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1. Introduction

Finding the number of operations necessary to compute polynomial functions is an
old problem in algebraic complexity. Even for seemingly simple computations, such
as matrix multiplication, this problem is still unsettled despite long-term efforts. In
fact, profound algebraic methods seem necessary to obtain all but most trivial results,
and fast algorithms can be built by using nontrivial algebraic properties of the
domain of computation. (See [2] for an introduction to this field, [19] for state-of-the-
art matrix multiplication.)

An obvious (cowardly?) escape from the difficulties of the general problem is
provided by restricted computational models, Thus, in the field of Boolean complexity
much work has been done on monotone Boolean computations, which are more
tractable than computations using negations (see [7, 10, 15, 16, 28]). Similar work has
been done on monotone arithmetic computations, that is, computations using onty
positive constants, addition, and multiplication [18, 20-22]. In both models 1t is
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relatively easy to prove that matrix muliiplication requires n® scalar multiplications.
Of the same flavor are results concerning regular expressions not using complemen-
tation or intersection [4, 6).

Some arguments can be brought in favor of considering restricted computational
models. Thus, monotone arithmetic computations have absolute numerical stability
[11); monotone Boolean circuits are easter to test (see [9]). The main argument
however is that monotone computation is more “natural,” whenever applicable:
restriction to monotone arithmetic essentially means restriction to algorithms for
which correctness can be deduced from the associativity, commutativity, and distri-
butivity of addition and multiplication (see [21]). Tt follows that the family of
monotone computations 1s essentially the same in any semiring (i.., a domain with
two binary operations, & and ®, both associative and commutative, with @ distrib-
uting over ). Algorithms can be built uniformly for different semirings, and lower
bounds can be proved uniformly for this class of “universal” algorithms.

Shorter algorithms can be built for most of the arithmetic functions we shall
consider by taking into account the existence of an additive inverse in the field of
real numbers R. Similarly, the vse of the extra axioms of Boolean algebra can vield
smaller circuits. We have a trade-off between the simplicity and generality of our
algorithms, on the one hand, and their efficiency on the other, that is, between the
complexity of the algorithm and the complexity of a validation of it. When a fixed
specific function is under consideration, the balance is tilted in favor of the shortest
computation. The situation might be different from a system which has to derive
from an implicit deseription of a function an explicit algorithm for its computation,
as well as actually computing it (such an ability might be required of the next
generation of compilers). It is therefore essential to have a good understanding of the
trade-offs incurred when the domain of allowed computations is restricted.

We consider essentially two semirings: the semiring R of nonnegative real numbers
with the usual addition and multiplication (monotone arithmetic), and the semiring
M (M) of (nonnegative) real numbers with the operations of minimum and addition.
The latter structure has frequently been used to formulate and solve optimization
problems (see [1, p. 195; 3]).

In Section 2 we show that the problem of computing a polynomial function in
these semirings is related to the problem of computing a formal polynomial over the
semiring. This in turn is as hard as computing a similar formal polynomial over the
Booiean semiring B ({0, 1] with the two operations or, and). Formal polynomials
over B are essentially finite sets of integer-valued vectors, with addition being union
and multiptication being componentwise addition. Computations are combinatorial
in character, and we develop in Section 3 a combinatorial method which yields lower
bounds on the number of multiplications needed. This is achieved essentially by
abstracting from the computational task considered a suitable combinatorial opti-
mization problem. Several applications are considered in Section 4: the computation
of the product of m n X n matrices takes (m — l)n° multiplications; the wrapped
convolution of m n-vectors is computed in (m — 1)»* multiplications; the computation
of the permanent takes n(2"~" — 1) multiplications. All these bounds are tight. Several
other functions, which are related to optimization problems, are also considered. A
discussion of the results follows 1n Section 5.

2. Definifions

2.1 SeMIRINGS AND PoryNomiars. We introduce here the (fairly standard) al-
gebraic terminology we shall subsequently be using.
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A semiring is a system (S, ®©, ®, 0, 1), where S is a set, D (addition) and @
{multiplication) are binary operations on S, and 0 and 1 are elements of S having the
following properties:

(@) (S, D, 0) is a commutative monoid, that is, @ is associative and commutative
and 0 is an identity.
(it) (S, ®, 1) is a commutative monoid.
(iii) ® distributes over @, thatis, a@ b P Y= (a @ b)) D (e @ ¢).
(iv) a®0=0.

We shall subsequently use the following semurings:

(i) The Boolean semiring B = ({0, 1}, vV, A, 0, 1) (V being Boolean disjunction and

A being conjunction).

(i} The semiring of nonnegative real numbers with the usual addition and multi-
plication R = (R*, +, -, 0, 1).

(iii) The semiring M = (R*, min, +, +cc, 0), where R* = R U {+co}, min is the
binary minimum operation, and + is the usual addition.

(iv) The semiring M* = (R™*, min, +, +c0, 0), which is the subsemiring of M
obtained by restricung the domain to nonnegative real numbers.

Let S be a semiring and X = {x,, ..., x,} a finite set of indeterminates. We denote
by S[X] the seminng of (formal) polynomials obtained from § by adjunction of the
indeterminates xi, . . . , x,. Each monomial m = x4 ... x is uniquely determined by
the vector of exponents (iy, . . ., I,), so that we can identify monomials with elements
of IN". Each polynomial p € ${X] may be uniquely written in the form

= By sl IR )l':L [ 1

P et @n
where only finitely many coefficients a., . ., € S are different from zero, so that we
can identify polynomials with functions from IN” to § with finite support. Thus, if
P € S[X), m € IN", p,, will denote the value of the coefficient of p with index set m,

and eq. (2.1) can be rewritten as
p= & Pmim. 2.2)

meN™

S is embedded in S[X] by identifying each element s € § with the constant
polynomial sx$ - .. x. (For a more elaborate approach see, e.g., [17, Sec. 67].)

We introduce some terminology pertaining to S{X]. We assume henceforth that
p is a polynomial given by eq. (2.2) and m is a monomial given by m = (1, .. ., ir).

(i} The monomial set of p is
mon(p) = {m € IN"| pn. # 0.
(i) The degree of m is
deg(m) = ,i i.
(i) The degree of p is
deg(p) = max{deg(m)|m € mon(p)).

(iv) p is homogeneous if all its monomials have the same degree.
v) mis linear if m € {0, 1}".
(v1) p is linear if all its monomials are linear.
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To each polynomial p € S{X] is associated a polynomial function vp:S" — S, the
function whose value at (ay, ..., 4,) is obtained by substituting @ for x, in p. The
map ¢ is a homomorphism from S{X7} to the semiring of functions {§" — §], with
pointwise addition and pointwise multiplication. We denote by P.(S) the image of
S[X] under », that is, the subsemiring of polynomial functions. The map » need not
be injective, as two dufferent polynomials, for example, x and x” in B[x], can
represent the same function.

2.2 CoMPUTATIONS AND COMPLEXITY. Let S be a semiring. A computation' T’ in
§ with input set I C 5 is a labeled, directed acyclic graph (dag) with the following
properties:

(i) Nodes of T" with indegree 0, termed inpur nodes, are labeled by elements of 1.
(il} The nodes of ' which are not input nodes, termed internal nodes, all have
indegree 2 and are labeled either by @ or &.
(nni) There 1s a unique node p of T" of outdegree 0, termed the output node.

