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Abstract—Earlier, the author proposed rather general approaches and methods for obtaining high
accuracy and close to high accuracy asymptotic bounds on Shannon’s function for complexity in
various classes of circuits. Most of the results obtained with their aid were published in a number
of papers, except perhaps for the close to the high accuracy asymptotic bounds on Shannon’s
function for the complexity of circuits without restrictions on their structure. This paper fills this
gap and presents a modified and simplified version of one of the above-mentioned methods, which,
nevertheless, allows obtaining the bounds with the required accuracy.
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1. BASIC DEFINITIONS AND DENOTATIONS, FORMULATIONS OF RESULTS

Suppose that B = {0,1}, B™ (where n = 1,2,...) is the unit n-dimensional cube,' that is, the
set of collections of lengths n of zeros and units, with the ith digit of which the Boolean variable z;,
i=1,...,n,isrelated and P,(n) is the set of functions of the algebra of logic, in other words, of Boolean
functions depending on these variables and mapping B™ to B. Below, by default, under the function we
understand the function of algebra of logic, and under the variable we understand the Boolean variable.

We consider the formulas and circuits of functional elements over an arbitrary complete basis
B ={&,...,&}, where an element &;, i =1,...,b, implements the function ¢;(z1,...,z,), which
in the case k; > 2 significantly depends on all its variables and whose complexity is characterized by
a positive real number L;, which is called the weight of the element &;. For an element &;, ¢ € [1, b],

L; .
such that k; > 2, we also define its reduced weight p;, equal to the relation T and introduce the

value pg = inig pi, Which is considered the reduced weight of the basis B. By default, the circuit is the
circuit of functional elements in the basis B, and, as usual, the formulas are considered the special case
of circuits. In the standard way we determine the complexity L(X) of the circuit (formula) ¥ as the sum

of its elements.

Without loss in generality, we assume that in the basis B there exists at least one so called amplifying
element &;, for which k; = 1 and ¢; = 1. Here, under the amplifying circuit we understand the circuit
in which the outputs of the elements with the reduced weight pp are not branched, that is, the circuit
with zeroth depth of branching. Note that a formula is an amplifying circuit.

"E-mail: lozhkin@cs.msu.ru
! The concepts that are not defined in this work can be found, e.g., in[1-3].
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REFINED BOUNDS ON SHANNON’S FUNCTION 145

Consider the classes U]g’, Ulg, and UQC, which consist, respectively, of formulas, circuits, and
amplifying circuits in the basis B and are complete in the sense that we can implement any function in
each of them. Moreover, it is clear that U]g’ C UQC C U]g. For any of these classes of the form UQ and an
arbitrary function f, in the common way we determin its complexity Lﬁ(f) as the minimal complexity

of circuits of UQ implementing f, and, then, for a natural number n, n =1,2,..., we introduce the
corresponding Shannon function

Ly(n) = [max L3 (/).

We recall that the asymptotic behavior of Shannon’s functions LE (n) and L (n) was established by
Lupanov (see [4, 5] and also [2]); moreover, from the results obtained by him it follows that?

n 21’L

2
LE() ~ IASm) ~ i, L) ~ o

(1)

logn

In this case it appeared that the relative error of bounds of Shannon’s functions in (1) equal to the
ratio of the difference between the upper and lower bounds of Shannon’s function L§(n) to itself is

LA 2" log 1 1
O B() log , that is, is O oglogn for the class Ug’ and O ogn for the classes
2n L3 (n) logn n

Ug, ULC.
In work [6], for Shannon’s functions Ug and U]QC the high accuracy asymptotic bounds were

. . : . 1 L (n) 1
first obtained, that is, the bounds with the relative error O =0 and O =
logn 2n n

TAC (n)
o8 , respectively. It was proved that following equalities are true?

2n
o, N 2" aep loglogn + O(1)
@ =gl (1470 EENEOW )
- 2" 2+ ea&p)logn+0O(1
LAS(n) = pa <1+( 2 ® ( )>, (3)

where &g =1 if all elements of the basis B with the reduced weight pg implements either only
disjunctions of variables, or conjunctions of variables, or linear functions, and s&eg = 0 in other cases.

In work [6—10] the authors considered another examples of classes of circuits in which for the corre-
sponding complexity Shannon’s functions it was succeeded to obtaining the high accuracy asymptotic
bounds.

