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ABSTRACT The problem of computing polynomials in certain semmngs is considered. Precise bounds are 
obtained on the number of multiplications required by straight-hne algorithms which compute such 
functions as iterated matrix multiplication, iterated convolution, and permanent Usmg these bounds, tt is 
shown that the use of branching can exponentially speed up computations using the min, + operations, 
and that subtraction can exponentially speed up arithmetic computations These results can be interpreted 
as denying the existence of fast "universal" algorithms for computing certain polynomials 
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1. Introduction 

Finding the number  o f  operations necessary to compute  polynomia l  functions is an  
old problem in algebraic complexity.  Even for seemingly simple computat ions ,  such 
as matrix multiplication, this p rob lem is still unsettled despite long- term efforts. In  
fact, p rofound  algebraic methods  seem necessary to obtain  all but  most  trivial results, 
and fast algori thms can be built by  using nontrivial  algebraic properties o f  the 
domain  o f  computat ion.  (See [2] for an  introduct ion to this field, [19] for state-of-the- 
art matrix multiplication.) 

A n  obvious  (cowardly?) escape f rom the difficulties o f  the general problem is 
provided by  restricted computa t ional  models. Thus,  in the field o f  Boolean complexi ty  
much  work has been done on mono tone  Boolean computat ions,  which are more  
tractable than  computa t ions  using negations (see [7, 10, 15, 16, 28]). Similar work has 
been done  on  mono tone  ari thmetic computat ions,  that  is, computa t ions  using only 
positive constants, addition, and multiplication [18, 20-22]. In  both  models  it is 
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relatwely easy to prove that matrix multiplication requires n z scalar multiplications. 
Of  the same flavor are results concerning regular expressions not using complemen- 
tation or intersection [4, 6]. 

Some arguments can be brought in favor of considering restricted computational 
models. Thus, monotone arithmetic computations have absolute numerical stability 
[11]; monotone Boolean circuits are easier to test (see [9]). The main argument 
however is that monotone computation is more "natural," whenever applicable: 
restriction to monotone arithmetic essentially means restriction to algorithms for 
which correctness can be deduced from the associativity, commntativity, and distri- 
butivity of addition and multiplication (see [21]). It follows that the family of  
monotone computations as essentially the same in any semiring (i.e., a domain with 
two binary operations, @ and ®, both associative and commutative, with ® distrib- 
uting over ~)). Algorithms can be built uniformly for different semirings, and lower 
bounds can be proved uniformly for this class of "universal" algorithms. 

Shorter algorithms can be built for most of  the arithmetic functions we shall 
consider by taking into account the existence of  an additive inverse in the field of  
real numbers ~ .  Similarly, the use of  the extra axioms of  Boolean algebra can yield 
smaller circuits. We have a trade-off between the simplicity and generality of  our 
algorithms, on the one hand, and their efficiency on the other, that is, between the 
complexity of the algorithm and the complexity of a validation of  it. When a fixed 
specific function is under consideration, the balance is tilted in favor of  the shortest 
computation. The situation might be different from a system which has to derive 
from an implicit description of  a function an explicit algorithm for its computation, 
as well as actually computing it (such an ability might be required of  the next 
generation of  compilers). It is therefore essential to have a good understanding of  the 
trade-offs incurred when the domain of  allowed computations is restricted. 

We consider essentially two semirings: the semiring R of  nonnegative real numbers 
with the usual addition and multiplication (monotone arithmetic), and the semiring 
M (M +) of  (nonnegative) real numbers with the operations of  minimum and addition. 
The latter structure has frequently been used to formulate and solve optimization 
problems (see [1, p. 195; 3]). 

In Section 2 we show that the problem of computing a polynomial function in 
these semirings is related to the problem of  computing a formal polynomial over the 
semiring. This in turn is as hard as computing a similar formal polynomial over the 
Boolean semiring B ((0, l} with the two operations or, and). Formal polynomials 
over B are essentially finite sets of  integer-valued vectors, with addition being union 
and multiplication being componentwise addition. Computations are combinatorial 
in character, and we develop in Section 3 a combinatorial method which yields lower 
bounds on the number of  multiplications needed. This is achieved essentially by 
abstracting from the computational task considered a suitable combinatorial opti- 
mization problem. Several applications are considered in Section 4: the computation 
of  the product of  m n × n matrices takes (m - l)n a multiplications; the wrapped 
convolution of  m n-vectors is computed in (m - l)n z multiplications; the computation 
of  the permanent takes n (2 n-I _ l) multiplications. All these bounds are tight. Several 
other functions, which are related to optimization problems, are also considered. A 
discussion of  the results follows in Section 5. 

2. Definittons 

2.1 SEMmINGS AND POLYNOMIALS. We introduce here the (fairly standard) al- 
gebraic terminology we shall subsequently be usmg. 
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A semiring is a system (S, ~3, ®, 0, 1), where S is a set, @ (addition) and @ 
(multiplication) are binary operations on S, and 0 and 1 are elements of  S having the 
following properties: 

(i) (S, @, 0) is a commutative monoid, that is, @ is associative and commutative 
and 0 is an identity. 

(ii) (S, ®, 1) is a commutative monoid. 
(iii) ® distributes over ~ ,  that is, a ® (b f~ c) = (a ® b) @ (a ® e). 
(iv) a G O  = O. 

We shall subsequently use the following semlrings: 

(i) The Boolean semiring B = ((0, 1), V, A, 0, 1) (V being Boolean disjunction and 
A being conjunction). 

(ii) The semiring of  nonnegative real numbers with the usual addition and multi- 
plication R = (~+,  + , . ,  0, 1). 

(iii) The semiring M - (R*,  min, +, +o% 0), where IR* = R U {+o0), min is the 
binary minimum operation, and + is the usual addiuon. 

(iv) The semiring M + -- (~+*, min, +, +oo, 0), which is the subsemiring of  M 
obtained by restricting the domain to nonnegative real numbers. 

Let S be a semiring and X = (xx . . . . .  xn) a finite set of  mdeterminates. We denote 
by S I X ]  the seminng of  (formal)polynomials obtained from S by adjunction of  the 
indeterminates xl . . . . .  xn. Each monomial  m -- x~ ~ • . .  xh  ~ is uniquely determined by 
the vector of  exponents (ix . . . . .  in), so that we can identify monomials with elements 
of  IN". Each polynomialp ~ S I X ]  may be uniquely written in the form 

a~ 1 .... x~x ~n (2.1) . , ,  Xn) 
P (h, ,~) ~1'~ 

where only finitely many coefficients a~ . ~ ~ S are different from zero, so that we 
can identify polynomials with functions from IN~ to S with finite support. Thus, if 
p ~ S [ X ] ,  m ~ IN~, pm will denote the value of  the coefficient o f p  with index set m, 
and eq. (2.1) can be rewritten as 

p = • pmm. (2.2) 
m E I N  n 

S is embedded in S I X ]  by identifying each element s ~ S with the constant 
polynomial  sx  ° . . .  x °. (For a more elaborate approach see, e.g., [17, Sec. 671. ) 

We introduce some terminology pertaining to S [ X ] .  We assume henceforth that 
p is a polynomial given by eq. (2.2) and m is a monomial given by m = ( tx , . . . ,  in). 

(i) The monomial  set o f p  is 

mon(p) = (m  ~ lNn]pm y~ 0). 

(ii) The degree of  m is 

(iii) The degree o f p  is 

deg(m) = ~ /j. 

deg(p) = m a x { d e g ( m ) [ m  ~ mon(p)) .  

(iv) p is homogeneous if all its monomials have the same degree. 
(v) m is l i n e a r i f m  ~ {0, 1} n. 

(v0 p is linear if all its monotnials are linear. 
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To each polynomial p ~ SIX] is associated a polynomial function pp: Sn---~ S, the 
function whose value at (al . . . . .  a , )  is obtained by substituting a, for x, in p. The 
map ~, is a homomorphism from SIX] to the semiring of functions [S n ~ S], with 
pointwise addition and pointwise multiplication. We denote by P~(S) the image of 
SIX] under p, that is, the subsemtring of polynomial functions. The map p need not 
be injective, as two different polynomials, for example, x and x ~ in B[x], can 
represent the same function. 

2.2 COMPUTATIONS AND COMPLEXITY. Let S be a semiring. A computationI' in 
S with input set I C S is a labeled, directed acyclic graph (dug) with the following 
properties: 

(i) Nodes of 1 ~ with indegree 0, termed input nodes, are labeled by elements of  I. 
(ii) The nodes of  1-' which are not input nodes, termed internal nodes, all have 

indegree 2 and are labeled either by (9 or ®. 
(ifi) There is a unique node p of P of outdegree 0, termed the output node. 