If there 15 1n T" an edge directed from node « to node B, then « is a predecessor of
B and B a successor of a. The ancestor relation is the transitive closure of the
predecessor relation; the descendent relation is the transitive closure of the successor
relation.

A result function, res:nodes(I") — S, is defined recursively on the nodes of I' in
the following manner:

(i) If a is an input node labeled by i € 7, then res(a) = i
(i) If a is an internal node labeled by © (a ®-node) with predecessors B, v, then
res(a) = res(f) & res(y).
(i) If a is a @ node with predecessors £, v, then res(a) = res(f) & res(y).

" computes s if res(p) = s, where p is the output node of I'.

The @ (D) -complexity of T' is simply the number of @ (@) -nodes of I'. The
® (D) -complexity of s € S with respect to I C S is the minimal ® (D) -complexity of
a computation with input set 7 computing s. Of particular interest to us will be
computations of polynomials in S[X] and polynomial functions in P.(S). For
computations in S[X] the input set will always be assumed to be § U X, and for
computations 1n P,(S) it will accordingly consist of the constant functions and
projection functions. Thus the ® (&) -complexity of a polynomial (polynomial
function) will be understood to mean the ® (@) -complexity with respect to
these sets.

Whenever an algebraic structure is homomorphic to another, computations in the
first structure are related to computations in the second, and so complexity results for
the second structure transiate into results for the first. Indeed we have

LeEMMA 2.1, Let S, S’ be semirings and v: S — S’ a homomorphism. Let I' compute
s € § with input set I C S. Let T be obtained from I by relabeling each input node wiih
label i € I by 7(i). Then I" is a computation in 8" with mput set T(I); for each node «
of T, if r = res(a), then 1(r) is the result at « in 1. In particular, I' computes =(s).

CoroLLARY 2.2, Ler S, 87 be semirings, 1: S — S’ a homomorphism.

(i) The @ (&) -complexity of s € S with respect to 1 C S is ro smaller than the
@ (D) -complexity of (s} with respect to 7(I).

(&) If 7 is surjective, then the & (@) -complexity of s’ € S’ with respect to I C 8" is
equal to the minimal ® (D) -complexity of an element s € 7~'(s') with respect to
7 (D).
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As an important application of Corollary 2.2. we obtain, having 1n mind the
mapping from polynomials onto polynomial functions,

COROLLARY 2.3. The @ (@) -complexity of a polynomial function f is equal to the
minimal @ (B) -complexity of a polynomial representing f.

The above result is very useful in semirings in which each polynomial function is
represented by a unique polynomial (indeed, in such cases, it is customary to blur the
distinction between them). Such is the case for the semiring R. Thus, in this semiring
the ® (@) -complexity of a polynomial p equals the ® (@) -complexity of the
polynomial function it represents. This is not true in general for the semirings M,
M?*, and B in which there is no unique representation of polynomial functions.
Section 2.3 will deal with this problem.

Our complexity results will be derived in the first instance for polynomials in
BfX]. These results can be extended, using Corollary 2.2, to any other polynomial
semiring S[X], provided that we can exhibit a homomorphism from S[{X] to B[ X],
mapping § U X into B U X. But any homomorphism 7:§ — B extends naturally to
a homomorphism 7: S{X] — B[X] which maps § into B and x, onto itseif. For all
three semirings R, M, M such a homomorphism exists and is given by

@) = 0 if a=0s (OsisOin R and + in M, M),
T g if a#0s

it should be mentioned that r maps polynomials with 0-1 coefficients into formally
identical polynomiais, and thus any lower bound obtained for the ® (€p) -complexity
of a polynomial p € B{X] yields immediate lower bounds on the @ (&) -complexity
of the formally identical polynomials in R[X], M[X], and M*[X].

As has been remarked, in the case of M{X] and M *[X] the canonical homomor-
phism » from formal polynomials to polynomial functions is not an isomorphism.
The remainder of Section 2—which is self-contained and can be omitted—establishes
the machinery required to deal with this problem.

2.3 ENVELOPES AND COMPUTATIONS IN MIN, +. As will be seen in Section 3, our
methads are better suited to handle homogeneous polynomials. We can however
extract, from any polynomial, homogeneous componenis which are simpler to
compute. Let p € S[X] be given by eq. (2.2) and kK = min{deg(m)|m € mon(p)}.
The lower envelope of p is given by

! = B pun
e(P) deg(m)mk P "
Stmilarly, if X = max{deg(m)|m € mon(p)}, then the higher envelope of p 15 given
by
h = @D p.m
e(P) dcg(m)*KP "
Thus le(p) (he(p)) is obtained from p by preserving only the terms of minimal
(maximal) degree. Now assume that the function 7 of the previous section is indeed
a homomorphism.
If p=¢:@ ¢, then

if deg(le(gy) = deg(le(ge)). then le(p) = le(qy) P le(ge),
if  deg(le(q:)) < deg(le(ge)), then le(p) = le(q),
if p=q:®qy then le(p) = le(g1) ® le(ga).

Similar relations hold for the higher envelope.
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Tt is thus obvious that any computation of p € S[X] can restructured, by
appropriately discarding some of its additions, into a computation of le(p) (he(p)).
We thus have

TuEOREM 2.4. Let p € S[X]. The © (¥) -complexity of p is no smaller than the
@ (®) -complexity of le(p) (he( p)).

Let us now turn to the semirings M and M™. We shall investigate how the siructure
of a polynomial is determined by the function it represents. We assume p € M[X]
(p € M*[X]) 1s given by

k
p= 4 a@m, 2.3)

=1

where a; # +o, m, € IN". The function f represented by p is

[y = flun, ..., w) =min{m.-7) + a,

where (i7.7) denotes scalar product. We associate with f the set Gr(f) C R™,
which is bounded above by the graph of .

Gr(f) = {(ws, . . ., un, V)| v = (i)}

={@v)iv=s(m-a) +afori=1,... k).

Gr( f) 1s the intersection of k closed half-spaces corresponding to the k terms of p
and has nonempiy interior (unless p = —cx). There is a unique minima} family of
half-spaces whose intersection yields Gr(f), each half-space being bounded by a
hyperplane which contains one¢ of the #-dimensional faces of the (n + 1)-dimensional
polyhedron Gr( /). It follows that there is a unique set of terms of p which appears
in any polynomial representing /. We have also a nice characterization of the
remaining (redundant) terms,

TusoreM 2.5. Let f € P.{M) be a polynomial function over M. There exists a
unique set of terms T = {am.}) such that if p represents f in M[X], then

(i) each term of T occurs in p;
(it) if a'm’ is a term of p, then there exist Ay, . . ., A, such that

A=0, Y, 2.49)
Ya=1, 2.5
m' =Y Am, (2.6)
a =3y Aa. @7

(Each monomial of p is a convex combination of the essential monomials, with its
coefficient bounded below by the convex combination of their coefficients.)

PrOOF. See the appendix. O

The characterization of Theorem 2.5 yields a unique representation theorem for
certain functions.