Recall that in [6] the following upper bound is given without proof

1+ aep) logn + loglogn + O(l)>
n b

L§(n) < pB2n (1 i (4)
which was proved in [7, Theorem 8]. Note that the upper bounds (4) are achieved on schemes with
the branching depth 1, that is, on schemes admitting the branching of output of the elements of the
reduced weight pp, but not admitting the chains of length 2 of elements of the indicated form with
branching outputs. Here, it appeared (see [7, Lemma 22]) that bound (4) is the high accuracy bound
for the complexity of circuits of the given type.

2 All logarithms are taken to base 2 and the asymptotic equality a(n) ~ d(n) of two functions of natural argument n,
n=12,... occursiffa(n) = (1 + o(1))d(n).

% The presence in the right-hand side of equalities (2) and (3) of the term of the form #-a(n) means that for the left-hand side
of the corresponding equality the upper and lower bounds take place that are obtained from its right-hand side by replacing
the given term by the term |a(n)| and —|a(n)|, respectively.
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146 LOZHKIN

Note also, that the upper bound (4) in the case s&eg = 0 and (see, e.g., [6]) the lower bound

logn — O(1)
+foan O0) 5)

27’L
C

>
L5 >’ (1
can be considered the bounds of Shannon’s functions L§(n) close to the high accuracy asymptotic
bounds taking into account that their relative error is

logn L& (n 2"
()50 ( ),

which is substantially lower than the relative error of the corresponding bounds (1).

Below in this work, we consider the circuits in the standard basis Bg, which consists of elements £,
Ev, €=, Eac, having the weight 1 and implementing the functions 1 - x9, £1 V x9, 21, x1, respectively.
Here, it is clear that the complexity functional L(X) of the circuit X is simply equal to the number of its
elements. The index of the basis Bg in the denotations of the above introduced complexity functionals
and the corresponding Shannon functions will be omitted.

The main result of the current work is a proof of the upper bound (4) for the basis By simpler than in
[7], that is, the proof of the next statement

Theorem. For all naturaln,n =1,2,..., for Shannon’s function L (n) the inequality
- 2" 1 log1 1
() < ’ <1+ ogn + ognogn—l—O( )> 7)

is satisfied.

Note that the upper bound (7) and lower bound (5) have the relative error of form (6), that is, are the
bounds of Shannon’s function L§(n) close to the high accuracy asymptotic bounds.

2. UNIVERSAL SETS OF FUNCTIONS AND SELECTIVE PARTITIONS OF VARIABLES.
REPETITION-FREE FORMULAS WITH OPTIMAL COMPLEXITY AND BOUNDED
SELECTIVE ENTROPY

Recall that the main concepts and some results of [3, 6] related with the sets of functions universal
for a given function and their construction on the basis of special partitions of variables of this function.

For the collection o = (071, ...,0,) from B™ the number v(o) = 3 ;2" prescribes its so called
i=1

lexicographic number. Under segment of the cube B™ we understand, as usual, such set of its

collections whose v-numbers form the segment of integer numbers. The segment of even length

(power), which begins from the collection having an even number, we call even.

Following [3, 6], we say that the set of functions G C Py(m) is universal for the f[unction
d(Y1s---,Yp), or ¢-universal set of order m if for any function g € Py(m) there exist functions
g1, ---,gp irom G such that

(91,5 9p) = 9 (8)

In the case when equality (8) for an arbitrary function g from P,(m) and some functions g,...,gp
from G is satisfied on some set of collections 6,5 C B™, we say that the set G is ¢-universal set (of
functions) of order m for sets of collections 9.

Note that the latter notion corresponds to the notion of ¢-universal matrix of height |§| from [6,
Sect. 4] if the rows of this matrix are in the one-to-one correspondence to the sets of the cube B™
from the set § and its columns are considered the columns of values of the functions from the set G on
the set of collections from §.
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REFINED BOUNDS ON SHANNON’S FUNCTION 147

Suppose that a function ¢ is considerably dependent on all its variables Y = {y1,...,y,} and
D = (Y1,...,Yy) is the partition of the set Y into nonempty pairwise nonintersecting subsets Y1, ..., Yy.
The partition D is called the selective partition of the variables of the function ¢ [6, Sect. 3] if for each
i,1 <4 < d and for any variable y; € Y; there exist Boolean constants agj), e ,agj_)l, az(-i)l, ey O‘Ez])v
at the substitution of which instead of all variables from Y7,...,Y; 1,Y;11,...,Yy, respectively, the
function ¢ turns into the function of the form y; @ 3;, where 3; is another constant. Note that the
trivial partition of variables of the function ¢ into p components is selective.