If  there is m F an edge directed from node a to node fl, then a is a predecessor of 
fl and fl a successor of a. The ancestor relation is the transitive closure of the 
predecessor relation; the descendent relation is the transitive closure of  the successor 
relation. 

A result function, res:nodes(I') --~ S, is defined recursively on the nodes of 1 r in 
the following manner: 

(i) If a is an input node labeled by i E / ,  then res(a) = i. 
(ii) If  a is an internal node labeled by @ (a @-node) with predecessors fl, y, then 

res(a) = res(fl) @ res(v). 
(ifi) If  a is a ® node with predecessors fl, -/, then res(a) = res(fl) ® res(7). 

I" computes s if res(p) = s, where p is the output node of  P. 
The ® (@) -complexity of 1-' is simply the number of ® (~) -nodes of  F. The 

® (~) -complexity of s ~ S with respect to 1 C S is the minimal ® (~) -complexity of 
a computation with input set 1 computing s. Of particular interest to us will be 
computations of polynomials in S[X] and polynomial functions in Pn(S). For 
computations in SIX] the input set will always be assumed to be S LI X, and for 
computations m Pn(S) it will accordingly consist of the constant functions and 
projection functions. Thus the ® (~) -complexity of a polynomial (polynomial 
function) will be understood to mean the ® (@) -complexity with respect to 
these sets. 

Whenever an algebraic structure is homomorphic to another, computations in the 
first structure are related to computations in the second, and so complexity results for 
the second structure translate into results for the first. Indeed we have 

LEMMA 2.1. Let S, S'  be semirings and r : S--~ S'  a homomorphism. Let I ~ compute 
s E S with input set I C S. Let F' be obtained from r by relabeling each input node with 
label i ~ I by ~(i). Then I" is a computation in S' wlth input set "r(I); for each node a 
ofF,  if r = res(a), then r(r) is the result at a in I ~'. In particular, F' computes ~'(s). 

COROLLARY 2.2. Let S, S'  be semirings, • : S ~ S'  a homomorphism. 

(i) The ® (~3) -complexity of s E S with respect to I C S is no smaller than the 
® (fi)) -complexity of z(s) with respect to ~'(I). 

(it) I f  ~ is surjective, then the ® (~) -complextty of  s' ~ S'  with respect to 1 C S'  is 
equal to the minimal ® (@) -complexity of an element s E ~'-l(s') with respect to 

-1(1). 
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As an important application of Corollary 2.2. we obtain, having in mind the 
mapping from polynomials onto polynomial functions, 

COROLLARY 2.3. The ® (~) -complexity of a polynomial function f is equal to the 
minimal ® ((~) -complexity of a polynomial representing f. 

The above result is very useful in semirings in which each polynomial function is 
represented by a unique polynomial (indeed, in such cases, it is customary to blur the 
distinction between them). Such is the case for the semiring R. Thus, in this semiring 
the ® (@) -complexity of a polynomial p equals the ® (@) -complexity of the 
polynomial function it represents. This is not true in general for the semirlngs M, 
M ÷, and B in which there is no unique representation of polynomial functions. 
Secuon 2.3 will deal with this problem. 

Our complexity results will be derived in the first instance for polynomials in 
B[X]. These results can be extended, using Corollary 2.2, to any other polynomial 
semiring S[X], provided that we can exhibit a homomorphism from S[X] to B[X], 
mapping S t3 X into B t3 X. But any homomorphism ~-: S ---* B extends naturally to 
a homomorphism ~": S[X] --~ B[X] which maps S into B and x, onto itself. For all 
three semirings R, M, M + such a homomorphism exists and is given by 

= ~ 0 a  if a---0s (0s is 0 in R and +oo in M, M+), T(a) 
L 1B if a#Os. 

It should be mentioned that "r maps polynomials with 0-1 coefficients into formally 
identical polynomials, and thus any lower bound obtained for the ® (~) -complexity 
of a polynomial p ~ B[X] yields immediate lower bounds on the ® (@) -complexity 
of the formally identical polynomials in R[X], M[X], and M÷[X]. 

As has been remarked, in the case of  M[X] and M+[X] the canonical homomor- 
phism v from formal polynomials to polynomial functions is not an isomorphism. 
The remainder of Section 2--which is self-contained and can be omitted--establishes 
the machinery required to deal with this problem. 

2.3 ENVELOPES AND COMPUTATIONS IN MIN, +. As will be seen in Section 3, our 
methods are better suited to handle homogeneous polynomials. We can however 
extract, from any polynomial, homogeneous components which are simpler to 
compute. Let p ~ S[X] be given by eq. (2.2) and k = min(deg(m)lm ~ mon(p)).  
The lower envelope ofp  is given by 

l e ( p ) =  @ p,~m. 
deg(m)~k 

Similarly, if K = max{deg(m)lm ~ mon(p)),  then the higher envelope o fp  is given 
by 

he(p) = d~g~-K prom. 

Thus le(p) (he(p)) is obtained from p by preserving only the terms of minimal 
(maximal) degree. Now assume that the function z of the previous section is indeed 
a homomorphism. 

If p = ql ~ q2, then 

if deg(le(ql)) = deg(le(q2)), then le(p) = le(ql) @ le(q2), 
if deg(le(ql)) < deg(le(q2)), then le(p) = le(ql), 
if p = q~ ® qz, then le(p) = le(q~) ® le(qz). 

Similar relations hold for the higher envelope. 
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It is thus obvious that any computation of p ~ S[X] can restructured, by 
appropriately discarding some of its additions, into a computation of  le(p) (he(p)). 
We thus have 

THEOREM 2.4. Let p ~ SIX]. The • (®) -complexity of  p is no smaller than the 
(®) -complexity of  le(p) (he(p)). 

Let us now turn to the semirings M and M +. We shall investigate how the structure 
of a polynomial is determined by the function it represents. We assume p ~ M[X]  
(p ~ M+[X]) ts given by 

k 

p = ~) a,m~, (2.3) 

where a, ~ +~, m, C IN". The functionfrepresented byp  is 

f(ff) = f ( u l  . . . .  , u,j = min(m,.ff) + a,, 
l 

where (ft. ~) denotes scalar product. We associate with f the set G r ( f )  _C ~,+1, 
which is bounded above by the graph o f f  

Gr ( f )  = ((ul . . . .  , u,, v)lv <_ f(tT)} 
= ((if, v)[v<_ (m,.ff) + a~ for i =  1 . . . .  ,k}.  

G r ( f )  is the intersection of k closed half-spaces corresponding to the k terms of p 
and has nonempty interior (unless p = -m). There is a unique minimal family of 
half-spaces whose intersection yields Gr( f ) ,  each half-space being bounded by a 
hyperplane which contains one of the n-dimensional faces of the (n + l)-dimensional 
polyhedron Gr(f) .  It follows that there is a unique set of terms o f p  which appears 
in any polynomial representing f .  We have also a nice characterization of the 
remaining (redundant) terms. 

THEOREM 2.5. Let f ~ Pn(M) be a polynomial function over M. There exists a 
unique set of  terms T = (a,m,} such that i f  p represents f in M[X], then 

(i) each term of T occurs in p; 
(i 0 if a'm' is a term of p, then there exist ~1 . . . .  , An such that 

A~ _> 0, Vi, (2.4) 

Y, h~ = 1, (2.5) 

m' = ~ A,m,, (2.6) 

a' >_ Y, A,a,. (2.7) 

(Each monomial ofp  is a convex combination of the essential monomials, with its 
coefficient bounded below by the convex combination of thetr coefficients.) 

PROOF. See the appendix. [] 

The characterization of Theorem 2.5 yields a unique representation theorem for 
certain funcuons. 

THEOREM 2.6. Let p, q ~ M[X] represent the same function. Then 

(i) l f  p is linear, then p = q; 
(ii) if le(p) (he(p)) is linear, then le(p) = le(q) (he(p) = he(q)). 

Jukna
Line
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PROOF 

(i) Let T = (a,m,} be the set of  essential terms occurring both in p and q. We 
claim that no other term occurs in p or q. Indeed, let a 'm'  be a term o f p  or q. Then 
m'  -- Y.~,m,, with ~, _> 0, Y, ~ = I. But m, are 0-1 valued vectors, and no nontrivial 
convex combination of them can yield an integer-valued vector (the interior of the 
unit cube does not contain lattice points). Thus the monomial m'  occurs in T, and so 
a 'm'  ~ T. 

