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A method for deriving lower bounds for the complexity of
monotone arithmetic circuits computing real polynomials

S. B. Gashkov and I. S. Sergeev

Abstract. This work suggests a method for deriving lower bounds for the
complexity of polynomials with positive real coefficients implemented by
circuits of functional elements over the monotone arithmetic basis {x + y,
x · y} ∪ {a · x | a ∈ R+}. Using this method, several new results are
obtained. In particular, we construct examples of polynomials of degree
m − 1 in each of the n variables with coefficients 0 and 1 having additive
monotone complexity m(1−o(1))n and multiplicative monotone complexity
m(1/2−o(1))n as mn →∞. In this form, the lower bounds derived here are
sharp.

Bibliography: 72 titles.

Keywords: lower bounds for complexity, arithmetic circuits, thin sets,
monotone complexity, permanent.

§ 1. Introduction

Methods for deriving effective lower bounds for the computational complexity of
functions are of keen interest in the context of the widely known problem P

?= NP ,
which arose from the works of S. Cook, R. Karp and L. Levin in the 1970s. To
solve this problem in the negative (which seems more likely, but is much harder
to accomplish), we would need to prove that some computational problems lack
efficient solving algorithms. By an efficient algorithm we mean an algorithm whose
run-time complexity (that is, the number of computation steps) is on the order of
at most nc, where n denotes the size of the input data in the binary coding and
c is some constant independent of n. Algorithms which admit this kind of bound
for the run-time complexity are usually called polynomial-time algorithms (and the
class P of problems which are solvable by such algorithms is referred to as the
‘polynomial-time class’). The concept of an algorithm and its complexity, as well
as the definition of the classes P and NP , is usually introduced in terms of deter-
ministic and nondeterministic Turing machines (see, for instance, [1]). However,
there is a well-known relationship between the time complexity of computations on
Turing machines and the complexity of the computation of Boolean functions by
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circuits over the standard Boolean basis {x&y, x∨y,¬x} (see, for instance, [2]). In
view of this relationship, to solve the problem P

?= NP in the negative, it is suffi-
cient to show that certain Boolean functions of n variables (related to some known
NP -complete problems) admit no Boolean circuits which compute these functions
and contain nO(1) gates. In other words, it is sufficient to derive a super-polynomial
lower bound for the complexity of these functions.

The current situation is such that not even a nonlinear lower bound for the
Boolean complexity (that is, an estimate of the form nf(n), where f(n) →∞, for
an n-ary Boolean function) is known so far. In this connection, significant efforts
are under way to find nontrivial linear lower bounds. At the same time, Lupanov
showed in his well-known works (see, for example, his textbook [3], or [2]) that
almost all n-ary Boolean functions have computational complexity (1 + o(1))2n/n.
This is asymptotically equal to the complexity of the most complex function of
this class, which Lupanov called a Shannon function. Consequently, the fraction
of functions that have, for instance, complexity 2n(1−ε), vanishes as n increases.
Hence, there is no doubt in that complex functions do exist. The problem is to
specify such function explicitly (that is, effectively in some reasonable sense) and
to demonstrate that its complexity is high. There are some not quite effective
results establishing high lower bounds for the complexity of Boolean functions (see,
for example, [2]), which are of independent interest, but do not provide a solution
to the problem of deriving effective lower bounds.

As early as the 1950s (that is, long before the ‘theory of NP -completeness’ was
proposed) Lupanov and Yablonskǐı realized the importance of the problem of lower
bounds. However, for the case of representing Boolean functions by circuits of the
general form this problem appeared (and still seems to be) too difficult, and thus
methods for deriving lower bounds for the complexity of implementation of Boolean
functions by circuits with constraints have been actively developed. Constraints
were imposed both on the structure of circuits1 and on the basis over which the
circuits were constructed.2 In this area significant results were obtained as early
as in the 1960s by Lupanov and his students and disciples (see, for example, [2],
[4]–[6]). With few exceptions, all estimates derived in that time were polynomial.