The entropy of a partition D of a set Y into the components Y1, ..., Yy is understood as the value
d
1 Y]
H(D) = — Yillog |+,
Y] ; Y

[t appeared (see [6, Sect. 3]) that, using the selective partition D of the indicated type for the set of
variables Y of a function ¢(y1, ... ,y,) having a “small” entropy H (D), we can construct a “good” set
of functions ¢-universal for the given set of collections 6, § € B™. For this purpose, we need to take the
partition A = (61, ...,0p) of the set ¢ related with the partition D of the set of variables Y of the function
¢ as follows: the variable y;, i = 1, ..., p, corresponds to the component ¢;, and for any k, k € [1, d], for
any ¢ such that y; € Yy, the equality |0;] = sy is satisfied. Note that, in this case p1s1 + ... + pgsq = |4/,
where py = |Yi| forall k, k =1,...,d.

On the basis of partitions D and A we can construct the so called standard set of functions G,
G C Py(m), ¢-universal for the set of collections § such that

G=Gi1U...UGy, |[G]|=2%+4...42%, (9)
where the set G, consists of 2% functions.
The matrix M corresponding to the set G consists of d vertical “bands” 7y, ..., 74 having the lengths

251 ... 2% and related with the components Y7,...,Y; and with the sets Gi,..., Gy, respectively.
On the other side, the matrix M includes d “large” horizontal bands 11y, ..., 114, having the heights
P181,---,PasSq and related with the components Yy,...,Yy, respectively. In this case the band II;,
i=1,...,d, is divided into p; main horizontal bands of local height s;, related, as we have said above,
with the different variables from Y; and with the components of partition A corresponding to them and
giving the matrix in the intersection with the band m; whose columns are all collections of the cube
B*i arranged by their increasing v-numbers in the assumption that the top digits of the v-numbers are
located at the top. Each of the remaining blocks of the matrix M lying at the intersection between one

vertical and one of the main horizontal bands is filled with the same constant of form ag.i) related with

the selectivity of partition D. We assume that all functions from G outside § are 0. We call the number

§ = max s the maximal local height of the matrix M and set G.

The set of functions G and matrix M that are obtained from G and M when removing a part of
collections from the set § and eliminating the corresponding rows of the matrix M and still are ¢-
universal for the set of remaining collections (rows) are considered the result of applying the reduction
operation to G and M. We speak of evenness of the matrix M (set G)if the heights of all main horizontal
bands of M are even numbers (respectively, the components of the partition of A related with G are even
segments).

The results of [6, Sect. 4] imply the validity of the following statement.

Lemma 1. Suppose that § is an even segment of a cube B™ and D = (Y1, ...,Yy) is the selective
partition of a set of variables Y = {y1,...,yp} of a function ¢(yi,...,yp). Then for any even s such
that s > logp and || < p(s — H(D)), there exists an even (reduced) standard set of functions G
p-universal for the set § with the maximal local height s for which*

1G] <2572, L(G) < 3|G| + O(d2™F2). (10)

4 For a set of functions G, G C P2(m), by G we denote the system of functions of the form (g1, ..., gx), where A = |G,
composed of all distinct functions of the set G.
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148 LOZHKIN

Remark. The set G = G U... UGy is obtained as a result of reduction of the original set G of form
(9) for which, due to the lemma hypothesis, in choosing the even local height s;, i = 1,...,d, from the

real segment of length 2 with the center (s — log zi + 1) , Where p; = |Y;|, the relations are satsfied:

P181+ ...+ pasa < |0] + 2p, 25T > p|Gi| = p2%i. (11)

Moreover, due to (11) the indicated reduction comes to the possible decrease by 2 of a part of local
heights and possible removal of 2 rows from some main horizontal bands of the matrix M related with
the set G.

[t follows from [6, Sect. 3] that in the basis {£g, &} we can construct a sequence of repetition-
free formulas with increasing number of varaibles and bounded selective entropy of the functions they
implement.