(ii) Let k -- mindeg(m,). We claim that the terms of le(p) (le(q)) are precisely the 
minimal degree terms of T. If  deg(m~) = k, then a,m~ occurs in le(p). On the other 
hand, let a 'm'  be a term of  le(p) or le(q). Then deg(m') = k, and m'  = ~ m , ,  with 
X, ___ 0, ~ = 1. But deg(m') = Y,X,deg(m,) >_ mindeg(m~) = k, and equality can 
occur only if X, -- 0 whenever deg(m~) > k. Thus m'  is a convex combination of the 
minimal degree monomials in T, and by the same argument used in (i) it follows that 
a'm'  ~ T. The proof for higher envelopes is similar. [] 

COROLLARY 2.7. Let p ~ M[X]  represent the function f E P~(M). Then 

(i) if p is linear, then the ~) (®) -complexity o f f  is equal to the • (®) -complexity 
of p; 

(ii) i f  le(p) (he(p)) is linear, then the ~9 (®) -complexity o f f  is no smaller than the 
(®) -complexity o f  le(p ) (he(p)). 

PROOF. Use Corollary 2.3 and Theorems 2.4 and 2.6. [] 

When the domain of  computation is restricted to nonnegative numbers, there is 
greater freedom in choosing representations for functions. 

THEOREM 2.8. Let f ~ Pn(M +) be a polynomial function over M +. There exists a 
unique set o f  terms T = (a,m,} such that i f  p represents f i n  M+[X], then 

(i) each term o f  T occurs in p; 
(ii) if  a 'm'  is a term of  p, then there exist ~1, • • . ,  ~ such that 

X, ~_ O, Vi, (2.8) 

Y.~,-- 1, (2.9) 

m' > ~)~,m,, (2.10) 

a' >_ ~X,a,. (2.11) 

(a'm' is bounded below by a convex combination of  the terms m T.) 

PROOF. See the appendix. [] 

For M ÷ we have the following unique representation theorem. 

TheOREM 2.9. Let p, q ~ M+[X] represent the same function. Then 

(i) if le(p) is linear, then le(p) = le(q); 
(ii) if  p is linear and homogeneous, then p -- le(q). 

PROOF 

(i) It is easy to check that the argument used m proving Theorem 2.6(ii) can be 
carried over using inequality (2.10) instead of  equality (2.6). (There is no 
analogous argument for higher envelopes.) 

(ii) I f p  is homogeneous, then p -~ le(p) and (ii) follows from (i). [] 

Jukna
Line
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COROLLARY 2.10. Let p ~ M+[X] represent the function f ~ P,~(M+). Then 

(i) if le(p) is linear, then the @ (®) -complexity o f f  is no smaller than the ~ (®) 
-complexity of  le(p ); 

(ii) if  p is linear and homogeneous, then the @ (®) -complexity o f f  is equal to the 
@ (®) -complexity ofp. 

PRoov. Use Corollary 2.3 and Theorems 2.4 and 2.9. [] 

3. The Lower Bound Argument 

3.1 COMPUTATIONS IN B[X]. In this section we restrict our attention to compu- 
tations in B[X]. Extensions of  results obtained here to other polynomial semirings 
will be immediate from the considerations introduced in Section 2. Throughout  the 
following, F will denote an arbitrary computation in B IX] with result node p and 
res(p) = p ~ B [X]. Fopt will be such a computation in which the total number of  
®-nodes is minimized. 

We extend our previous notation and introduce some concepts which aid the study 
of  computations in B IX]. 

If  a ~ nodes(F), then mon(a) is the monomial set of  res(a), and deg(a) the degree 
of  res(a), pred(a) denotes the set of  predecessors of  a. F is said to be linear 
(homogeneous) if  res(a) is a linear (homogeneous) polynomial for all a E P. 

We may as well assume that 0 is not an input of  F (we lose no computational 
power by this), in which case it is easy to check. 

LEMMA 3.1 

(i) I" is linear if and only if p is. 
(ii) F is homogeneous tf and only if p is. 

(ifi) I f  a, fl are nodes of P, fl is a descendant of a, and m ~ mort(a), then mon(fl) 
contains a monomial of the form ram'. 

Lemma 3.1 captures that property of  computation in B[X] which makes it 
amenable to treatment in the style of  [20] or of  the present paper. Stated informally, 
once a monomial has been created, it must find its way into the final result; this 
"conservation of  monomials" ensures that no "invalid" monomials are formed and 
severely limits the rate at which monomials may be accumulated in the computation. 

If  a E nodes(F), then the complement of  a is the set 

complement(a) = {m = x'llx'z 2 . . .  x~"lVm' ~ mon(a), ram' ~ mon(p)) ,  

and the content of a is the set 

content(a) = {tam'Ira ~ complement(a), m'  ~ mon(a)) .  

We remark that content(a) C mon(p). 

3.2. PARsE-TR~E. At the crux of  our argument is the concept of  parse-tree, which 
has meaning for all linear computations, and which we now elaborate. I f  a E 
nodes(P) and m E mon(a), m # 1 (the unit monomial), then theparse-tree induced by 
a and m, PT(a, m), is a labeled subtree of  I', rooted at a, and defined recursively on 
the nodes of  U as follows: 

(i) If deg(m) = 1, then PT(a, m) is simply the subgraph of P formed by a labeled 
by m. Otherwise: 
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(ii) I f  a is a @-node, then let pred(a) = (fl, 3'). Since m ~ mon(a), we may deduce 
that either m E mon(fl) or m ~ mon('/) (or both). Without loss of generality we 
may suppose the former. Then define PT(a, m) to be the subtree o f f  formed by 
augmenting PT(fl, m) with the node a, labeled by m, and the edge fla (see Figure 
1). Note that we have a certain freedom in choosing between/3 and 7, but we 
can make our procedure deterministic by, say, ordering the predecessors of a. 

(iii) If  a is a ®-node, then again let pred(a) = (fl, 3'}. Since m ~ mon(a), there must 
exist ml ~ mon(fl) and m2 ~ mon(3') such that m = mlm2. (Again, ml and m2 are 
not uniquely defmed, but we can provide a rule for choosing such a pair.) 
Dismissing first the degenerate case when one of  ml, m2, say m2, is 1 (the unit 
monomial), we set PT(a, m) to be the subtree of I ~ consisting of PT(fl, m) 
augmented with the node a, labeled by m, and the edge fla. In general we define 
PT(a, m) to be the subtree of F consisting of the union of PT(/3, ml) and 
PT(3', m2) augmented with the node a, labeled by m, and the edges fin, 3'a (see 
Figure 2). For this to make sense we require P T ~ ,  ml) and PT(3', me) to be 
disjoint. But this is ensured by the linearity of  1", for if 8 were a common node 
and ms ~ mon(6), m3 # 1, we could deduce by Lemma 3.1(iii) that mon(fl) 
contains a monomial of  the form m3nl and mon(y) one of  the form mane. Hence 
mon(a) would contain a monomial of  the form nln2m~, which is a contradiction. 

It is hoped that the parse-tree is an intmtively appealing construct; essentially it is 
a family tree which charts the generation of a particular monomial in the final result. 
Those familiar with [4] will note the similarity between our notion and the "parse 
function" which is defined there on elements of  regular sets. 

THEOREM 3.2. Let m be an element o f  mon(p). Then a ~ nodes[PT(p, m)] implies 
m ~ content(a). 

PROOF. Suppose that a ~ nodes[PT(p, m)]. Denote the monomial which labels 
a by m~. We are done if  we can show that for each a Bm~ such that 

m,m" = m, (3.1) 

m ' n  ~ mon(p) ¥n ~ mon(a). (3.2) 

For if (3.1) and (3.2) are satisfied, we have m" ~ complement(a), m~ E mon(a), and 
hence m = m,~m'~ ~ content(a). We establish the existence of m" satisfying (3.1) and 
(3.2) by induction on the nodes of PT(p, m). First we note: 

(i) Our hypothesis is true for the root node p. Take m~ = 1; then (3.1) and (3.2) are 
trivially true. 