In 1984, Razborov and Andreev independently obtained super-polynomial lower
bounds for the complexity of the representation of Boolean functions over the mono-
tone basis {&,∨}. In [7] and [8], Razborov derived estimates of the form nΩ(log n)

for the monotone complexity of the logical analogue of the permanent and for the
function that detects a clique of a given size in the graph3, Andreev’s works [11],
[12] suggest an almost exponential lower bound of the form 2n1/8−o(1)

for a spe-
cially constructed function. Later Andreev raised his bound to 2n1/4−o(1)

(the same
estimate was obtained in [10]), and in [9] he established an estimate 2n1/3−o(1)

for

1For instance, some works were devoted to representing Boolean functions by a particular kind
of circuit, with no branching at the output gate, that is, formulae; also, some other types of
circuits were considered—contact networks, gate circuits, contact-rectifier circuits.

2In particular, circuits over incomplete bases were considered.
3Andreev [9] and independently Alon and Boppana [10] improved the bound for the function

that detects a clique up to 2n1/6−o(1)
.
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the complexity of some other function. Apparently being unaware of the results
obtained in [9], in [13] Harnik and Raz derived the same estimates.

To some degree problems on Boolean complexity are similar to problems on the
complexity of computation of real or complex polynomials by circuits (nonbranching
programs) whose elements implement arithmetic operations and constants. At the
present time such circuits are often referred to as arithmetic circuits.

Univariate real polynomials of degree n can be evaluated via a Horner scheme. In
the early 1960s V. Ya. Pan showed that this method is optimal if the constants used
in the scheme are only the coefficients of the polynomial being realized, whereas
the number of multiplications can be reduced by almost half if one is allowed to
use any other constants in the scheme. At the same time it was demonstrated
that almost no polynomial can be calculated appreciably more simply than by
Pan’s method (see, for instance, [14]). However, it turned out not to be that
easy to produce a particular ‘intractable’ polynomial. Strassen, his students and
disciples carried out a series of investigations in this area and suggested in [15]–[18]
examples of polynomials of complexity Ω(n), additive complexity n, multiplicative
complexity n/2 + O(1), and nonscalar complexity4 Ω(

√
n). In view of the results

obtained by Pan and Belaga (see [14]) and by Paterson and Stockmeyer [19] none
of these estimates can be improved in order (and some of them are sharp up to
an additive constant). A survey of papers from that time devoted to lower bounds
in algebraic complexity theory can be found in [20], the present state-of-the-art is
described in [21]. However, the polynomials mentioned above have coefficients of
rather complex nature (either rational numbers which grow rapidly with the index
of the coefficient, or complex roots of unity of rapidly increasing orders).

The existence of polynomials of complexity Ω(n/ log n) with coefficients 0 and 1
has been proved nonconstructively. Namely, Schnorr and van de Wiele showed
in [22] that almost all polynomials have this property. In the same work they derived
the estimate Ω(

√
n/ log n) for multiplicative (and for nonscalar) complexity, and

established the estimate Ω(
√
n/ log n) for additive complexity. It is known [23] that

the complexity of polynomials with coefficients 0, 1 cannot be of order higher than
n/ log n, even if of all possible constants it is only the constant 1 that is used in
the circuit (and thus the circuit is monotone), at the same time the multiplicative
complexity is not higher than O(

√
n). We construct a polynomial with coefficients

0 and 1 which has additive monotone complexity n1−o(1) and multiplicative mono-
tone complexity n1/2−o(1) below (thereby solving the open problem 9.3 formulated
in [21]).

The complexity of computation of various classes of polynomials whose coeffi-
cients belong to a given finite set was also considered in [24]–[26]. It suffices that
the basis over which the circuits are designed contain only a finite set of constants.
In [25] and [26] it was noted that asymptotically optimal upper bounds can be
derived using a modification of Lupanov’s method mentioned above. In particular,
for polynomials in n variables of degree at most 1 in each of the variables (in [27]
such polynomials were called Zhegalkin polynomials5, whereas in modern works

4This term is used here and below for brevity to denote the minimum number of multiplications
of the general form not including multiplication by constants.