Lemma 2. For any natural p in the basis {E,, Ey} there exists a repetition-free formula ®,
that implements the function ¢,(y1,...,yp) having the selective partition D, of the set of all its
variables; moreover, °

L(®,) =p—1, H(Dp) <ey.

3. SYNTHESIS OF AMPLIFYING CIRCUITS AND HIGH ACCURACY ASYMPTOTIC
UPPER BOUNDS ON SHANNON’S FUNCTION FOR THEIR COMPLEXITY
Using Lemmas | and 2, we can prove the following statement that provides (see [6]) the high
accuracy upper asymptotic bound on Shannon’s function LA (n).

Lemma 3. For an arbitrary function f, f € Px(n), there exists a circuit ¥y, Xy € Ui,
implementing it such that

(12)

L(z)) < 2 <1+ 210gn+0(1)> '
n n

Proof. For constructing the circuit X ¢, we select the natural parameters m, s, and p so that s is even
and

2m
m<mn, m+e <s<27, p:L_el—‘. (13)

By Lemma 2 we construct the formula ® = ®, implementing the function ¢ = ¢, for which there
exists a selective partition of variables D such that H(D) < e;. Note that, due to (13) for a partition D
of the function ¢ the conditions of Lemma 1 are satisfied, that is, there exists a set G that is ¢-universal
for the entire cube B™ and satisfies (10).

Let us divide the collection of variables (x1,. .., z,) into the subcollections
r=(T1, ..y Tm), 2= (21, s Zn—m) = (@Tmt1,.-.,Tn)

and consider the Shannon decomposition of the function f by the variables z

fa,z)= "\ Ko(2)fs(x), (14)
oceBn—m™
where for the collection o = (g1, - - . , o) the elementary conjunction K, (z) has the form a) """ -

xf* and f,(z) = f(z,0) is the so called remainding function of the function f.

Note that, representation (14) can be transformed using the so called standard multiplexor function
ftq of order g of address variables x1, ..., z, and informative variables o, ..., y2:_1 that can be defined
by the equation

/Lq(l‘la"')xqu()v"'7y2q—1): \/ Ko‘(l‘la"'qu)yzx(o‘)'
oceBY

® The letter e with different subscripts denotes some positive constants.
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REFINED BOUNDS ON SHANNON’S FUNCTION 149

Indeed, representation (14) is equivalent to the representation
f(@,2) = pn-m(z, fo,..0)(), - fo (@), ., fu,...1) (@) (15)

On the basis of representation (15) for the function f and representation (8), for each of its remainder
functions of type f,, 0 € B"™™, in the basis By = {&, &, €~} we construct the circuit ¥ that
implements f. We compose it of the following subcircuits:

(1) the subcircuit X of variables x implementing the system of functions G;

(2) the subcircuit S for each collection o from B"—™ impelmenting the function f,(x) presented in
the form (8), by means of the formula ® whose input variables are connected to the outputs ¥ according
to this representation;

(3) the subcircuit 3 implementing the function fi,—m (2,40, . - . , yan—m_1 ), the information input y,,
o € B™"™™, which is connected, according to (14) and (15), to the output 5, where the function fo(x)is
implemented.

Inequalities (10), Lemma 2, and the known (see, e.g., [3]) bounds on the complexity of multiplexor
functions imply that

L(36) <3|G|+O(p-2m%3), L(E)=2"""(p—1), L(E)<3-2""", (16)
L(Zp) <2V ™(p—1)+O(p- 2™ 425 4 27™), (17)

To obtain the sought amplifying circuit X ; from the circuit wa, we need to pass through the amplifying
elements Exc both the “branching” outputs of hte “internal” elements of its subcircuits X, Y, and the

outputs of its subcircuit ¥ “branching” in i)vf Here, for the complexity of a circuit wa bound (17) still
holds.
Choosing the parameter values so that

— 21 2m
m = [2logn], (SZQP2 ogn—‘7 p:[ w
2 s—ep

and proving that in this case for some ng and any n, n > ng, conditions (13) are met, by substituting the

indicated values into (17), we obtain (12).
The lemma is proved.

4. METHOD FOR SYNTHESIS OF CIRCUITS THAT ALLOWS OBTAINING CLOSE TO
HIGH ACCURACY ASYMPTOTIC BOUNDS OF SHANNON’S FUNCTION FOR THEIR
COMPLEXITY

Before we proceed to the proof of the theorem, we outline the approach to synthesizing the circuits in
the class U® that allows obtaining the upper bound (7) instead of the upper bound (12).