(ii) Assume the hypothesis is true for ~-node B labeled by monomial ma. Let ~/be 
the predecessor of fl in PT(p, m), and let m~ satisfy (3.1) and (3.2). We show 
that the hypothesis holds for 3'. By construction, ma also labels 3', that is, my = 
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m#. We satisfy (3.1) by taking m~ = m~ and note that since 

(m'ynln  ~ mon(,F)} C__ (m'vnln  E mon(fl)} 
= {m'#nln ~ mon(fl)} 
C mon(p), 

(3.2) is also satisfied. 
(iii) Assume the hypothesis is true for Q-node fl, labeled by monomial m#. Let 

pred(fl) -- (y, 6}, my, m8 be the monomials which label y and 6, and m~ satisfy 
(3.1) and (3.2). We show that the hypothesis holds for y. Set m~ = m'#rns. We 

p _ _  ! _ ! _ observe that mrm v - mrm #m~ - mama - m, and so (3.1) is satisfied. Additionally, 

(m'ynln E mon(y)} -- (m'#mnnln ~ mon(y)} 
C. (m'#n'[ n '  ~ mon(fl)) 
_.C mon(p) by the induction hypothesis, 

and so 3.2 is also satisfied. [] 

We may capitalize on the previous result in a straightforward way. £ contains 
Imon(o) l parse-trees corresponding to distinct monomials o f p .  Distinct parse-trees 
may share nodes of  £, but the amount of  sharing that takes place is limited by 
Theorem 3.2. We hope to obtain from this a lower bound on the complexity o fF .  In 
order to make this qualitative argument precise we introduce a weight function for 
parse-trees. 

3.3 WEIGHT FUNCTION. Suppose T is a parse-tree in £. Define the weight of  T, 
w(T) ,  to be 

w(T) = ~ [content(a)[ -x. 
a ~ ® - n o d e s (  T ) 

THEOREM 3.3 

~, w(PT(p ,  m) )  <. I®-nodesW)l. 
m~mon(p) 

PROOF 

E w(PT(p, m)) 
m E r n o n ( p )  

- Z ~,, [ c°ntent(a) [ -1 
m E m o n ( p )  aE~-nodes(PT(p,m)) 

] {m ]a E ®-nodes(PT(p, m))) I 
= E 

,~E~-.ode~(r) [ content(a)[ 

-< E I (mlm ~ c°ntent(a)) I 
~E®-nodes(r) I content(a)] (by Theorem 3.2) 

= [®-nodes~)[ .  [] 

Now suppose that for the specific homogeneous, linear polynomialp we have some 
bound on the content of  nodes in the computation. Specifically, we assume the 
existence of a function E(r, d), 2 < r <_ deg(p), 1 _< d _< [r/2J which satisfies 

~-(r, d) > max( [content(a)[ I a E ®-nodes(£), deg(a) = r, 
deg(pred(a)) = (d, r - d} ), 
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irrespective of our choice of I'. We use ~ to construct a lower bound _w on w, whmh 
depends only on the degree of the root. 

THEOREM 3.4. I f  w_ is defined by 

w(1) = 0, (3.3) 

w_(r) = rain w_(d) + w_(r - d) + , (3.4) 
l<_d<--[r/2J 

then w(PT(a,  m)) >- w_(deg(a)) for all e~ ~ nodes(F), m ~ mon(a). In partwular, 

w(er(o, m)) >_ w_ (deg(p)). 

PROOF. We proceed by induction on tree structure. The result is clearly true 
when ~ is a leaf, and the induction step is trivial when a is a G-node or N-node with 
a predecessor of degree 0. Assume, therefore, that ~ is a N-node with deg(a) = r, 
pred(~) = {fl, ~,}, and deg(B) ~ deg(y), in which case 

w(PT(a, m)) = w(PT(B, ms)) + w(PT(y, my)) + I content(a)1-1 

1 
>_ _w(deg(B)) + _w(deg(~,)) -t ~Y(r, deg(B)) (by inductmn hypothesis) 

>_ rain _w(d) + w ( r -  d) + 
l<d<_[r/2j 

= w_( r ) .  [] 

It may be remarked that the theorem remains true if the equalities of (3.3) and 
(3.4) are replaced by inequalities (_). This observation can be useful if an exact 
solution to the original equations is hard to obtain. 

COROLLARY 3.5. For linear, homogeneous p, 

[mon(p)[ . w_(deg(p)) <_ ®-complexay o f  p. 

PROOF. Applying Theorem 3.3 to Popt, we have 

w(PT(p, m)) - ®-complexity of p, 
mEmon(p) 

and applying Theorem 3.4, we obtain 

Y~ w(deg(p)) _ ®-complexity ofp.  
rnEmon(o) 

[] 

In the next section we compute content bounds for specific polynomials and derive 
the corresponding weight bounds. We show that for several polynomials the lower 
bound implied by Corollary 3.5 is tight. In order to help us solve the recurrences 
(3.3) and (3.4) we introduce a final lemma. 

LEMMA 3.6. I f  for  all 4 <_ r <_ n, 1 <_ d <_ Jr/2] - 1, 

1 1 1 1 
D- _> 0 (3.5) 

e(r, d + 1) 3(d + 1, 1) 3(r, d) E ( r -  d, 1) 

is satisfied, then the solution to (3.3) and (3.4) is 

r 1 
w(r) 

~2 ~(i, 1)" 
(3.6) 
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PROOF. 
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By induct ion on r. The  l e m m a  is trivially true for  r = 2, 3; otherwise,  

_w(r) = min  + ~=~z + 
l ~ d ~ [ r { 2 ]  = 

= min  g(d). 
l<_d~_tr[2 j 

The  observa t ion  is that  g is a monotonica l ly  increasing funct ion in the range 1 <_ 
d < / r / 2 J ,  since 

1 1 1 1 

g(d + 1) - g(d) ---- 6(d + 1, 1) ÷ 6(r, d + 1) 6(r - d, 1) 5(r, d)  

> 0 by stated condition. 

Thus  

r 1 
_w(r) = g(1) = ,~2 5(i, 1)" 

[ ]  

4. Complexity o f  Specific Polynomials 

4.1 ITERATED MATRIX MULTIPLICATION. Suppose  X (a), X (2) . . . . .  X (t) are n × n 
matrices; X (k) - ,¢(k) (1 <__ - ~ ~j ~, j <__ n). We  are interested in the n u m b e r  o f  mult ipl icat ions 
required to compute  the product  

(X(~)X (2) X(t))~j (1~ x (~)x (2)x (a) • • x (t) 
• " • -~" t l t2 t2~3 ~3t4 " ~tJ"  

l_<~j_<n 

W e  note  that  any computa t ion  for the above can be conver ted  into a compu ta t i on  for 
the related po lynomia l  

p "~- ~ X ( 1 ) X  (2) . X ( t )  X ( t + l )  
llg 2 t2/3 * • /t~t+l //+1/1 ' 

with the addi t ion o f  at most  n 2 @-nodes. The  n u m b e r  o f  mult ipl icat ions necessary for  
matr ix  mult ipl icat ion is thus no smaller  than  (@-complexity o f  p)  - n e. 

The  first step in establishing a bound  on the complexi ty  o f  p is to compu te  a 
suitable content  bound  6(r, d). Suppose q is a po lynomia l  with inde terminates  x ~  ). 
Def ine  the index set Iq to be the set o f  superscripts o f  the indeterminates  occur ing in 
q. N o w  consider polynomials  a, b, and c o f  degrees d, r - d, and  t - r + 1, 
respectively, with the proper ty  that  mon(abc)  C_C_ mort(p) .  Looking  at the fo rm o f  
monomia l s  o f  p, we see immedia te ly  that  Ia, Ib, /c are disjoint, and,  moreover ,  
IL l  > d, [/hi -> r - d, [LI > t - r + 1. Hence  {Ia , /b ,  L )  is a par t i t ion o f  ( 1, 2 . . . . .  
t + 1 }. Def ine  the set A o f  arttculations to be 

A = { k  1(2 < k < t + 1, k a n d  k - 1 are in distinct index sets) 
V (k = 1, 1 and t + 1 are in distinct index sets)). 

Next  consider a general  e lement  of  mon(abc),  

X ( 1 ) X  (2) ~ ( t + l )  
~It2 ~2~3 • * • .&~t+i t l .  

Observe  that  i f  k is an art iculat ion (k ~ A),  then ik is necessari ly fixed by  the 
condit ion mon(abc)  C mon(p) ;  otherwise ik is free to assume the n possible values. 
Hence,  

I m o n ( a b c ) l <  n'+t-laL. 
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I f r  < t + 1, then/~,  lb, L # O, which implies [A[ >_ 3; i f r  = t + 1, then/a ,  Ib # ~,  
1~ = ~, and [A [ > 2. Consequently, we take as our content bound, 

[ n  t-2 (r < t + 1), 
~(r, d )  --- [ n t _ l  (r = t + 1). 