5Named after I. I. Zhegalkin, professor in Moscow State University, who introduced these poly-
nomials in [28].
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by non-Russian authors they are called multilinear polynomials) and only having
coefficients 0 and 1, the monotone complexity has the asymptotic upper estimate
of 2n/n, whereas the upper estimate for the multiplicative complexity is O(2n/2).
Moreover, the first estimate is asymptotically the best possible.

Without altering the set of coefficients a multilinear polynomial in n variables
can be reduced by the change of variables xi = x2i−1

to a univariate polynomial of
degree at most 2n−1, and conversely, any univariate polynomial can be transformed
into a multilinear one. Therefore, upper estimates for the complexity of multilinear
polynomials imply the same estimates for univariate polynomials (hence, the results
of [23] follow from [25]), and lower estimates for the complexity of univariate poly-
nomials imply the same estimates for multilinear polynomials.6 Therefore, from
results due to von zur Gathen and Strassen [15], Heintz and Sieveking [16], and
Stoss [17] it follows that the aforementioned estimates for multilinear polynomials
cannot be essentially improved in order even using circuits over the complete basis.7

For instance, the multiplicative complexity of the class of all multilinear polynom-
ials with coefficients 0, 1 in n variables has the lower bound Ω(2n/2/

√
n). One can

also explicitly specify multilinear polynomials of additive complexity 2n − 1, mul-
tiplicative complexity 2n−1 + O(n), but their coefficients have a very complicated
nature.

For monotone arithmetic circuits the first almost exponential effective lower
bound was established by Schnorr [29]. This estimate was of the order of 2

√
n/ 4
√
n;

more precisely, for some polynomial of degree n2 in 4n2 variables (associated with
the clique problem [1]) the additive monotone complexity was actually shown to
coincide with the binomial coefficient Cn

2n − 1.
Almost exponential lower bounds of the form 2Ω(

√
n) for the monotone complexity

of polynomials were also obtained by Jerrum and Snir in [30] and Valiant in [31].
The work [30] suggests an asymptotically sharp estimate (1 − o(1))2n−1n for the
monotone multiplicative complexity of computation of the permanent8 of a real
(n×n)-matrix; the corresponding upper bound was established by H. J. Ryser and
W. B. Jurkat in 1967 (see, for instance, [14]). As is known, in the complete basis,
the determinant9 has complexity O(nω+o(1)), where ω is the exponent of matrix
multiplication, which is currently known to satisfy the inequality 2 6 ω < 2, 4.

In [32] and [33] Valiant suggested that it is difficult to derive almost exponential
lower bounds for the complexity of computation of some monotone polynomials in
the complete basis. Namely, he showed that the existence of such an estimate for the
permanent of a real matrix would imply V NP ̸= V P , where V NP ?= V P denotes

6To transform a circuit S that realizes a multilinear polynomial in n variables into a circuit
that realizes the corresponding univariate polynomial, one has to attach the inputs of the circuit S

to the outputs of a circuit that computes the n-tuple of powers x2i
, i = 0, . . . , n−1; such a circuit

can be designed using n− 1 product gates.
7That is, in the basis that contains subtraction or all possible constants, including negative

ones.
8The permanent is a multilinear monotone polynomial of degree n in n2 variables with coeffi-

cients 0, 1.
9The determinant is a multilinear non-monotone polynomial of degree n in n2 variables with

coefficients 0,±1.
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some algebraic analogue of the conventional (Boolean) problem P
?= NP . In the

same paper he demonstrated that the permanent of a matrix with integer entries
can be computed modulo 2k using Boolean circuits with complexity O(n4k−3).

For reasons explained in [34], for instance, in the theory of algebraic complex-
ity classes developed by Valiant, it is more convenient to consider the multilinear
polynomial

HCn =
∑

σ

n∏
i=1

xi,σ(i)

instead of the permanent; this is used to determine whether a graph on n ver-
tices is Hamiltonian, and summation is taken over all cyclic permutations σ ∈ Sn.
A detailed account of Valiant’s theory can be found in [21]. We also note that an
analogue of the problem P

?= NP for the field of complex numbers was studied
in [35].