This approach consists in perofrming the decomposition of functions and construction of the circuits
Ya, 2, similarly to the way it was done in proving Lemma 3, but not for all collections ¢ from B™"~™, but
for those of them for which v(o0) < N = O

logn
function f consists in the following: to implement the functions from the new “wider” universal set that
can be applied in implementation of remainder functions f,(x) for the case v(o) > N at the outputs of
the certain part of elements used in the formulas of type 7 = F,.

The validity of the theorem is implied by the following statement.

Lemma 4. For an arbitrary function f, f € Pa(n), there exists a scheme Yy, Yy € UC,
implementing it such that

>. The goal of this “partial” implementation of the

L(Zy) <

2 <1+logn+loglogn+0(1)>. (18)

n n
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150 LOZHKIN

Proof. Similarly to the proof of Lemma 3, for each p, p=1,2,..., by Lemma 2 we construct
the formula ®,(y1,...,yp) = ® of complexity (p — 1) implementing the function ¢p(y1,...,yp) = ¢
which has such a selective partition D = (Y3,...,Y}y) of the set of its variables Y = {y1,...,y,} for
which |Y;| = p; forall 4,7 =1,...,d, and H(D) = H(¢) < e1. Suppose that Y’ = {y},...,y,}, V" =
{91, -, yy}, and the partitions D" = (Y{,...,Y;) and D" = (Y{',...,Yy/) are the result of applying D
to the sets of variables Y and Y, respectively.

In the following, we consider the formula ¥(y/,y"”) = ¥, where 3’ and y” are collections of variables
Y = (Y1,---,y,) and ¥ = (y7,...,y,), respectively, and the formula W(y',y") is obtained from the
formula ®,(y1,...,yp) by replacement of y;, i = 1,...,p, by the disjunction v V 3/ and implements
the function ¥, (y',y") = (v, y") = ¢(v1 Vu1, .- -y, V y,) of variables Y = Y U Y".

Following the proof of Lemma 3, we set
x=(r1,-.,Tm), 2= (21, -y 2n-m) = (Tmt1,---,Tn),

and, then, to construct the circuit ¥; implementing the function f(z, z) from P»(n), similarly to (13),
we choose the natural parameters m, s, s”, and p so that s’ and s”are even numbers and, moreover,

. 2m
m<n, §+s <2™ min{s s"}>m+e+2, p= L, s 261} ) (19)

Note that, due to (19), for the function ¢, partition D’, and maximal local height s’ (respectively, D"
and s”), the conditions of Lemma 1 are met. According to Remark, we construct the even standard
nonreduced matrix M’ to it that is ¢(y")-universal for the segment ¢’ = [0,¢’) of the cube B™ and has
local heights s/,..., s/, where t' = p1s] + ...+ pgs), and the analogous set G’ of variables x related
with it, together with its representation G' = G}, U ... UG, of form (9). We set ¢ = 2™ — ¢’ and, by
Lemma | and Remark, construct the standard (reduced) matrix M” that is ¢(y”)-universal for the
segment 6" = [t/,2™) of the cube B™ of length ¢” and the set of functions G” of variables z related
with it, together with its representation G = G{ U ... U GY of form (9).

Here, to construct the sets G' and G”, we use the partitions A’ and A” into even sequential segments
of segments ¢ and ¢”, respectively, and the sets G’ and G” themselves by their construction consist of
functions taking 0 on the sets of collections §” and ¢, respectively. Hence, the set G' UG" is a 1)-
universal set of functions of order m, and, in addition to that, due to (10)

' <p(s' —er), t"<p(s" —er), |G|<2F2 |G| <282 (20)
and

LY(G) <3G +0 (p- 2m+%') L LY@ <3G+ 0 (p- 2m+sé') . 21)

Similarly to (14) and (15), for the function f(z, z) we consider its Shannon expansion in variables z

flz,2) = \/ K (2) fo (%) = pin—m(z, f(O,...,O)(‘T)ﬂ"'7f0(m)7"'7f(1,...,1)(x))7 (22)

ceBn—m

where f,(z) = f(x,0). Here, due the above said, for any remainder function f,(z), from decomposition
(22) for certain functions g} ,, ..., g, , from G’ and certain functions g7 ,, ..., g , irom G”, the equality
is satisfied

fo@) = V(G or- - Gpor Ts -+ Gpo)- (23)