The recurrence relations (3.3) and (3.4) are easily solved in this case, where b is 
essentially a constant. Condition (3.5) is trivially satisfied, and so, invoking Lemma 
3.6, we obtain 

t + l  1 
w_(t + 1) ---- ,~2 5(i, 1) - (t - l )n  (z-t) + n (1-`). 

Hence, by Corollary 3.5, 

@-complexity o fp  _> [(t - 1)n (2-t) + n (t-t)] I mon(p) I 

= ( t  - -  1 ) n  3 + n 2, 

and by our initial observation, the number of multiplications required for matrix 
multiplication is (t - l)n 3. (For the case t ffi 2, our result is implied by a stronger one, 
obtained in [10, 15, 16], for the monotone Boolean matrix product.) The obvious 
algorithm, derived from the definition of matrix multiplication, yields an upper 
bound of (t - 1)n ~ and illustrates that our bound is tight. Note that since p is linear 
and homogeneous, the conditions of  Corollaries 2.7 and 2.10 are satisfied, and our 
lower bound is valid for matrix multiplication over R, M, and M +. 

4.2 ITERATED WRAPPED CONVOLUTION. Suppose Y"), j?(2), . . . ,  ~tt) are n-vec- 
tors, 2 tk) = x,  tk) (0 <_ i <_ n - 1). The wrapped convolution of these vectors is the n- 
vector )7 whose components are given by 

y j  ~ X (1)X (2) ( t )  o . .  X t t  • t I t 2 
t l + t 2 + .  • + l t m J ( m o d  n) 

As before, we define a related polynomial, 

(1) (2) . ( t ) .  ( t + l )  
~ XZ l X~ 2 " o * .JOlt -?~l~t+ 1 

P t l + t 2 + . ,  • + t t + l ~ 0  ( m o d n )  

where y,+l) is an n-vector, and remark that the number of multiplications required 
to compute )7 is at least (®-complexity of p) - n. 

Consider polynomials a, b, and c of degrees d, r - d, and t - r + 1, respectively, 
with the property that m o n ( a b c )  C mon(p). As before, define the index set Iq of  a 
polynomial q to be the set of all superscripts occurring in the indeterminates which 
form q. Again, la, Ib, L form a partition of {1, 2 . . . . .  t + 1). If  we now consider a 
general monomial, 

X (1)X (2) . ( t + l )  
m a m b m c  = q t2 " ' "  - ~ t t ÷ ~  , 

of mon(abc ) ,  we see from the definition o fp  that 

E ik+ Z ik+ 2 ~ = 0  
k E l a  k ~ I b  k E I c  

(mod n) 

and, letting ma range over mon(a) while holding mb, mc fixed, we deduce that 
~ 1 o i k  is congruent to a constant, modulo n. Similar arguments apply for Ib, Ic, and 
hence [ m o n ( a b c )  [ is bounded by the number of assignments which can be made to 
il, is . . . . .  it+l and which fix the above three sums. If  r < t + 1, then 1,,  Ib, lc are all 
nonempty, and the number of assignments which can be made is n (t-2); if  r = t + 1, 
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then/~ = 0 ,  and there are n (t-1~ possible assignments. Our content bound is thus 

/ n  (t-2) (r < t + 1), 
5(r, d) = in(t_1) (r = t + 1). 

Observing that this bound is identical to that derived in the previous section, we can 
immediately write down 

w(t + 1) = (t - 1)n (2-t~ + n (1-°, 

and so, by Corollary 3.5, 

®-complexity o fp  _ [(t - 1)n (2-t) + n (~-t)] [ mon(p) [ 
= ( t -  1)n 2+n. 

The number of multiplications required to compute the wrapped convolution is thus 
at least (t - l)n 2. That this bound is tight may be seen by considering the algorithm 
derived from the definition. Again the bound is valid for R, M and M ÷. 

4.3 PERMANENT. Suppose X is an n X n matrix of indeterminates, x v (l _ i , j  
_< n). The permanent function on X is defined to be 

pe rn×n(X)=p=  G XI,~'(1)X2,e(2)"'" Xn,~r(n), 
~S(n)  

where S(n) is the set of all permutations of the first n natural numbers. The permanent 
~s of great significance in combmatorial mathematics, and a comprehensive account 
of it is available in [12]. If  we associate indeterminate x,j with edge/ j  in the complete 
graph Kn on the nodes (1, 2 . . . . .  n}, we see that monomials of  per,,×n(X) correspond 
to cycle covers of Kn. Over R, taking X to be the adjacency matrix of an arbitrary 
graph G on n nodes, the permanent can be interpreted as enumerating such cycle 
covers in G; over M ÷, regarding X as a weight function on the edges of G, the 
interpretation is of finding the minimal weight cover. Again, if x,j is associated with 
edge ij' in the complete bipartite graph B,~ on the 2n nodes (1, . . . ,  n, 1' . . . . .  n ' ) ,  then 
the monomials of pern×n(X) correspond to perfect matchmgs in Bn. Over R and M ÷ 
the permanent has the interpretation of counting perfect matchings and finding the 
minimal matching, respectively, in a bipartite graph. 

Despite its formal similarity with the determinant function, the permanent appears, 
in general, to be much more difficult to compute, for whereas the determinant can be 
computed in O(n 2 ~2) multiplications/divisions [19], the evaluation of  the permanent 
for 0, 1 matrices is known to be #P-complete [25], and the permanent function itself 
is algebraically complete [26]. However, the rain, + interpretation of  the permanent 
as mimmal matching in a bipartite graph (the so-called "assignment problem") is 
tractable, and an O(n 3) algorithm can be found in [8]. 

To study the complexity of monotone computation of  the permanent, we first 
determine a content bound. Suppose a, b, and c are polynomials of  degrees d, r - d, 
and n - r, respectively, with mon(abc) C. mon(p). I f  q is a polynomial with 
indetermmates x,j, we denote by Iq and Jq the sets 

Iq - - - -  ( i lx ,  J occurs in q}, 
Jq = ( j l x , j  occurs in q). 

If  we consider a general element of mon(abc), 

marFlbmc ~ X l , r r ( 2 ) X 2 , ~ r ( 2 )  ° • ° Xn,~r(n), 

we can see that the sets Ia, Ib, and I¢ are disjoint and 

Ilal = d, Ilbl = r -  d, II~l = n - r, 
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so that (Ia, Ib, L} is a partition of  (1, 2, . . . ,  n). Since ~r is a permutation,  the same 
argument  yields that  (Ja, Jb, Jc) is also a partition. Elements of  m o n ( a b c )  correspond 
to permutations ~- which observe the restrictions 

~r(I~) --- Ja, ¢r(Ib) = db, ~'(Ic) = Jc. 

The total number  of  such permutations is clearly d!(r  - d)!(n - r)!, and so we may  
take as our  content bound, 

F(r, d )  -- dI(r  - d)!(n - r)[ 

We claim that  this bound satisfies the condition (3.5). In order to show this we need 
the following, easily validated lemma. 

LEMMA 4.1. I f s  >_ 2, then (~+~ r) >_ r(s  + 1). 

Using the substitutions s = r - 2d and t = n - r, condit ion (3.5) becomes 

1 1 1 1 
+ > 0  

(d + 1)!(s + d - 1)!t! d!(s  + d + t - l)r d!(s + d)!t! (s + d - 1)!(t + d)! - 

for d _ 1, s >_ 2, t >_ 0. Equivalently, by mult iplying through by (d + 1)!(s + d - 1)!t! 
we obtain 

d +  1 d +  1 d +  1 
f ( t ' d ' s ) = l +  ( d + s + t - l )  d + s  ( t+d)  > - 0  

for d_> 1, s _> 2, t > 0. We remark t ha t f ( t ,  d, s) is a monotonical ly  increasing function 
of  s, for 

[ 1 t 1 f ( t , d , s +  l ) - f ( t , d , s ) = ( d +  1) ( d + s +  l ) ( d + s ) - ( d + s + 0 (  a + * + t - l )  ' 

and we have two cases: 

(1) t = 0: 
(2) t > 0: 

the difference is clearly positive. 