THEOREM 2.6. Let p, g & M{X| represent the same function. Then

(i) o p is linear, then p = q;
(i) if le( p) (he(p)) is linear, then le( p) = le(q) (he( p) = he(q)).
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PrOOF

(i) Let T = {am,} be the set of essential terms occurring both in p and ¢q. We
claim that no other term occurs in p or ¢. Indeed, let a’m’ be a term of p or . Then
m’' = 3 \m, with A\, =20, ¥ A\, = L. But m, are 0-1 valued vectors, and no nontrivial
convex combination of them can yield an integer-valued vector (the interior of the
unit cube does not contain lattice points), Thus the monomial m’ oceurs in 7, and so
am T

(ii) Let & = mindeg(m,). We claim that the terms of le(p) (le(q)) are precisely the
minimal degree terms of T. If deg(m,) = k, then a.m, occurs in le(p). On the other
hand, let 2’m’ be a term of le(p) or le(g}. Then deg(m’) = k, and m’ = ¥ Am,, with
A =0, YA = 1. But deg(m’) = YA deg(m,) = mindeg(m,) = k, and equality can
occur only if A, = O whenever deg(m,) > k. Thus m’ is a convex combination of the
minimal degree monomials in 7, and by the same argument used in (i) it folows that
a’m’ € T. The proof for higher envelopes is similar. []

COROLLARY 2.7. Let p € M| X] represent the funciion f € Po{M). Then

(1) if p is linear, then the © (®) -complexity of f is equal to the ® (®) -complexity
of p;
(i1) if le(p) C(he(p)) is linear, then the & (&) -complexity of [ is no smaller than the
B (®) -complexity of le( p) (he(p)).
Proor. Use Corollary 2.3 and Theorems 2.4 and 2.6. [

When the domain of computation is restricted to nonnegative numbers, there is
greater freedom in choosing representations for functions.

THEOREM 2.8. Let f € P.(M™) be a polynomial function over M*. There exists a
unigue set of terms T = (a.m.} such that if p represents fin M '[X], then

(f) each term of T occurs in p;

(i) if a’m’ is a term of p, then there exist \, . .., An such that
A=0, Vi (28
=1, 29
m' =Y Am,, (2.10)
a =¥ Aa. (2.1H

(a'm’ is bounded below by a convex combination of the terms m T.)
Proor. See the appendix. [

For M™ we have the following unique representation theorem.
THEOREM 2.9. Let p, ¢ € M| X] represeni the same function. Then

() if le(p) is linear, then le(p) = le(g);
(ii) if p is linear and homogeneous, then p = le(g).

PrROOF

(i) It is easy to check that the argument used i proving Theorem 2.6(ii) can be
carried over using inequality (2.10) instead of equality (2.6). (There is no
analogous argument for higher envelopes.)

(i) If p is homogeneous, then p = le( p) and (ii) follows from (i). O
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CoroLrLary 2.10.  Let p € M™{ X1 represent the function f € P.(M ™). Then

(i) if le(p) is linear, then the @ (®) -complexity of f is no smaller than the & (&)
-complexity of le{ p),

(i#) if p is linear and homogeneous, then the @ (®) -complexity of [ is equal to the
@ (&) -complexity of p.

Proor. Use Corollary 2.3 and Theorems 2.4 and 2.9. O

3. The Lower Bound Argument

3.1 CoMpruTATIONS IN B[ X]. In this section we restrict our attention to compu-
tations in B[ X]. Extensions of results obtained here to other polynomial semirings
will be immediate from the considerations introduced in Section 2. Throughout the
following, I" will denote an arbitrary computation in A[X] with result node p and
res(o) = p € B[X]. Top will be such a computation in which the total number of
®-nodes is minimized.

We extend our previous notation and introduce some concepts which aid the study
of compatations in B[ X].

If o € nodes(T'), then mon(a) is the monomial set of res(a), and deg(a) the degree
of res{w). pred(a) denotes the set of predecessors of a. I' is said to be linear
(homogeneous) if res(a} is a linear (homogeneous) polynomial foralla € T'.

We may as well assume that 0 is not an input of I' (we lose no computational
power by this), in which case it is easy to check.

LemMa 3.1
(Y T is linear if and only if p is.
@)y T is homogeneous if and only if p is.
(i) If o, B are nodes of T, B is a descendant of «, and m € mon(w), then mon(f3)
contains a monomial of the form mm’.

Lemma 3.1 captures that property of computation in B[X] which makes it
amenable to treatment in the style of [20] or of the present paper. Stated informally,
once a monomial has been created, it must find its way into the final result; this
“conservation of monomials™ ensures that no “invalid” monomials are formed and
severely limits the rate at which monomials may be accumulated in the computation.

If o € nodes(I"), then the complement of a is the set

complement(a) = {m = x¥x¥ ..+ x|V’ € mon(a), mm’ € mon(p)},
and the content of a is the set
content(a) = {mm’|m € complement(a), m’ € mon(x)}.
We remark that content(a) C mon(p).

3.2. PArse-TREE. At the crux of our argument is the concept of parse-tree, which
has meaning for all linear computations, and which we now elaborate. If @ €
nodes(T") and m € mon(«), m 5% 1 (the unit monomial), then the parse-tree induced by
a and m, PT{a, m), is a labeled subtree of I, rooted at «, and defined recursively on
the nodes of T" as follows:

(i) If deg(m) = 1, then PT(x, m) is simply the subgraph of I" formed by « labeled
by m. Otherwise:
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o

PT(«, m) @ % om PT{(c. m) )a/‘"{\
B,%/ ,8‘,.‘!]1; ¥

By
[N
-

N
- ~

BB, ) SBTB, o Py, m) ™

FiGURE 1 FIGURE 2

(ii) If & is a D-node, then let pred(a) = {B, v}. Since m € mon{a), we may deduce
that either m € mon{f) or m € mon(y) (or both). Without loss of generality we
may suppose the former. Then define PT(a, m) to be the subtree of " formed by
augmenting PT(B, m) with the node «, labeled by m, and the edge Ba (see Figure
1). Note that we have a certain freedom in choosing between £ and v, but we
can make our procedure deterministic by, say, ordering the predecessors of a.

(iii) If « is a ®-node, then again let pred(a) = {6, y}. Since m € mon(«), there must
exist m, € mon(f) and me € mon(y) such that m = mym,. (Again, my and mz are
not uniquely defined, but we can provide a rule for choosing such a pair.)
Dismissing first the degenerate case when one of #u, ms, say my, is 1 (the unit
monomial), we set PT(a, m) to be the subiree of I' consisting of PT(8B, m)
augmented with the node a, labeled by m, and the edge Sa. In general we define
PT(a, m) to be the subtree of I' consisting of the union of PT(8, m;) and
PT(y, mz) augmented with the node a, labeled by m, and the edges Ba, ya (see
Figure 2). For this to make sense we require PT(8, »,) and PT(y, m;) to be
disjoint. But this is ensured by the linearity of I, for if § were a common node
and ma € mon(s), my ¥ 1, we could deduce by Lemma 3.1(iii) that mon(8)
contains a monomial of the form msm and mon(y) one of the form msnz. Hence
mon(a) would contain a monomial of the form nn.m3, which is a contradiction.