Investigation of the complexity of the permanent attracted further interest.
In [36] the methods of [30] were applied to obtain the same lower estimates for the
monotone complexity of the (0, 1)-permanent.10 Another approach, under which
the permanent of a matrix is expressed in terms of the determinant of a larger
matrix, was put forward in [37]. In [38] both the permanent and the determi-
nant were shown to have super-polynomial complexity when realized by multilinear
formulae 11 in the complete basis.

The theory of complexity classes underlies certain methods for introducing the
concept of effectiveness. Effectiveness may be used to formalize the intuitive idea
of concreteness, explicit specification (what does it mean to say that a function is
specified explicitly?).

For instance, the effectiveness of (sequences of) Boolean functions is often treated
as their belonging to the class NP . This definition appears ill-chosen, at least while
the problem P

?= NP remains unsolved. Indeed, in the case P = NP , attempts
to derive effective super-polynomial lower bounds for complexity in the complete
basis would turn out to be meaningless.

Polynomials can be specified explicitly in a number of ways. For instance, one
could actually specify (or suggest an easy procedure for calculating) the coefficients
of the monomials or the roots. Examples of intractable polynomials which we
construct later on in this work have coefficients 0 and 1. In particular, they come
within the scope of the following definition of effectiveness. A polynomial is effective
if the Boolean function that calculates the coefficient of the polynomial by the
degree of the corresponding monomial (the degree is given in binary representation)
is implemented by a Boolean circuit of polynomial complexity over the standard
basis. It follows from a result in [33] that polynomials which are effective in this
sense belong to the class V NP (an algebraic analogue of the class NP ).

However, even being in the class V NP is not an entirely satisfactory criterion for
the effectiveness of a polynomial. For instance, it is hard to say whether a particular

10That is, the permanent of a (0, 1)-matrix was computed using monotone polynomials which
always evaluate (as the variables take values 0 or 1) to the permanent of the corresponding
(0, 1)-matrix.

11In multilinear formulae all subformulae realize multilinear polynomials.
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specified polynomial such as the multilinear analogue of the polynomial
∑

22k

xk

(an example suggested by Strassen) belongs to V NP or not. If it does (which
seems unlikely), then V P ̸= V NP , since the complexity of this polynomial in the
complete arithmetic basis is super-polynomial. If not, then, perhaps, effectiveness
should be defined in some other way.

In 1983 Kasim-Zade [39], [40] constructed a multilinear polynomial in n variables
with coefficients 0, 1 having additive monotone complexity 2⌊n/2⌋ − 1, and thereby
derived the first effective exponential lower bound for this measure of complexity.
Exponential lower bounds for the complexity of monotone polynomials were also
obtained in 1984 by Kuznetsov [41] (as is noted in [39]–[41], estimates of this kind
can also be derived from Kuznetsov’s earlier work [42]). In 1987, in [43] a method
for deriving lower bounds for monotone complexity was presented, based on ideas
in [39], [40] and [29]. Using that method, in particular, the author effectively spec-
ified a multilinear polynomial in n variables with coefficients 0, 1 having additive
monotone complexity of order at least 22n/3 and multiplicative monotone complex-
ity of order at least 2cn, where the constant c > 1/3.

In [40] Kasim-Zade also constructed a sequence of multilinear polynomials in n
variables with rational coefficients having complexity Ω(2c1n) over the monotone
arithmetic basis and complexity O(nc2) over the basis augmented by subtraction.12

Apparently being unaware of the works [39]–[43], in their recent paper [44] Raz
and Yehudayoff derived a lower bound of the form 2Ω(n) for the monotone complex-
ity of some multilinear polynomial in n variables. In [44] they also obtained some
results on the complexity of various types of multilinear formulae (that is, formulae
in multilinear bases).13

Some methods for deriving lower bounds for the monotone complexity of Boolean
functions also apply to the case of representing Boolean functions by monotone
circuits over the field of real numbers14 — this was the subject of study, for example,
in the works by Haken and Cook [48] and Pudlák [49]. The latter work suggests
a lower bound 2n1/6−o(1)

for the monotone Boolean function of n variables which
determines whether a given graph contains a clique of a given size.

