ(g
(i)
1 , . . . , g(i)p ),

where χi(x, z) is the characteristic function of the ith segment in the partition of the collection τ and the

functions g
(i)
j , j = 1, . . . , p, are taken from the set G. Here, to implement each internal superposition,

we take one formula Φ whose inputs are connected to those outputs of the upper elements of disjunction
of formulas Ψ of the scheme Σ̂ where the corresponding functions from G are implemented.
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Construction of the circuit Σf is terminated by disjunction of the outputs of its subcircuits Σ̂ and Σ̌,
because f = f̂ ∨ f̌ .

Putting

m = �2 log n� , s′′ = 2

⌈
n− 3 log n

2

⌉
, N =

⌈
2n−m

log n

⌉

and choosing the parameter s′ = s in the same manner as in Lemma 3 and the parameter p according
to (19), by (16), (20), and (21) we obtain the upper bound (18).

The lemma is proved.
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