It is hoped that the parse-tree is an intuitively appealing construct; essentially it is
a family tree which charts the generation of a particular monomial in the final result.
Those familiar with [4] will note the similarity between our notion and the “parse
function” which is defined there on elements of regular sets.

THEOREM 3.2. Let m be an element of mon(p). Then o € nodes| PT(p, m)] implies
m € confent(w).

Proor. Suppose that @ € nodes[PT (p, m)]. Denote the monomial which labels
a by m,. We are done if we can show that for each o Im/, such that

m,m, = m, 3.1
mn € mon(p) Vn € mon{a). 3.2

For if (3.1) and (3.2) are satisfied, we have m,, € complement(w), m, € mon(«), and
hence m = mm, € content(a). We establish the existence of m/, satisfying (3.1) and
(3.2) by induction on the nodes of PT(p, m). First we note:

(i) Our hypothesis 1s true for the root node p. Take m, = |; then (3.1) and (3.2) are
trivially true.

(ii) Assume the hypothesis is true for ©-node 8 labeled by monomial my. Let y be
the predecessor of # in PT(p, m), and let my satisfy (3.1) and (3.2). We show
that the hypothesis holds for . By construction, mj also labels v, that is, m, =
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my;. We satisfy (3.1) by taking m/, = my and note that since

{mnln € mon(y)} C {m}n|n € mon(B)}
= {mpn|n € mon(B)}
€ mon(p),

(3.2) is also satisfied.

(iii) Assume the hypothesis is true for &-node f8, labeled by monomial m,. Let
pred{f) = {v, 8}, m,, my be the monomials which label y and 8, and m satisfy
(3.1) and (3.2). We show that the hypothesis holds for y. Set m;, = m’zm;. We
observe that m,m; = m,myms = mpmg = m, and so (3.1) is satisfied. Additionally,

{min|n € mon(y)} = {mamsn|n € mon(y)}
C {mpn’|n’ € mon(B))}
C mon(p) by the induction hypothesis,
and so 3.2 is also satisfied. [

We may capitalize on the previous result in a straightforward way. I" contains
| mon(p)| parse-trees corresponding to distinct monomials of p. Distinct parse-trees
may share nodes of I", but the amount of sharing that takes place is limited by
Theorem 3.2. We hope to obtain from this a lower bound on the complexity of I". In
order to make this qualitative argument precise we introduce a weight function for
parse-trees,

3.3 WEIGHT FuncTioN. Suppose T 15 a parse-tree in I'. Define the weight of T,
w(T), to be

w(T) = ¥ |content{a)| ™.

aE@-nodes(T’)
THEOREM 3.3
Y w{PT(p, m)) = |B-nodes(T")|.

memonip)
Proor
T wPT(e, m)

memon(p)

= ¥ h) |content(a)|
memonlp) a€R-nodes(PT{pm)}

| {m]|« € @-nodes(PT(p, m))}|
€@ nodes(I | content{a)|

|{m|m € content(a)} |
aE@-nodes(T") | content(a)|

= |®-nodes(T)]. O

=

(by Theorem 3.2)

Now suppose that for the specific homogeneous, linear polynomial p we have some
bound on the content of nodes in the computation. Specifically, we assume the
existence of a function é(r, d), 2 < r =< deg(p), | = d = |r/2] which satisfies

&(r, dy = max{|content(a}| | o € D-nodes(I'), deglr) = r,
deg(pred(a)) = {d, r — d}},
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irrespective of our choice of T'. We use ¢ to construct a lower bound w on w, which
depends only on the degree of the root.

THEOREM 3.4. Ifw is defined by
w(l)=0, (3.3)

w(r)= min {y(d) +wir—d)+ -E_Zr%d_)}’ (3.4

1=d=ir/2]

then w(PT(x, m)) = w(deg(a)) for all o € nodes(I"), m € mon(a). In particular,
w(PT(p, m)) = w(deg(p)).

Prook. We proceed by induction on tree structure. The result is clearly true
when « is a leaf, and the induction step is trivial when « is a @-node or @-node with

a predecessor of degree 0. Assume, therefore, that o is a ®-node with deg(a) = 7,
pred(a) = {8, v}, and deg(B8) = deg(y), in which case

w(PT(a, m)) = w(PT(B, mg)) + w(PT(y, m,)) + | content(w)| '

1
————— (by induction hypothesis)
2 dez By P

Z min {m(d)+g_v(r-d)+ ! }

1=d=|r/2) c(r, d)

= w(r). a

= wideg(B)) + w(deg(y)) +

It may be remarked that the theorem remains true if the equalities of (3.3) and
(3.4) are replaced by inequalities (<). This observation can be useful if an exact
solution to the original equations is hard to obtain.

COROLLARY 3.5.  For linear, homogeneous p,
[mon(p)|- w(deg(p)) = @-complexity of p.
Proor. Applying Theorem 3.3 to I'yp, we have
¥ w(PT(p, m)) = @-complexity of p,

meman(p)
and applying Theorem 3.4, we obtain
Y, w(deg(p)) = ®@-complexity of p. [}

memon(p)

In the next section we compute content bounds for specific polynomials and derive
the corresponding weight bounds. We show that for several polynomials the lower
bound implied by Corollary 3.5 is tight. In order to help us solve the recurrences
(3.3) and (3.4) we introduce a final lemma.

Lemma 3.6, Ifforalld<r=<n1=d=<|r/2]-1,

i 1 1 1
+ - —
A D T LY W d w—dDn > (3.5)
is satisfied, then the solution to (3.3) and (3.4) is
R |
w(r) = (3.6)

50
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ProOF. By induction on r. The lemma is trivially true for r = 2, 3: otherwise,
) = in ;: ! + S;d ! + .
¥n= o By ATy T g

= min g(d).

1=d=<|r/2}

The observation is that g is a monotonically increasing function in the range 1 =<
d = |r/2), since

| 1 1
gld+ 1) —gld)=

dd+ 1,1 + ard+ 1} dr—d 1) &rd)

=0 by stated condition.

Thus

" 1
wir)=g(l)= zz T 0

4. Complexity of Specific Polynomials

4.1 TTERATED MATRIX MULTIPLICATION. Suppose X', X®, ..., X® are n X n
matrices; X*¥ = x{’ (1= 1, j < n). We are interested in the number of multiplications
required to compute the product

WOXE oo X0 = B w5

sty
We note that any computation for the above can be converted into a computation for
the related polynomial

= 1y, (2} (£) o (t+1)
P= D xfx .- KrggayXrgpiirs

Lipen it
with the addition of at most »* ®-nodes. The number of muitiplications necessary for
matrix multiplication is thus no smaller than (®-complexity of p) — n®.

The first step in establishing a bound on the complexuy of p is to compute a
suitable content bound &r, ). Suppose g is a polynomial with indeterminates x.".
Define the index set [, to be the set of superscripts of the indeterminates occuring in
g. Now consider polynomials a, b, and ¢ of degrees &, r — d, and £ — 5 + |,
respectively, with the property that mon(abc) C mon(p). Looking at the form of
monomials of p, we see immediately that 1., I:, . are disjoint, and, moreover,
|Ll=d |l =r—d |I]=t—r+ 1 Hence {l, I, I.} 1s a partition of {1, 2, ...,
t + 1}. Define the set 4 of articulations to be

A={k)|2=k=1+1, kand k — 1 are in distinct index sets)
V (k= 1, | and ¢ + 1 are in distinct index sets)} .