Because of space limitations, [43] contained only sketches of the proofs of the
main theorems. In this work we present (in a somewhat generalized form) the
method for deriving lower bounds suggested in [43] with a detailed proof and present
some new results.

12The results of Schnorr [29] and Kasim-Zade [39], [40] were formulated for calculations over
the field Q, rather than R, but it makes no difference.

13According to [44] the model of multilinear circuits and formulae was first introduced in 1995
in [45]. However, we note that these concepts appeared in [27] and [46] as early as 1980; these
papers also contain some results concerning the complexity of the realization of Boolean functions
by multilinear circuits and formulae. The ideas in [27] and [46] were developed further in [47],
which also used the terms multilinear polynomial and multilinear formula. The works [47] and
[27] were cited in [35].

14Such circuits are composed of elements that realize monotone functions of real variables.
A circuit implements a Boolean function if it returns 0 or 1 whenever the value supplied at the
inputs of the circuit is 0 or 1. Note that this definition of implementation of Boolean functions
by circuits over continuous bases was proposed by Lupanov; it was investigated in [27], [46] in the
late 1970s.
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In particular, we combine the aforementioned method with an interesting com-
binatorial result obtained by Kóllar, Rónyai and Szabó [50] and on the way we
derive the lower bound mn(1−o(1)) for the additive monotone complexity and the
lower bound mn(1/2−o(1)) for the multiplicative monotone complexity (as mn →∞)
for particular polynomials in n variables of degree m − 1 in each of the variables
with unit coefficients. In this form the estimates obtained are best possible. This
example incorporates important special cases of multilinear polynomials (m = 2)
and univariate polynomials (n = 1).

Also, we effectively construct a multilinear polynomial in n variables of degree
m − 1 in each of the variables with unit coefficients for which the ratio between
the complexity of the realization in the monotone basis and the complexity of the
realization in the complete basis is not less than m(0,5−o(1))n as mn →∞. Earlier,
in [31] Valiant considered the case m = 2 of multilinear polynomials and estimated
the same ratio from below by 2Ω(

√
n); Kasim-Zade obtained the exponential esti-

mate 2cn (see above).
As another application of our method we derive the lower bound Ω(2n

√
n) for

the additive monotone complexity of the permanent of order n. The lower bound
Ω(2n/

√
n) for the polynomial HCn mentioned above can be obtained similarly.

(The authors are unaware of any other results concerning the additive monotone
complexity of these polynomials.)

We also show that the lower bounds derived using the method suggested in this
work cannot be essentially improved.

§ 2. Main definitions

We consider polynomials computed by circuits which are composed of sum gates,
product gates, and positive real constants. For any polynomial f of this kind, by
L+(f) we denote the minimum number of additions, and by L×(f) the minimum
number of nonscalar multiplications required for its computation. As usual, the
semiring of monotone polynomials in the variables x1, . . . , xn with respect to the
operations of addition and multiplication is denoted by R+[x1, . . . , xn]. We let
P (Nn) denote the semiring of finite subsets of the set Nn (where N = N∪{0}) with
respect to the operations of disjunction ∨ and multiplication ×: if A,B ∈ P (Nn),
then A,B ⊂ Nn,

A ∨B = A ∪B, A×B = {a+ b | a ∈ A, b ∈ B}.15

By mon we denote the homomorphism from the semiring R+[x1, . . . , xn] to the
semiring P (Nn) defined as follows: a = (a1, . . . , an) ∈ mon f if and only if the
polynomial f contains a monomial caxa1

1 · · ·xan
n .

The fact that the mapping mon is indeed a homomorphism follows from the
easily verifiable identities

mon(f1 + f2) = mon f1 ∨mon f2, mon(f1f2) = mon f1 ×mon f2,
mon 0 = ∅, mon 1 = {(0, . . . , 0)}.