(d + 1)[1/(d + s) - t / (  a + s + t -  l)] 
t 

d + s + l  
(d + 1)[1/(d + s) - l / ( d  + s)] 

> (by L e m m a  4.1) 
- -  d +  s +  1 

f(t ,  d, s + 1) - f ( t ,  d, s) >_ 

Hence it is sufficient to show tha t f ( t ,  d, s) _ 0 when s = 2. However, 

d +  l d +  1 d +  1 
f ( t ,  d, 2) -- 1 + -  

(a+~+3) d + 2  (t+td) 

1 ( d +  1) 2 d +  1 
- 4 

d + 2  ( d + t +  1)( '+ ,d) (t+,d) 

1 t ( d  + 1) 

d + 2  ( d + t +  1)(t+`a)" 

We consider three cases 

(1) t = 0 :  f(0,  d, 2 ) =  1 / ( d + 2 ) > _ O .  
(2) d = 1: f ( t ,  1, 2) = 1/3 - 2 t / ( t  + l)(t + 2) >_ 0. 
(3) d >  1, t > 0 :  f ( t , d ,  2)>_ l / ( d +  2 ) -  l / ( d + t +  1)_> 0 ( b y L e m m a 4 . 1 ) .  
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Thus  we have  shown that  condi t ion (3.5) holds and deduce  f rom (3.6) that  

n 1 - - [ ~ 2  n - I  - -2n-1  ( , -  1)] - t 
_w(n) 

~2 (i -- 1)!(n -- i)! (n -- 1)! (n -- 1)!" 

By Corol lary  3.5, 

n!(2 n - l -  1) 
@-complexi ty  o f p  _> - n(2 "-1 - 1). 

( n -  l)! 

This lower bound  is in fact at tained by the pe rmanen ta l  equivalent  o f  Laplace ' s  
expansion rule for determinants .  Essentially, we fo rm the pe rmanen t s  o f  all the 
r X r submatr ices  conta ined in the first r rows o f  X (the " subpe rmanen t s "  o f  the first 
r rows) recursively f rom all the (r - 1) x (r - 1) subpermanen t s  o f  the first r - 1 
rows. The  upper  bound  of  n(2 n-1 - 1) is then impl ied by  the recurrence C(r) = 
C(r - 1) + r(7), C(1) = 0. Clearly we can obtain  var iants  o f  this a lgor i thm by  
permut ing  rows o f  X and t ransposing X; what  is more  interesting is that  the op t ima l  
a lgor i thm lacks uniqueness in a nontr ivial  way, this s t emming  f rom the observa t ion  
that  several "shapes"  o f  parse-tree all have  op t imal  weight. More  precisely, when  
r = n - 1, the value o f  w(d) + w(r - d) + l /E(r  - d) is independent  o f  d, which leads 
to the following family  o f  opt imal  algori thms for  1 _< t _< n - 2: 

(i) Evalua te  all t × t subpermanen t s  of  the first t rows using Laplace ' s  expansion.  
(ii) Evalua te  the (n - t - 1) × (n - t - 1) subpermanen t s  o f  the rows t + 1, 

t + 2 . . . . .  n - 1 in the same  way. 
(iii) Use  the results o f  (i) and (ii) to compute  all (n - 1) × (n - 1) subpermanen t s  o f  

the first n - 1 rows. 
(w) F r o m  (iii) compute  per (X)  by Laplace ' s  expansion.  

We note that, once more,  the lower bound  is valid for  R, M, and  M ÷. 

4.4 HAMILTONIAN CIRCUIT POLYNOMIAL. Suppose  again  tha t  X is an  n × n 
matr ix  o f  indeterminates ,  x,j (1 <_ i, j <_ n). The  Hamiltonian circuit polynomial is 

HC~×n = p  = ~ xl,~tl)x2,~(2) ' ' °  Xn,~r(n}, 

where C(n) is the set o f  all cyclic permuta t ions  o f  the first n na tura l  numbers .  I f  we 
regard each indeterminate  x v as represent ing the ij edge o f  the comple te  g raph  Kn on  
the n nodes ( 1, 2 . . . . .  n}, we note that  the monomia l s  o f p  correspond to Hami l t on i an  
circuits in Kn. Over  R, the po lynomia l  can be viewed as enumera t ing  Hami l t on i an  
circuits on a g raph  with n nodes, while the corresponding interpreta t ion for  M + is 
that  o f  finding the shortest circuit which covers all nodes o f  a g r a p h - - t h e  so-called 
Travel ing Salesman Problem.  

In  the usual way  we let a, b, and  c be po lynomia ls  o f  degrees d, r - d, and  n - r, 
respectively, with mon(abc) C_ mon(p ) .  Using the same reasoning as for  the pe rma-  
nent, a, b, and  c define two part i t ions of  (1, 2 . . . . .  n),  namely ,  

(Ia, Ib, Iv} and (Ja, Jb, Jc}. 

I f  we consider a general  monomia l  o f  abc, 

mambmc = X l , ~ r ( 1 ) X 2 , ~ r ( 2 )  " " " Xn,~r(n), 

we have that  

¢r(I~) = Ja, ~r(Ib) = Jb, and ~r(I~) = J~, 

and  so I mon(abc) I is bounded  by the n u m b e r  of  cyclic pe rmuta t ions  ~r which  satisfy 
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these constraints. Suppose we fix rob, me, that is, fix or on Ib tO L;  we wish to know the 
number of  possible choices for ma, that is, the number of  ways of  extending or to Ia. 
Define 

or*:Ia --'> Ia, or*(i) = orb(i), 

where a is the smallest positive number such that or"(i) ~ I= (such an a exists since 
or is cyclic). Informally, viewing or as a circle, or* is the circle obtained by deleting 
vertices not in Ia. Note that or is completely determined by or* and the restriction of  
or to Ib tO L.  We observe that or* is a cyclic permutation; hence the number of  
extensions of  or to Ia is bounded by the number of  cyclic permutations on d objects; 
that is, 

Similarly, 

and 

I mon(a)  I --- (d - 1)!. 

I mon(b) I ___ (r - d -  1)! 

~--< ( n  - r - l ) !  ( r  < n ) ,  
I mon(¢)l 

1 ( r  - -  n ) ,  

the second case being the degenerate one when Ic = O. Consequently, we take as our 
content bound 

= ~ ( d  - -  1 ) ! ( r  - -  d - 1 ) ! ( n  - r - -  1)! ( r  < n ) ,  e(r, d) 
t ( d -  l)!(n d -  1)! (r = n). 

By an argument completely analogous to the case of  the permanent, we can show 
that this bound satisfies condition (3.5), and hence applying (3.6t we obtain 

By Corollary 3.5, 

tt-- 1 | 

w(n) = ,=2E ( i -  2)!(n -- i - 1 ) !  
n - I  n - - 3  

( , - 2 )  1 
= 2 ( n - 3 - ) r  ' ,=2 (n - 2)r 

_ 2("-a)(n - 2) + 1 

(n  - 2) !  

1 
4 

(n - 2)! 

(n - 1)![2(n-a)(n - 2) + 1] 
®-complexity o fp  >_ 

(n - 2)! 
= (n - 1)[(n - 2)2 (n-3~ + 1]. 

Again this bound is valid for R, M, and M +, and is attainable. Let P,,m for 
i , j  ~ {1, 2 . . . . .  n}, I C__ {1, 2 . . . . .  n } k { i , j } ,  be the polynomial corresponding to all 
Hamiltonian paths in K~ which start at node i, end at node j,  and pass through all the 
nodes in L We may form pl,m recursively as follows: 

p l , ~ , j  ---- X l j ,  

P~s,J = 7~ p , ,~\ , , ,x , j  ( I  # ~ ) .  
t ~ l  

Generating all pl,za (1II = r) given p l , v , j ' ( l l ' l  = r - 1) can be achieved using 
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r(n - 1)(" -; 2) mult ipl icat ions,  so we can computep~,¢2,3, ,,,}\~,j in 

n--2 )(  ) n--2 (~__ ~) 
r(n--  1 n- -  2 = ( n - -  l ) ( n - - 2 )  E 

r=l r r~l 
= (n - l)(n - 2)2 (n-3) 

multiplications.  N o w  

SO it can be computed  in 

HCnxn ~ , n } \ j , j X j l ~  = ~ =2 pL{2,~. 
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(n - l)(n - 2)2 (n-a) + (n - 1) 

multiplications.  We  highlight a close connect ion which exists between the Hami l ton -  
ian circuit po lynomia l  and  self avoiding walks in a graph.  Def ine  the self avoiding 
walk polynomial to be 

n--I 
SAW,×n = ~ ~ x,0,,x,1, 2 . . -  x,k_,, ,, k--I tO,tl, , ~k drstmct 

to~l , t k~n  

so that  monomia l s  correspond to simple paths f rom 1 to n in the comple te  g raph  K. .  
We  remark  that  