Next consider a general element of mon(abc),

X - X,
Observe that if k& is an articulation (kK € A), then 7 is necessarily fixed by the
condition mon(abc) C mon( p); otherwise iy 15 free to assume the n possible values.
Hence,

jmon(abc)| = n 14
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Ifr <+ 1, then I, Iy, I. 5% &, which implies (4] = 3;if r = 1 + 1, then 1o, [, # ),
I, = (&, and | 4| = 2. Consequently, we take as our content bound,

o ar <t
&r, d) = {n‘_l (r=1+1).

The recurrence relations (3.3) and (3.4) are easily solved in this case, where ¢ is
essentially a constant. Condition (3.5) is trivially satisfied, and so, invoking Lemma
3.6, we obtain

t+1i
t+D)=%Y —— =~ D@t + 08
w1 2:2 G, 1) (= n n

Hence, by Corollary 3.5,

®-complexity of p = [(f — D™ + 2"~} mon( p}|
= {t — OHn® + %,

and by our initial observation, the number of multiplications required for matrix
muttiplication is (r — 1)n®. (For the case ¢ = 2, our result is implied by a stronger one,
obtained in {10, 15, 16], for the monotone Boolean matrix product.) The obvious
algorithm, derived from the definition of matrix multiplication, yields an upper
bound of (# — 1)r° and illustrates that our bound is tight. Note that since p is hinear
and homogeneous, the conditions of Corollaries 2.7 and 2.10 are satisfied, and our
lower bound 1s valid for matrix multiplication over R, M, and M *.

4.2 ITERATED WRAPPED CONVOLUTION. Suppose £, @, ..., x are n-vec-
tors, % = x™ (0 < i = n — 1). The wrapped convolution of these vectors is the n-
vector y whose components are given by

- 1),. & 4
= S Xk x
tyhigte - timp{mod 1)

As before, we define a related polynomial,

—_ (1) _.(3) &), t+1)
Pp= @ Ko Moy wee Xy Xy oy s

bt -« s im0 (mod 1)
where X “*V is an n-vector, and remark that the number of multiplications required
to compute y 15 at least (&-complexity of p) ~ n.

Consider polynomials a, b, and ¢ of degrees d, 7 — d, and t — r + 1, respectively,
with the property that mon(gbc) C mon(p). As before, define the index set 7, of a
polynomial g to be the set of all superscripts occurring in the indeterminates which
form gq. Again, I,, I, I. form a partition of {1, 2, ..., 7 + 1}. If we now consider a
general monomial,

— W€ 2+1
mattpme = X0 %2 oo x5,

of mon{abc), we see from the definition of p that

E ir + E i + Z =0 (modn)

kSl ksip kel
and, letting m, range over mon(@) while holding m:, m. fixed, we deduce that
Y i,ée is congruent to a constant, modulo #. Similas arguments apply for I, 1., and
hence [mon(abc)| is bounded by the number of assignments which can be made to

I, iz, ..., iiv1 and which fix the above thiee sums. If r < ¢ + 1, then 1, 75, I are all
nonempty, and the number of assignments which can be made is #“ ™, if r=1 + |,
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=1

then /. = &, and there are """ possible assignments. Our content bound is thus

- " (r<i 1),
c(r, d) = {n(z—l) Er =7+ 1;

Observing that this bound is identical to that derived in the previous section, we can
immediately write down

wie+ ) =(@— Dn®? + 0
and so, by Corollary 3.5,

@-complexity of p = [t — Dn®™ + n"""]|mon(p)|
=(@{—1Dn*+n

The number of multiplications required to compute the wrapped convolution is thus
at least {{ — L)n”. That this bound is tight may be seen by considering the algorithm
derived from the definition. Again the bound is valid for R, M and M™.

43 PERMANENT. Suppose X is an n X » matrix of indeterminates, x, (I =< i,j

< n). The permanent function on X is defined to be

pernxn{X) =p = & XLaX2n@ *** Xnrink
»S8{n)

where S(n) is the set of all permutations of the first n natural numbers. The permanent
1s of great significance in combinatorial mathematics, and a comprehensive account
of it is available in [12]. If we associate indeterminate x,, with edge ij in the complete
graph X, on the nodes {1, 2, ..., n}, we see that monomials of per..{(X) correspond
to cycle covers of K. Over R. taking X to be the adjacency matrix of an arbitrary
graph G on n nodes, the permanent can be interpreted as enumerating such cycle
covers in G; over M™*, regarding X as a weight function on the edges of G, the
interpretation is of finding the minimal weight cover. Again, if x,; is associated with
edge i’ in the complete bipartite graph B, on the 2n nodes {1,...,n, 1',..., n'}, then
the monomials of per,x.{X) correspond to perfect matchings in B,. Over R and M
the permanent has the interpretation of counting perfect maichings and finding the
minimal matching, respectively, in a bipartite graph.

Despite its formal similarity with the determinant function, the permanent appears,
in general, to be much more difficult to compute, for whereas the determinant can be
computed in O(n*5?) multiplications/divisions [19], the evaluation of the permanent
for 0, 1 matrices is known to be #P-complete [25], and the permanent function itself
is algebraically complete [26]. However, the min, + interpretation of the permanent
as minimal matching in a bipartite graph (the so-called “assignment problem™) is
tractable, and an Q(n°) algorithm can be found in [8].

To study the complexity of monotone computation of the permanent, we first
determine a content bound. Suppose a, b, and ¢ are polynomials of degrees &, r — d,
and n — r, respectively, with mon(ubc) C mon(p). If ¢ is a polynomial with
indeterminates x,,, we denote by J; and J; the sets

I = {ilx, occurs in g},
Jq = {j|x, occurs in gq}.

If we consider a general element of mon(abc),
MeMpMe = Xim@X20@ * 1 ° Xnatne
we can see that the sets 1., I, and I, are disjoint and

Wal=d, Vo] =7~ d, WLi=n-—r,
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so that {/,, I, 1.} is a partition of {1, 2, ..., n}. Since «# is a permutation, the same
argument yields that {Js, Js, J.} is also a partition. Elements of mon(abc) correspond
to permutations « which observe the restrictions

a(l,) = Ja, a(lp) = Jp, a(l.) = T..

The total number of such permutations is clearly d!(r — d)!(r — r)!, and so we may
take as our content bound,

&r, dy = d'r — d)(n — !

We claim that this bound satisfies the condition (3.5). In order to show this we need
the following, easily validated lemma.

LemMma 4.1, Ifs=2, then(*t7)y=r(s + 1).