15The set A× B is the Minkowski sum of the sets A and B. In this work we have to use the
symbol ‘×’ for Minkowski addition since it plays the role of multiplication (this is the way the
degrees of monomials are transformed as monotone polynomials are multiplied).
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A subset H of the semigroup (G, +) is said to be (k, l)-thin if it contains no
subset of the form A×B = {a+ b | a ∈ A, b ∈ B}, where |A| = k and |B| = l (here
and below the cardinality of a finite set M is denoted by |M |).

In the case where (G, +) is a group, this definition admits an equivalent formu-
lation: a subset H of the group (G, +) is said to be (k, l)-thin if for any distinct
elements g1, . . . , gk ∈ G the following inequality holds:∣∣∣∣ k⋂

i=1

giH

∣∣∣∣ < l, giH = {gi} ×H.

Proving these two definitions are equivalent is straightforward. Indeed, suppose
that for some elements g1, . . . , gk ∈ G the inequality |

⋂k
i=1 giH| > l holds true.

Since {−g1, . . . ,−gk} ×
⋂k

i=1 giH ⊂ H, the subset H is not (k, l)-thin in the sense
of the first definition.

Conversely, suppose that A × B ⊂ H, A = {g1, . . . , gk}, |B| = l. Since B ⊂⋂k
i=1(−gi)H, we have |

⋂k
i=1(−gi)H| > l. Consequently, H is not (k, l)-thin in the

sense of the second definition.
In what follows, when using the notion of a (k, l)-thin subset in a commutative

semigroup, in particular, in (Nn, +), we always assume that k 6 l. In addition, we
call a (k, k)-thin subset k-thin for short.

§ 3. Main theorem

Denote by α(k) the maximum number of distinct Boolean (k−1)-tuples of which
none is equal to the disjunction of any two other (k− 1)-tuples. It is easily verified
that α(2) = 2, α(3) = 3, α(4) = 5, α(5) = 9, and α(k) < 2k−2 for k > 5. In [51]
Kleitman showed that α(k) ∼ C

⌊(k−1)/2⌋
k−1 .

The following theorem was formulated and proved in [43] for the case k = l.

Theorem 1. Let k > 1 and mon f be a (k, l)-thin subset of the set (Nn, +). Set
h = max{|A| | A = A1 × · · · × Ap ⊂ mon f, |Ai| < l} and H = h−1|mon f |. Then
the following inequalities are valid :

(i) L+(f) > H − 1;
(ii) L×(f) > 2

√
H − n− 2;

(iii) if logH/(α(k) logα(l)) →∞, then

L×(f) > (2− o(1))
(
α(l)− α(k) + 1

)−1/(2α(k)−1)
Hα(k)/(2α(k)−1) − n− 2.

In what follows, apart from the next section which is devoted to the additive
complexity of the permanent, when we refer to this theorem we shall always replace
h with another quantity h∗; the estimate h∗ > h is established in the following
simple lemma.

Lemma 1. The following inequality is valid : h 6 h∗ = max{(k − 1)3, (l − 1)2}.

Proof. We will show that for any set A = A1 × · · · × Ap ⊂ mon f , |Ai| < l, the
estimate |A| 6 h∗ holds.

In the case p = 2 we obviously have |A1×A2| 6 (l−1)2. For p = 3 we renumber
the sets Ai in order of nondecreasing cardinality, so that |A1| 6 |A2| 6 |A3|.
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If |A1×A2| > l, then |A3| 6 k− 1, whence it follows that |A1×A2×A3| 6 |A3|3 6
(k − 1)3. Otherwise, if |A1 ×A2| 6 l − 1, then |(A1 ×A2)×A3| 6 (l − 1)2.