@-complexi ty  o f  HCt.-1)×<n-1) -< @-complexi ty  ofpx,~2,a, .,,,-lb,,, 

since a compu ta t ion  for the latter m a y  be t rans formed into one for  the fo rmer  by 
changing the inputs  x,,n to x,i. Hence  our  lower bound  for HCn×,, implies a lower 
bound  of  (n - 2)[(n - 3)2 ¢"-4~ + 1] mult ipl icat ions for p1,{2,3 . . . . .  -1},n. However ,  
p~,¢2,3 . . . .  _1~,. = he(SAW.×~), and so by T h e o r e m  2.4 and Corol la ry  2.7 we obta in  a 
lower bound  o f  (n - 2)[(n - 3)2 t~-4~ + 1] mult ipl icat ions for  SAW.×.  when  we are 
working with the semirings R and M (but, as will be  shown, not  M+).  Again  we can 
at tain the lower bound;  we s imply compute  p~,~,j for a l l j  # n, n ~ I and  note  that  

4.5 SPANNING TREE POLYNOMIAL. Suppose X is an  n x n matr ix  o f  indetermi-  
nates x v (1 _< i , j  <_ n). Define the spanning tree po lynomia l  STyx,  to be 

STnxn = p  = t~ x2 , t (2 )x3 , t (3 )  ° . °  Xn , t (n ) ,  
t ~ T ( n )  

where  T(n) = {t: (2, 3, . . . ,  n} ~ (1, 2, . . . ,  n} I Vi3ktk(i)  = 1}. Note  that  m o n o m i a l s  
correspond to directed trees spanning Kn and rooted at node  1. All our  lower  bounds  
so far  have  been attainable;  in this case we are unable  to obta in  a precise lower 
bound.  W e  therefore content  ourselves with a crude bound  on  the content  o f  a node,  
which, however ,  is good enough to yield an exponent ia l  lower bound  on  the 
@-complexi ty  o f  STn×n. Let  a, b, and c be po lynomia ls  o f  degrees d, r - d, and  
n - r - 1, respectively, satisfying mon(abc) C__ m o n ( p ) .  In  the usual  way  we define 
the index set lq of  a po lynomia l  q to be 

lq = {i I x v is an indeterminate  o f  q}, 

and  note that  {la, Ib, 1~} is a part i t ion o f  {2, 3 . . . . .  n}. Let  

X, = {xv I xv is an  indeterminate  o f  a, b or  c}. 



892 M. JERRUM AND M. SNIR 
Obviously, ~7-2 I x, I < (n - 1) 2, but we may improve on this trivial bound by the 
following observation. Suppose i, ~ 1, and ib E Ib; then the indeterminatesx~o~ b and 

X x,ao cannot both appear in t.3,=2 ,, for if  they did, x,o, b would appear in a, x,~o 
would appear in b, and the invahd monomial x,,,~x,e,o m would appear in mon(abc). 
Thus a better restriction is 

n 

I g ,  I ~ (n  - 1) z - I l a l l l b l  - -  I h l l l c l  - -  I L I I I - I  

(n -  1) 2 - d ( r - d ) - ( r - d ) ( n - r -  l ) - ( n - r -  1)d 
(n -  1) 2 - d ( r - d ) - r ( n - r -  1). 

The number of monomials in mon(abc) is clearly bounded by the number of 
functions 

t: {2, 3 . . . . .  n} ---> { 1, 2, . . . ,  n} 

which respect x,,t(o ~ X~ for 2 _< i ~ n; this number is just 1-I z%2 [ X, 1. The product is 
maximized when [ X, I is independent of i; thus, 

Im°n(abc)l < c(r' d) = [ (n l)Z- d(r -  d) - r(n - ] 1)] ~n-l'" 

It has been remarked that if  a tight lower bound is not required, the equalities 
(3.3) and (3.4) can be changed to inequalities (_) without affecting the veracity of 
Theorem 3.4. We show that, taking _w to be 

w(r) = 0 r < , 

w(r)= (~)~a-n) (rE 2)' 

(3.3) and (3.4) are satisfied as inequalities. In fact, (3.3) is trivially satisfied, and (3.4) 
is satisfied providing we can show that Y(r, d) <_ (3n/4) ~"-1) whenever n/2 < r <<_ 
n - 1 and d _< (r - d) < n/2. Holding r constant, we find that ?(r, d) achieves its 
maximum in the stated range at d = r - [½n] + 1, and, allowing r to vary, we find the 
overall maximum to be at r -- n - 1. Therefore, in the range in question, 

~(r 'd)<[ ( n - -  1)2-½n(½n-l)] ' n - ~ ' n ' - - 1  

- L [ 3 n 2 / 4 n z l -  3n/2 + 1] ("-1) 

But Imon(p) l -~ n ~n-2~ [13], and hence, by Corollary 3.5, 

In this way we obtain an exponential bound valid for R, M, and M ÷, that is, for the 
problems of counting the number of  spanning trees of a graph or of finding in a 
graph such a tree of minimal weight. 
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5. Dzscussion of Results 
We have obtained lower bounds for the ®-complexity of  a wtde range of  functions 
in different semirings. Some of these results, such as the exponential lower bound for 
the minimal spanning tree computation, stand in stark contrast to the known 
tractability of the problem and raise questions as to the relevancy of  our results to 
actual computations. Our lower bounds can therefore be interpreted in two comple- 
mentary ways; on the one hand they deny the existence, for many problems, of fast 
"combinatorial" algorithms which work independently of the domain of computa- 
tion, while on the other hand they affirm the power of algorithms which exploit the 
algebraic idiosyncrasies of a specific problem. In Sections 5.1 and 5.2 we explore the 
efficiency which can be gained by using less restrictive models of  computation. 

5.1 THE POWER OF NEGATION. Our model of computation suffers frqm two 
weaknesses. The more obvious is the restriction on the allowed operations. In t~lae 
arithmetic case we considered only computations not involving subtraction. It was 
already known that such a restriction could entail an exponential penalty; [27] treats 
the example of perfect matchings in a planar graph. In the same vein, our results 
indicate an exponential gap for the spanning tree polynomial. From Section 4.5 we 
see that any monotone arithmetic computation for the spanning tree polynomial 
requires at least ..-1,4~(n-1) multiplications; in contrast, if negative constants are n ~ )  
allowed, the same polynomial can be expressed as an n × n determinant whose 
elements are linear combinations of the indeterminates [13], and this determinant 
can then be evaluated (without divisions) in O(n 352) multiplications using the method 
of Strassen [23]. Even for functions which have polynomial monotone complexity, 
subtraction is still helpful. From Section 4.1 we have that in the monotone case, 
multiplication of  two n × n matrices requires at least n 3 multiplications, whereas, 
allowing negative constants, Schonhage's method [19] computes the product in 
O(n252) multiplications. Similarly, a gain can be achieved for the convolution of 
Section 4.2 using the fast Fourier transform method [1, p. 257]. A very modest gain 
can be demonstrated for the permanent function: refernng to Section 4.3, any 
monotone computation requires at least n(2 tn-1) - 1) multiplications; however, using 
a modification of the inclusion-exclusion method of  Ryser [14, p. 158], the same 
computation can be effected using subtraction in only (n - 1)2 t"-x~ + 3 multiplica- 
tions. The interest in this case is that, although small, the complexity gap is the only 
one we know for a 0-1 polynomial which is complete in the sense of  [26]. 

All this evidence points to the value of complex algorithms which exploit the 
particular characteristics of the domain of computation, in this case, the ability to 
form monomials which cancel out in subtle ways in the final result. Of particular 
interest is the power of linear algebra to make tractable polynomials whose monotone 
complexity is exponential. By contrast, it is noteworthy that augmenting our set of  
operations with division and performing computation over the rational functions is 
of limited value, as division can be stimulated by truncated power series [23]. 

5.2 THE POWER OF BRANCHING. The second weakness of our model is less 
obvious, since it is not usually encountered in algebraic complexity. We used what is 
essentially a straight-line algorithm (sla) model to measure the complexity of  com- 
putation, neglecting the additional computational power that branching (test and 
branch instructions) can provide. It is well known [24] that branching cannot help in 
the computation of polynomials over an infinite field, so that our model is adequate 
for R in this respect. The situation is, however, completely different in M or M +, 
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where branching can yield dramatically shorter computations. To return to the 
example of the directed spanning tree polynomial from Section 4.5, we learn that 
n-~(-~) tn-1) additions are necessary to compute the polynomial using an sla, whereas 
it can be computed in O(n21ogn)min, + operations if we allow branching 
[8, p. 348]. As another demonstration of an exponential gain we might consider the 
permanent, which over M ÷ is connected with the minimal assignment problem. In 
our model the permanent requires n(2 tn-l~ - I) + operations but with branching can 
be computed in O(n ~) operations [8, p. 205]. Indeed, we can paraphrase [27] and 
assert that "branching can be exponentially powerful." 