Consider representation (23) for all collections ¢ from the initial segment I of length N of the cube
B™~™ of variables z. In this case, for any function ¢’ from G’ we define its multiplicity as the number
of enterings of this function to representations (23) for o € I at the place of any of the first p variables
N
of the function . Note that, the average value of the indicated multiplicity over the entire set G’ is |G%)|
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REFINED BOUNDS ON SHANNON’S FUNCTION 151

N
and, dut to (10) is not less than S’ = 28,f2,
Np;
led

Below, we introduce an auxiliary unit cube B™*! of variables (x¢,z) consisting of m-dimensional
subcubes B™TL(0,x) and B™T1(1,z), the first of which is “identified” with the cube B™(z). At the
outputs of the “upper” elements of disjunction of formulas ¥, used in implementation of representa-
tions (23) for o € I, we attempt at obtaining all the functions from the standard set of functions G
that is ¢-universal for some initial segment & of the subcube B™*1(1, z) of the above introduced cube
B™*1(xq, ), has maximal local height s, where s = h + &', and is related with the partition D so that
the representation G = G U ... U Gy of form (9) is true.

Let us first consider the case when the above introduced multiplicities of the functions from G’ are

and its average value over the set G forany i, 1 < i < d, is

, and, consequently, according to (11), not less than S’.

1
“almost” identical, that is, not less than 2", where h is an even number and h = 2 {2 log S’J . In this

case we continue the functions from G’ to the subcube B™*1(1, z) so that the variable xq is fictituous
for them and increase all local heights s” of the set G” by h.

[t follows from the above described peculiarities of the standard universal sets of functions and
matrices related with them that the matrix M” related with the set G” transforms to the matrix MY

with [ = |G"|2" columns and ¢ + ph rows in this case. In each of the main horizontal bands of the
matrix M, we separate a subband composed of its h lower rows, join all these subbands into a matrix
| M| of the same length [ and height ph, and relate its rows with the segment 8" of length ph of the
subcube B™*1(1, x) starting from the collection with the index 2™ + ¢ — 1 and divided into p sequential
segments of length A by the partition A”. We leave the remaining rows of the matrix M/ generating its
submatrix [ M/ | at the same positions that are related with the segment ” of the cube B™(z) and have
been occupied by the rows of the matrix M".

Note that, the matrix {Mﬂ is obtained by 2"-multiple duplication of each column of the matrix M"
and that the matrix LMiJ , inits turn, also is a result of a certain duplication of columns in the standard
#(y")-universal matrix M* constructed based on the partition D” with local heights h. Here, all 2"
duplicates of the same column of the submatrix [Mﬂ of the matrix MY located in the ith vertical band
of M" in the intersection with any main horizontal band of the matrix LMZJ, which is related with the
variable from Y}, yield the submatrix consisting of all 2" columns of height h.

Now, we consider the so constructed sets of functions G’ and G’ of variables (zg,z) and then
set xy = x1(2), where x;(2) is the characteristics function of the segment I of the cube B"™™. We
prove that at the outputs of the upper elements of disjunction of formulas ¥ used in implementation of
representations (23) for o € I, where the functions g/ are taken from the set G, in the case o ¢ I we
obtain the standard set of functions G that is ¢-universal for the segment 6 = [0,¢" 4 ph) of the cube
B™ = B™*1(1,x) and related with the partition D and also with the partition A of the segment § whose
jth component, 7 = 1,...,p, is obtained as a result of joining jth components of partitions A" and A",

Indeed, suppose that G* = G7 U... UG} is a set of functions of variables  the columns of whose
values correspond to the columns of the matrix M* under the assumption that the rows of this matrix
are related to the segment & and that are equal to 0 outside &". Then, each function g from G can be
represented as g = ¢’ V g*, where ¢’ € G}, g* € G}, and g € G, for some 7, 1 < i < d. Suppose that in
this case the function g* corresponds to such a column y from the ith vertical band of the matrix M*
related with Y;”, which, in the intersection with any main horizontal band related with the variable from
Y/ yields the collection ~ from B".