Using the substitutions s = r — 2d and ¢ = » — r, condition (3.5) becomes
1 1 1 1
+ - - =0
@+ Ds+d-D1 dis+d+ec— 1D dls+ ! G+d— D+ d)

ford = 1, s = 2, 1 = 0. Equivalently, by multiplying through by (d + D!(s + d — 1)!2!
we obtain

d+1 d+1 d+1
=

(d+s?r—1)_ d+s - (!-O;d)_o

fi,ds)=1+

ford=1,s=2, = 0. We remark that f{1, d, ) is a monotonically increasing function
of 5, for

1 !
fd s+ ) =—find =@+ {(d+ S+ DW@+s) @+s+ t)(d“j‘*l)]’

and we have two cases:

(1) t = 0: the difference is clearly positive.
2 i>

(d+ DL/ + 5y = 1/(+ 5+ 1)]
S d s+ 1) =find )= Fra T —

- (d+ D[1/(d+5)— 1/(d+ 5)]
- d+s+1

(by Lemma 4.1)

=0 -

Hence it is sufficient to show that f(t, d, 5) = 0 when 5 = 2. However,
d+1 d+1 d+1

fled =1 +(d+5+l) Td+2 G
_ 1 N @+1 d+1
d+2 (d+r+ 00N (1D
1 0d + 1)

Td+2 @O
‘We consider three cases

D=0 f0,d4dD=1/d+2)=0.
@Ryd=1 flr, L2))=1/3-2/¢+ Dt +2)=0.
PRd=Lt=0 fr.d2y=1/(d+2)— 1/(d+ 1+ 1)=0(by Lemma 4.1).
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Thus we have shown that condition (3.5) holds and deduce from (3.6) that

_ l X (-D] _ 21—
win) EZ (—-Dn=-if (-1 (-1
By Corollary 3.5,
. 2>t -1 _
®-complexity of p = T n(2 1).

This lower bound is in fact attained by the permanental equivalent of Laplace’s
expansion rule for determinants. Essentially, we form the permanents of all the
r X r submatrices contained in the first  rows of X (the “subpermanents” of the first
r rows) recursively from all the (r ~ 1) X (r — 1) subpermanents of the first r — 1
rows, The upper bound of »(2"™* ~ 1) is then implied by the recurrence C(r) =
C(r — 1) + r(7), C(1) = 0. Clearly we can obtain variants of this algorithm by
permuting rows of X and transposing X; what is more interesting is that the optimal
algorithm lacks uniqueness in a nontrivial way, this stemming from the observation
that several “shapes” of parse-tree all have optimal weight. More precisely, when
r=n— |, the value of w(d) + w(r — d) + 1/&(r — d) is mdependent of d, which leads
to the following family of optimal algorithms for | =sr=<n — 2

(i) Evaluate all f X ¢ subpermanents of the first 1 rows using Laplace’s expansion.
(ii) Evaluate the (n — ¢+ — 1) X {(n — ¢ — 1) subpermanents of the rows ¢ + 1,
t+12,...,n—1in the same way.
(iii) Use the results of (i) and (ii) to compute all (# — 1) X (» — 1) subpermanents of
the first n — 1 rows.
(v} From (iiv) compute per(X) by Laplace’s expansion.

We note that, once more, the lower bound is valid for &, M, and M*.

4.4 HamiLtoNiaN Circurr PoLYNOMIAL. Suppose again that X is an n X n

matrix of indeterminates, x,, (1 = i, j < n). The Hamiltonian circuit polyromial is
HCrxn=p = D X X2r2 - Xnmtah
#&ln)

where C(n} is the set of all cyclic permutations of the first #» natural numbers. If we
regard each indeterminate x,, as representing the i/ edge of the complete graph K, on
themnodes {1, 2, ..., n}, we note that the monomials of p correspond to Hamiltonian
circuits in K,. Over R, the polynomial can be viewed as enumerating Hamiltonian
circuits on a graph with n nodes, while the corresponding interpretation for M™ is
that of finding the shortest circuit which covers all nodes of a graph—the so-called
Traveling Salesman Problem.

In the usual way we let @, b, and ¢ be polynomials of degrees d, r — d, and n — 7,
respectively, with mon(ahc) C mon(p). Using the same reasoning as for the perma-
nent, @, b, and ¢ define two partitions of {1, 2, ..., n}, namely,

{{a, s, 1.} and {Jar Jo, Je}.
If we consider a general monomial of abe,
MaMpM = X () X2z (@) **° Xaminn
we have that
7({a) = Ja, w{ds} = Jb, and 7(l)=J.,

and so jmon(abc)| is bounded by the number of cyclic permutations 7 which satisfy
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these constraints. Suppose we fix ms, m., that is, fix 7 on I U I.;; we wish to know the
number of possible choices for m,, that is, the number of ways of extending = to /...
Define

W*:Ia — Ia, W*(i) = Wa(i),

where ¢ is the smallest positive number such that #°(f) € I, (such an « exists since
w is cyclic). Informally, viewing « as a circle, #* is the circle obtained by deleting
vertices not in 1. Note that 7 is completely determined by «* and the restriction of
a to I, U I.. We observe that #* is a cyclic permutation; hence the number of
extensions of = 1o 1, is bounded by the number of cyclic permutations on d objects;
that is,

|monfa)| < (d — 1}!.
Similarly,
|mon(b)| < (r —d — 1)

and
=(n—r-—1) (r <n),

jmon(c) | {= 1 r =),

the second case being the degenerate one when I, = . Consequently, we take as our
content bound

- _d-Dr=d-Dlin—-r-1 (r<n),

&r. d) = {(d — )l —d— I} (r = n).
By an argument completely analogous to the case of the permanent, we can show
that this bound satisfies condition (3.5), and hence applying (3.6 we obtain

r—s 1 i
w(n) = ,§2 (i—n—i- 1) * {n— 2}
rn—1 n—3 1

= Z 1—2

S@=3) (n-2%
2" -2+
T (n =2

By Corollary 3.5,
{n— D2"n - 2) + 1]

(n—2)
= (n = D[(n — 22 + 1].

®-complexity of p =

Again this bound is valid for R, M, and M™*, and is attainable. Let p,;, for
Lje(L2,....,n}, IC{l, 2, ..., n}\{j J}, be the polynomial corresponding to all
Hamiltonian paths in K, which start at node i, end at node j, and pass through all the
nodes in 1. We may form p1 s, recursively as follows:

Prozs = X1;

Py = X Prnuky (I &).
1=l

Generating all p.x, (|I] = r) given pir,(|I'| = r — 1) can be achieved using
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r(n — 1)("; 2) multiplications, so we can compute pi, 3 ,n\,; 0

St - l)(" - 2) —- -2 S (" N 3)

r=1 A\r— |
=(n— Dn-22""

multiplications. Now
n
HCpxr = B Prizs,  mhgiXn
=2

so it can be computed in
(n=1Dn=-22"2+m-1)

multiplications. We highlight a close connection which exists between the Hamilton-
ian circuit polynomial and self avoiding walks in a graph. Define the self avoiding
walk polynomial to be

n—1
SAann. = @ @ Ko Xyjay o0 0 Xy 1y
k=1 19,1y, 3 distinct
=1, 5=n
so that monomials correspond to simple paths from 1 to n in the complete graph K.
We remark that