5.3 FORMALLY IDENTICAL POLYNOMIALS OVER DIFFERENT SEMIRINGS. Another 
lesson we may draw is that the algebraic idiosyncrasies of different semirings can 
cause the same formal polynomial to have radically different complexities. In fact, 
we have only one consistent relation between the semirings we examined: it was 
always easier to compute a 0-1 polynomial in B than in M, M ÷, or R. (Loosely 
speaking, checking the existence of a solution to a problem is always easier than 
finding the minimal solution or counting their number.) This gap can be exponential; 
the spanning tree polynomial ST has exponential complexity over M, M +, and R but 
polynomial complexity over B. Over B, ST(X) = 1 if and only if the graph whose 
adjacency matrix is X has a spanning tree, that is to say, if and only if it ~s connected. 
However, the connectedness function can be monotonically computed in O(n 3) 
operations by computing the transitive closure X* of X and AND-ing n 2 coefficients 
of X* [1, p. 199]. Another interesting example is provided by the self-avoiding walk 
polynomial SAW. If x,s is the length of edge/ j  in Kn, then SAW(x,s) is (in M, M ÷) 
the minimal length of a self-avoiding walk fron node 1 to node n. In M ÷ this is equal 
to the minimal length of a path from 1 to n and can be computed in O(n 3) operations 
[1, p. 202]. In M, however, the problem has exponential complexity. The same 
exponential bound is valid in R for the problem of counting the number of self- 
avoiding walks (where x,j is the adjacency matrix of the graph). 

5.4 OTHER SEMIRINGS. The results presented here may be extended to other 
algebraic structures. We can, for example, consider the semiring of real numbers 
together with -oo and the operations max and +. It is dual to the M semiring, and 
the same results are valid. Thus, computing the maximal weight of a spanning tree, 
the maximal length of a self-avoiding walk and the maximal weight of a matching all 
require an exponential number of operations, even when computation is restricted to 
positive inputs. 

One might also consider semirings in which we drop the condition that multipli- 
cation is commutative. For example, letting X = (x~ . . . .  , x~}, we might consider the 
semiring L[X] of fimte languages over X with the operation ® being concatenation 
and @ being union. By viewing B[X] as the quotient of L[X] by the commutative 
tdentity x ® y  = y ® x, we can see that any lower bounds obtained for B[X] are valid 
also for L[X]. In order to obtain tight bounds, however, we may need to take into 
account the noncommutativity of ® by redefining the content function in an obvious 
way. Let the complement of a node a be the set of ordered pairs of monomials, 

complement(o0 = ((ml, m2 ) l V m E mon(a), ml mm2 ~ mon(p)}, 

and define the content of a to be 

content(a) = (mlmm21m ~ mon(a), (ml, m2) E complement(a)}. 

Using this amended definition, the arguments of Section 3 go through as before, and 
we can achieve nontrivial lower bounds such as (2" - 2) for the number of 
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concatenations required to compute 

( -J  Xcr(1)X~r(2) • ° " X~r(n), 
7r~S(n) 

the language of all strings which are permutations of the symbols xl ,  x2, . . . ,  Xn (see 
[6] for related results). 

5.5 FUTURE DIRECTIONS. Perhaps the most obvious shortfall in our technique is 
our inability to produce tight lower bounds of the number of additions required to 
compute a function which would match our results for multiplications, The best tools 
at our disposal at present are the "separated sets" of Schnorr [18] and the "fan in" 
argument of Shamir and Snir [20]. It would be interesting to find good absolute 
bounds or demonstrate some trade-off between the number of multiplications and 
the number of additions necessary to compute a function. 

We have already mentmned that our results do not extend to unrestricted arithmetic 
computation; the hope is however that some refinement of the approach might enable 
us to deal with monotone Boolean computation. At present, lower bounds have been 
achieved only for linear and bilinear functions, and attempts to extend methods for 
monotone arithmetic functions to Boolean functions have not been fruitful; a 
conjecture that the technique of [18] could be applied to monotone Boolean com- 
putations has been disproved by Wegener [29]. 

Another possible extension of the method is to define new "content" and "degree" 
functions with the same formal properties as the familiar ones used here. This 
approach is used in [21, 22] to obtain lower bounds for the symmetric function (i.e., 
that function which contains all the linear monomials of given degree over a fixed set 
of indeterminates) and can quite possibly be used to extend the results obtained here 
for wrapped convolution to polynomial multiplication. 

Finally, further research on the complexity of algorithms set in formal, weak 
algebraic structures might yield a classification of problems as "algebraic" versus 
"combinatorial," that is, between those problems which have fast solutions based 
on the complex algebraic properties of the domain of computation and those 
whtch do not. 

Appendix 

The two characterization theorems, 2.5 and 2.8, are essentially equivalent forms of 
the basic separation theorem in convexity theory. We shall use it in the following 
formulation. 

THEOREM AI [FARKAS]. Let  f ,  f ~ IR ~, b, b, ~ R ,  f o r  i = 1 . . . . .  k. The fol lowing 
two assertions are equivalent. 

(i) The system o f  inequalities 

implies the inequahty 

(ii) Bh~ . . . .  , Xk such that 

~,_>0, 

PROOF. See [5, Th. 4]. [] 

( f i . f f ) > _ b , ,  i = 1  . . . . .  k, 

( f , if) >_ b. 

f = ~ f ~ ,  b > _ ~ b , .  

COROLLARY A2. Let  m, m, ~ IR n, c, a, ~ lR, f o r  i = 1 . . . .  , k. The fol lowing two 
assertions are equivalent. 
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(i) VU ~ ~ n  ( m .  if) + c >_ mint (mr. if) + at. 
(#) 3Xx, . . . ,  hk such that 

PROOF. 

M. J E R R U M  A N D  M. SNIR 

ht___0, y,x,--  l, 
m = ~ , A t m ,  c>--Y,A,a~. 

(i) is equivalent to the assertion that in ~,"+~ the set of  inequalities 

(m~.ff) + a t > _ v ,  i =  1 . . . .  , k ,  

implies the inequality 

(re.if)  +c_>v .  

By taking, in Theorem A l , f i  = (mr, - l ) , f =  (m, -1),  b, = -a t ,  and b = - c ,  the above 
assertion is seen to be equivalent to the existence of X~ . . . . .  Xk such that 

X, --> 0, (m, -1 )  = X At(re, -1),  - c  ~< Y~ ~t(-at), 

which yields the desired result. [] 

Corollary A2 does in fact provide the reqmred proof for Theorem 2.5. The validity 
of Theorem 2.8 follows from the following corollary. 

COROLLARY A3. Let  mr, m ~ ~'*, a ,  c ~ ~ ,  f o r  i = 1 . . . .  , k. The fol lowing two 
assertions are equivalent. 

(i) V f f ~ , ~ , f f > - - O ~ ( m . f f )  + c > _ m m t ( m s . f f )  +a t .  
(ii) 3X1 . . . . .  Ak such that 

L>_O, Y ~  = 1, 
m >_ ~, A tm,  c >-- ~ Atas. 

PROOV. (i) is equivalent to the assertion that in ~ + a  the system of  inequalities, 

implies the inequality 

uj>_O, j =  l , . . . , n ,  
(mr-if) + at>- v, ~-- 1 . . . . .  k, 

Setting, in Theorem 2.5,f, = (mr, 
for j =  1 . . . . .  n ; b t = - a ,  f o r t =  
and a = -c ,  we obtain that the 

(m.ff )  + c > v .  

-1)  for i = 1 . . . .  , k;fk+j = ej, t h e j t h  unit vector, 
1 . . . . .  k; bk+j = 0 f o r j  = 1, . . . ,  n ; f  = (m, -1);  

above assertion is equivalent to the existence of 
~ ,  . . . ,  Xk+n such that 

Xt --> 0, 
k 

(m, -1 )  = 

k 

-c>_ y, 

This yields the desired result. [] 

h,(m,, -1)  + ~ hk+j(ej, 0), 
J = l  

~t(-a,). 
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