We consider the occurrence with the index g, ¢ € [1,2"], of the function ¢’ into one of representa-
tions (23), where o € I, instead of the variable y; from Y] of the function #(y',y") and in the same
representation find the occurrence of the function g” from G instead of the variable y; from Y;". In
implementation of this representation, instead of the function g” we take its “continuation” to the cube
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B™F1(1, ) such that its column of values in any of the main bands of the partition A” related with Y;”
is .

Note that, in the case o ¢ I the mentioned representation provides the implementation of the function
g’V g* at the output of the disjunction element connecting the variables y and y7 in the formula ¥, that
is used to implement representation (23) at consideration.

In the case when the multiplicities of the functions from G’ can “strongly” differ from each other,
instead of the matrix A" related with the system of functions G’, we use the matrix M, that is obtained
from M’ by t times duplicating the column related with the function ¢/, ¢’ € G’, if the multiplicity ¢’ is

N N
not less than (¢ — 1) |pG’|’ but less than t|pG/| .

We can easily see that the number of columns in the matrix M/ is not larger than 2|G’| and that,
by replacing the multiple occurrences of the columns of the matrix M’ (more acucrately, the functions
from G’ corresonponding to them) in decomposition (23) at o € I in the appropriate manner by the
occurrences of the columns of the matrix M’ , we can achieve the reduction in the maximal multiplicity

to the level not greater than S’. Hence, not less than i of columns of the matrix M’ have a multiplicity

1
not less than 45’. It is these columns of the matrix M/, that are continued to the subcube B™*1(1,m)

so that, in the rows related with its initial segment & of length #/, we place the canonical ¢(y/)-universal
P~

matrix Mjr of maximal local height &', §' = s’ — 3, corresponding to the even standard set éﬁr @'~
universal for the segment ¢§’. Using the reasoning similar to the above given one, this allows proving
that in the case at Eonsiderajion it is possible to implement the functions from the set G of maximal local
height s, s = §' + h, where h = h — 2, at the outputs of the upper elements of the disjunction of formulas
¥ used in(23)foro € 1.

In a way similar to that we done it in Lemma 3, we first construct the circuit ¥ implementing, on the
basis of representations (22) and (23), the function f = f(z, z) - x7(z). Here, instead of the functions
from G’ and G”, we use the functions from G’_ and G’,, respectively, so that, at the outputs of some
upper elements of disjunctions of formulas ¥, we provide the implementation of the functions which at
x1(z) = 1 coincide with the required functions from the set G ¢-universal for the segment 0.

Consider a binary collection 7 of length @ = 2™(2"~™ — N) which consists of (2"~ — N) columns
of values of remainder functions f, = f(z, o), written in increasing order of indices v(o), 0 € B "™\ I,

and partitioned into 7' = ﬁ?-‘ sequential segments of length [ =t/ 4+ ph. We construct the circuit 3

of input variables (z, z) that, using the collection of their values (8, o), computes the collection (v, 6)
of values of its output variables (u,v), where u = (uq,...,ur), v = (v1,...,vy), and k = [logT], so
that the numbers v(v) + 1 and v(6) + 1 prescribe the number of the segment of the collection 7 which
contains the value f(3,0) and the number of the position in it in which this value is written, respectively.

The circuit X contains the circuits ¥, Y as subcircuits, implements the feeding of the collection of

variables z to the first m inputs of the subcircuit ¥ if x7(z) = 0 and the collection of variables v of the

subcircuit  if x7(z) = 1. In the latter case it also implements the function f(z, 2) = f(, z) - x1(z) on
the basis of decomposition

T

fa,2) =\ xilz, 2)o(at" - o),

i=1

where x;(z, z) is the characteristic function of the ith segment in the partition of the collection 7 and the
functions g§l), j=1,...,p, are taken from the set G. Here, to implement each internal superposition,
we take one formula & whose inputs are connected to those outputs of the upper elements of disjunction

of formulas ¥ of the scheme 3 where the corresponding functions from G are implemented.
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Construction of the circuit X ¢ is terminated by disjunction of the outputs of its subcircuits S and 3,
because f = f V f.
Putting

—3logn n—m
— |21 n_o|" N =
m = [2logn], s { ) -‘, [logn-‘

and choosing the parameter s’ = s in the same manner as in Lemma 3 and the parameter p according
to (19), by (16), (20), and (21) we obtain the upper bound (18).

The lemma is proved.
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