
13.2 Graph decompositions

Proposition 13.6. For every real matrix A,

‖A‖F√
rk(A)

≤ ‖A‖ ≤ ‖A‖F .

Proof. Observe that ‖A‖2
F is equal to the trace, that is, the sum of diagonal

elements of the matrix B = A�A. On the other hand, the trace of any real
matrix is equal to the sum of its eigenvalues. Hence, ‖A‖2

F =
∑n
i=1 λi where

λ1 ≥ . . . ≥ λn are the eigenvalues of B. Since B has only rk(B) = rk(A) = r
non-zero eigenvalues, and since all eigenvalues of B are nonnegative, the
largest eigenvalue λ1 is bounded by ‖A‖2

F/r ≤ λ1 ≤ ‖A‖2
F. It remains to use

the fact mentioned above that ‖A‖ =
√
λ1. ��

Let us now see how the linear algebra argument works in concrete situa-
tions.

13.2 Graph decompositions

A bipartite clique is a bipartite complete graph KA,B = (A ∪ B,E) with
A ∩B = ∅ and E = A× B.
Let f(n) be the smallest number t such that the complete graph Kn on

n vertices 1, 2, . . . , n can be decomposed into t edge-disjoint bipartite cliques.
It is not difficult to see that f(n) ≤ n− 1. Indeed, it is enough to remove the
vertices 1, 2, . . . , n − 1 one-by-one, together with their incident edges. This
gives us a decomposition of Kn into edge-disjoint stars, that is, bipartite
cliques KAi,Bi with Ai = {i} and Bi = {i+ 1, . . . , n}, i = 1, . . . , n− 1.
This is, however, just one special decomposition and does not exclude

better ones. Still, a classical result of Graham and Pollak (1971) says that
the trivial decomposition is in fact the best one! This can be shown using
linear algebra.

Theorem 13.7. The edges of Kn cannot be decomposed into fewer than n−1
edge-disjoint biartite cliques.

Proof (due to Trevberg 1982). We consider a more general question: What is
the smallest number t such that the sum of products

S(x) :=
∑

1≤i<j≤n
xixj

in indeterminates x = (x1, . . . , xn) can be written as the sum

S(x) =
t∑
i=1
(
∑
j∈Ai

xj) · (
∑
j∈Bi

xj) =
t∑
i=1
Li(x) · Ri(x)
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of products-of-sums with Ai ∩ Bi = ∅ for all i = 1, . . . , t? To answer this
question, set T (x) :=

∑n
i=1 x

2
i and observe that( n∑

i=1
xi

)2
=

n∑
i=1
x2
i + 2

∑
i<j

xixj = T (x) + 2S(x) ,

and hence,

T (x) =
( n∑
i=1
xi

)2
− 2S(x) =

( n∑
i=1
xi

)2
− 2 ·

t∑
i=1
Li(x) · Ri(x) . (13.8)

Consider now a homogeneous system of t+ 1 linear equations over R:

L1(x) = 0 , . . . , Lt(x) = 0 , x1 + · · ·+ xn = 0

and assume that t ≤ n−2. Then the system has more variables than equations,
implying that it must have a solution x ∈ Rn with x �= 0. From

∑n
i=1 xi = 0

and Li(x) = 0 for all i = 1, . . . , t it follows that, for this vector x, the right-
hand side of (13.8) must be equal to 0. But the left-hand side is not equal
to 0, since x �= 0 implies T (x) =

∑n
i=1 x

2
i �= 0. Thus, our assumption that

t ≤ n− 2 has led to a contradiction. ��

13.3 Inclusion matrices

A celebrated result, due to Razborov (1987), says that the majority function
cannot be computed by constant depth circuits of polynomial size, even if
we allow unbounded fanin And, Or and Parity functions as gates. This result
was obtained in two steps:

(i) show that functions, computable by small circuits, can be approximated
by low degree polynomials, and

(ii) prove that the majority function is hard to approximate by such polyno-
mials.

The proof of (i) is probabilistic, and we will present it later (see Lemma 18.11).
The proof of (ii) employs the linear algebra argument, and we present it below.
The k-threshold function is a boolean function T nk (x1, . . . , xn) which out-

puts 1 if and only if at least k of the bits in the input vector are 1. A boolean
function g(x1, . . . , xn) is a polynomial of degree d over F2 if it can be written
as a sum modulo 2 of products of at most d variables.

Lemma 13.8 (Razborov 1987). Let n/2 ≤ k ≤ n. Every polynomial of degree
at most 2k − n − 1 over F2 differs from the k-threshold function on at least(
n
k

)
inputs.
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