&-complexity of HCin—nyx(n—1) = @-complexity of p1¢23, .n-13,n

since a computation for the latter may be transformed into one for the former by
changing the inputs x,. to x.. Hence our lower bound for HC.x, implies a lower
bound of (n — 2)[(n — H2“Y + 1] multiplications for p1 2z, ..n-13.n. However,
Prea. . .n-1.n = he(SAWy.x,), and so by Theorem 2.4 and Corollary 2.7 we obtain a
lower bound of (r — 2)[(n — 3)2"~% + 1] multiplications for SAW,.., when we are
working with the semirings R and M (but, as will be shown, not M™*). Again we can
attain the lower bound; we simply compute p, s, for all f# n, n & I and note that

SAW,xn = x1, D [ $2] {( > Pu.;)x;n}]-
I%ln ngl

4.5 SpanNING TREE POLYNOMIAL. Suppose X is an n X n matrix of indetermi-
nates x,; (1 < i, j < n). Define the spanning tree polynomial ST,x» t0 be
STxa =p= @ X2.02X3,03) *~~ Xntin)
teT(n)
where T(n) = {£:{2,3,...,n} - {1,2,..., n} | Vi3kt*(i) = 1). Note that monomials
correspond to directed trees spanning K, and rooted at node 1. All our lower bounds
so far have been attainable; in this case we are unable to obtain a precise lower
bound. We therefore content ourselves with a crude bound on the content of a node,
which, however, is good enough to yield an exponential lower bound on the
&-complexity of ST, Let a, b, and ¢ be polynomials of degrees d, r — 4, and
n — r — 1, respectively, satisfying mon{abc) C mon(p). In the usual way we define
the index set I, of a polynomial g to be

1, = {i| x,; is an indeterminate of ¢},
and note that {7, I,, I.} is a partition of {2, 3, ..., n}. Let

X, = {xy| x;; is an indeterminate of @, b or c}.
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Obviously, ¥7-z | X,] = (» — 1)°, but we may improve on this trivial bound by the
following observation. Suppose i, € I, and i;, € I; then the indeterminatesx, ,, and
Xy, cannot both appear in Ul X;, for if they did, x,,, would appear in g, x,,,,
would appear in b, and the invalid monomial x, ,,x,, m would appear in mon(abe).
Thus a better restriction is

n

Llx|=n- 2 = Ll 1| = [l | = | Il Lo
=(n— 1Y —-dor—d)-@—-din—r—-D—(n—r-1)d
=m—DE—dir—dy—rin—r— 1.
The number of monomials in mon{abc) is clearly bounded by the number of
functions
0:{2,3,...,0 > {L2,...,mn}

which respect x,.) € X, for 2 < i < p; this number is just [[7.z| X.|. The product is
maximized when | X, | is independent of i; thus,

m—-W—-do—d)—rin—r— 1):’(11—13

|mon(abc)| < &(r, d) = [ 7 —1

It has been remarked that if a tight lower bound is not required, the equalities
(3.3) and (3.4) can be changed to inequalities (<) without affecting the veracity of
Theorem 3.4. We show that, taking w to be

w{r) =0 (r < g),

(1-n)
o 1)

(3.3) and (3.4) are satisfied as inequalities. In fact, (3.3) is trivially satisfied, and (3.4)
is satisfied providing we can show that &(r, d) = (3n/4)"™" whenever n/2 < r=
n—1and d < (r — d) < n/2. Holding r constant, we find that &(r, d) achieves its
maximum in the stated range at d = r — [4a] + 1, and, allowing r to vary, we {ind the
overall maximum to be at r = n — 1. Therefore, in the range in question,

_ 2 _ _ (n=1)
&, d) = [(" b - _)f':(%” l)]
3?74 =302 + 177"
- n—1

(n—1)
=(2)
4

But {mon(p}| = n®® [13], and hence, by Corollary 3.5,

3n (1-n) 4 {n=1)
®-complexity of p = (T) 2 nAl(g) .

In this way we obtain an exponential bound valid for R, M, and M, that is, for the
problems of counting the number of spanning trees of a graph or of finding in a
graph such a tree of minimal weight.
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5. Discussion of Results

We have obtained lower bounds for the @-complexity of a wide range of fuactions
in different semirings. Some of these results, such as the exponential lower bound for
the minimal spanning tree computation, stand in stark contrast to the known
tractability of the problem and raise questions as to the relevancy of our results to
actual computations. Our lower bounds can therefore be interpreted in two comple-
mentary ways; on the one hand they deny the existence, for many problems, of fast
“combinatorial” algorithms which work independently of the domain of computa-
tion, while on the other hand they affirm the power of algorithms which exploit the
algebraic 1diosyncrasies of a specific problem. In Sections 5.1 and 5.2 we explore the
efficiency which can be gained by using less restrictive models of computation.

5.1 THE POWER OF NEGATION. Our model of computation suffers fram two
weaknesses, The more obvious is the restriction on the allowed operations. In ¢he
arithmetic case we considered only computations not involving subtraction. It was
already known that such a restriction could entail an exponential penalty; [27] treats
the example of perfect matchings in a planar graph. In the same vein, cur resulis
indicate an exponential gap for the spanning tree polynomial. From Section 4.5 we
see that any monotone arithmetic computation for the spanning tree polynomial
requires at least n”'(3)™ " multiplications; in contrast, if negative constants are
allowed, the same polynomial can be expressed as an n X n determinant whose
elements are linear combinations of the indeterminates [13], and this determinant
can then be evaluated (without divisions) in O(»”**) multiplications using the method
of Strassen [23]. Even for functions which have polynomial monotone complexity,
subtraction is still helpful. From Section 4.1 we have that in the monoione case,
multiplication of two n X n matrices requires at least n® multiplications, whereas,
allowing negative constants, Schonhage’s method [19] computes the product in
O(n***) multiplications. Similarly, a gain can be achieved for the convolution of
Section 4.2 using the fast Fourier transform methoed [}, p. 257]. A very modest gain
can be demonstrated for the permanent function: refermng to Sectien 4.3, any
monotone computation requires at least 2(2"""" — 1) multiplications; however, nsing
a modification of the inclusion-exclusion method of Ryser [14, p. 158], the same
computation can be effected using subtraction in only (#» — 122" + 3 multiplica-
tions. The interest in this case is that, although small, the complexity gap is the only
one we know for a 0-1 polynomial which is complete in the sense of [26].

All this evidence points to the value of complex algorithms which exploit the
particular characteristics of the domain of computation, in this case, the ability to
form monomials which cancel out in subtle ways in the final resuli. Of particular
interest is the power of linear algebra to make tractable polynomials whose monotone
complexity is exponential. By contrast, it is noteworthy that augmenting our set of
operations with division and performing computation over the rational functions is
of limited value, as division can be stimulated by truncated power series J23).

5.2 THE Power OF BrancHING. The second weakness of our model is less
obvious, since it is not usually encountered in algebraic complexity. We used what is
essentially a straight-line algorithm (sla) model to measure the complexity of com-
putation, neglecting the additional computational power that branching (test and
branch instructions) can provide. It is well known [24] that branching cannot help in
the computation of polynomiais over an infinite field, so that our model is adequate
for R in this respect. The situation is, however, completely different in M or M”,
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where branching can yield dramatically shorter computations. To return to the
example of the directed spanmng treée polynomial from Section 4.5, we learn that
n~ (3" additions are necessary to compute the polynomial using an sla, whereas
it can be computed in O(m’log n)min, + operations if we allow branching
[8, p. 348]. As another demonstration of an exponential gain we might consider the
permanent, which over M™ is connected with the minimal assignment problem. In
our model the permanent requires n(2"~" — 1) + operations but with branching can
be computed in O(n’) operations (8, p. 205]. Indeed, we can paraphrase [27] and
assert that “branching can be exponentially powerful.”

5.3 FORMALLY IDENTICAL POLYNOMIALS OVER DIFFERENT SEMIRINGS. Another
lesson we may draw is that the algebraic idiosyncrasies of different semirings can
cause the same formal polynomial to have radically different complexities, In fact,
we have only one consistent relation between the semirings we examined: it was
always easier to compute a 0-1 polynomial in B than in M, M*, or R. (Loosely
speaking, checking the existence of a solution to a problem is always easier than
finding the minimal solution or counting their number.) This gap can be exponential;
the spanning tree polynomial ST has exponential complexity over M, M™, and R but
polynomial complexity over 8. Over B, ST(X) = 1 if and only if the graph whose
adjacency matrix is X has a spanning tree, that is to say, if and only if it 1s connected.
However, the connectedness function can be monotonically computed in O(n®)
operations by computing the transitive closure X* of X and AND-ing »* coefficients
of X* [1, p. 199]. Another interesting example is provided by the sclf-avoiding walk
polynomial SAW. If x,, is the length of edge ij in K., then SAW(x,,) 15 (1n M, M™)
the minimal length of a self-avoiding walk fron node 1 to node 2. In M™ this is equal
to the minimal length of a path from 1 to n and can be computed in O(n®) operations
[, p- 202]. In M, however, the problem has exponential complexity. The same
exponential bound is valid in R for the problem of counting the number of self-
avoiding walks (where x,, is the adjacency matrix of the graph).

5.4 OTHER SEMIRINGS. The results presented here may be extended to other
algebraic structures. We can, for example, consider the semiring of real numbers
together with ~o and the operations max and +. It is dual to the M semiring, and
the same results are valid. Thus, computing the maximal weight of a spanning tree,
the maximal length of a setf-avoiding walk and the maximal weight of a matching all
require an exponential number of operations, even when computation is restricted to
positive mputs.

One might also consider seminngs in which we drop the condition that multiph-
cation is commutative. For example, letting X = {x,, ..., x,.}, we might consider the
semiring L{ XT of finite languages over X with the operation & being concatenation
and & being union. By viewing B{ X'] as the quotient of L] X] by the commutative
dentity x @ y = y & x, we can see that any lower bounds abtained for 8{ X ] are valid
also for L[ X]. In order to obtain tight bounds, however, we may need to take into
account the noncommutativity of ® by redefining the content function in an obvious
way. Let the complement of a node a be the set of ordered pairs of monomials,

complement(a) = {(mm1,, m2)|¥m € mon(w), mymm; € mon(p)},
and define the content of « to be
content(a) = {mymmz|m € mon(a), (rm, m;) € complement(a)}.

Using this amended definition, the arguments of Section 3 go through as before, and
we can achieve nontrivial lower bounds such as (2" — 2) for the number of
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concatenations required to compute

U XL Xe(2) *** Xnin)s
w=S(n)
the language of all strings which are permutations of the symbols x;, x3, ..., x, (see
[6] for related results).

5.5 FUrUuRE DIRECTIONS. Perhaps the most obvious shortfall in our technique is
our inability to produce tight lower bounds of the number of additions required to
compute a function which would match our results for multiplications. The best tools
at our disposal at present are the “separated sets” of Schnorr [18] and the “fan in”
argument of Shamir and Sair [20]. It would be interesting to find good absolute
bounds or demonstrate some trade-off between the number of multiplications and
the number of additions necessary to compute a funciion.

We have already mentioned that our results do not extend to unrestricted arithmetic
computation; the hope is however that some refinement of the approach might enable
us to deal with monotone Boolean computation. At present, lower bounds have been
achieved only for linear and bilinear functions, and atlempts to extend methods for
monotone arithmetic functions to Boolean functions have not been fruitful; a
conjecture that the technique of [18] could be applied to monotone Boolean com-
putations has been disproved by Wegener [29].

Another possible extension of the method is to define new “content” and “degree”
functions with the same formal properties as the familiar ones used here. This
approach is used in [21, 22] to obtain lower bounds for the symmetric function (i.e.,
that function which contains all the linear monomials of given degree over a fixed set
of indeterminates) and can quite possibly be used to extend the results obtained here
for wrapped convolution to polynomial multtplication.

Finally, further research on the complexity of algorithms set in formal, weak
algebraic structures might yield a classification of problems as “algebraic™ versus
“combinatorial,” that is, between those problems which have fast sohutions based
on the complex atgebraic properties of the domam of computation and those
which do not.

Appendix

The two characterization theorems, 2.5 and 2.8, are essentially equivalent forms of
the basic separation theorem in convexity theory. We shall use it in the following
formulation.

THEOREM Al [FARKAS]. Letf,f,ER", b, b ER, fori=1,..., k. The following
iwo assertions are equl valent.

(1) The system of mequalities
(firidl) = b, i=1...,k
implies the inequality
{f-i) = b
(i) 3A,, ..., Ai such that
Az0 f=YAL b= ¥ Ab.
Proofr. See[5 Th.4]. 0

CoroLLARY A2. Leem m ER" c,a, ER, fori= 1, ..., k. The following two
assertions are equivalent.
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HYaeR" (mu) +cz=minmi{m- i) + a.
(i) Iy, ..., Ap such that

A=0, TA=1,
m=Y Am, c= 3 ha,.

PrOOF. (i) is equivalent to the assertion that in R™" the set of inequalities
{m.i2)y+a=v, i=1,...,k,
implies the inequality
m-u)y+c=v.

By taking, in Theorem Al, £, = (m,, —1), f = (m, —1), b = —a,, and b = —c, the above
assertion is seen to be equivalent to the existence of Ay, ..., Az such that

=0, m, - =Y \Nim, =1, —c =¥ A(—a),
which yields the desired result. [

Corollary A2 does in fact provide the required proof for Theorem 2.5. The validity
of Theorem 2.8 follows from the following corollary.

COROLLARY A3. Letemy,mER" a,cER, fori=1,..., k. The following two
assertions are equivalent.

G VaeR"uz0={m-u) + czmm,(m-it) +a.
(i) 3Ny, ..., As such that

A=0, Yau=1,
m=Y \m, =Y A,
Proor. (i) 15 equivalent to the assertion that in IR"*’ the system of inequalities,
w, =0, j=L...,n
{m-dy +a=v, =1, ...,k

implies the inequality

(m-dy +c=v.

Setting, in Theorem 2.5, f, = (m,, =) fori = 1, ..., k; fur, = ¢, the jth unit vector,
forj=1...,mb=—afori=1 ..., kby,=0forj=1 ...,nf=(m—1)
and ¢ = —c, we obtain that the above assertion is equivalent 1o the existence of

AL ..., Aztn such that
A =0,

k n
(m, =)= ¥ A(mi, =) + 3 Myy(e, 0),
=1 i=1

k
~—c= 2 ?\L(_a!)-

t=1

This yields the desired result. []
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