In the general case p > 3 we take s to be the largest integer such that
|A1 × · · · × As| < l. If s = p, then there is nothing to prove. If s = p − 1,
then we have |(A1×· · ·×Ap−1)×Ap| 6 (l−1)2. Otherwise, set A′1 = A1×· · ·×As,
A′2 = As+1, A′3 = As+2 × · · · ×Ap. We have A1 × · · · ×Ap = A′1 ×A′2 ×A′3, where
|A′1|, |A′2| 6 l − 1 and |A′3| 6 k − 1 6 l − 1. Thus, the argument for the case p = 3
examined above applies to the subset A′1 × A′2 × A′3. The proof of the lemma is
complete.

Before we prove the theorem we shall make some remarks in which we establish
a relationship between it and the results in [39], [40] and [29] mentioned in the
introduction.

Suppose that the group (G, +) has no elements of order 2.
A subset H of the group (G, +) is called a semidifference if for any elements

a, b, c, d ∈ H the following implication holds:

0 ̸= a− b = c− d =⇒ (a = c) & (b = d).

It is easy to see that H is a semidifference subset of the Abelian group (G, +) if
and only if any quadruple of elements a, b, c, d ∈ H obeys the implication

a+ b = c+ d =⇒
(
(a = c) & (b = d)

)
∨

(
(a = d) & (b = c)

)
.

Such a subset is also called a Sidon set, see [52].
In the method used in [39] and [40] the role of mon f is played by the semidif-

ference subsets {0, 1}n ⊂ (Zn, +).
We shall show that in an Abelian group the definitions of a semidifference and

a 2-thin subset are equivalent. Suppose that H ⊂ G is not 2-thin, which is to say
that for some elements a ̸= b, c ̸= d we have a + c, a + d, b + c, b + d ∈ H. Then
0 ̸= (b+ c)− (a+ c) = (b+ d)− (a+ d), but b+ c ̸= b+ d, which means that H is
not a semidifference subset.

Now suppose that H is not a semidifference subset, that is, for some elements
a, b, c, d ∈ H we have a+ b = c+ d, where a ̸= c, a ̸= d. Then {a, d} × {c− a, 0} =
{a, b, c, d} ⊂ H, which means that H is not 2-thin.

For this reason the result in [39], [40] follows from Theorem 1, (i) (provided we
can produce 2-thin subset H ⊂ {0, 1}n of cardinality 2⌊n/2⌋, see Theorem 3, (i.b)
below).

In [29] a set M ⊂ Nn is called separated if any r, s, t ∈M and u ∈ Nn obey the
following implication:

r + u = s+ t =⇒ (r = s) ∨ (r = t).

It is clear that any separated subset is a semidifference subset and therefore it is
2-thin. Consequently Theorem 1, (i) yields all results in Section 4 in [29].

Proof of Theorem 1. We will go from circuits realizing f to circuits that realize
mon f over the basis {∨,×}. We shall utilize the following lemma. (The minimum
number of ∨ gates and × gates required to realize the set mon f by such circuits
are denoted by L∨(mon f) and L×(mon f), respectively.)
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Lemma 2. The following inequalities hold :

L×(f) > L×(mon f), L+(f) > L∨(mon f).

Proof. Let S̃ be an arbitrary circuit realizing some polynomial f . In this circuit
we replace the product gates with × gates, and the sum gates with ∨ gates. We
replace the inputs xi with the constants

ai = {(0, . . . , 0, 1︸ ︷︷ ︸
i

, 0, . . . , 0)} ∈ P (Nn), i = 1, . . . , n,

and the constants from R+ with the constant {(0, . . . , 0)} ∈ P (Nn). As a result we
obtain a circuit S that computes the set mon f in the semiring P (Nn) (this follows
because mon is a homomorphism) and contains as many × gates (and ∨ gates) as
the circuit S̃ contains product gates (sum gates, respectively). The proof of the
lemma is complete.

Now we introduce some definitions and notation. An arbitrary gate of circuit S
will be denoted by the symbol e. By ϕ(e) we denote the element of the semiring
P (Nn) realized at the output of the gate e. The weight of the gate e is the cardi-
nality of the set ϕ(e). Without loss of generality we shall assume that the circuit
S contains no gates which are not connected to the output by at least one directed
path (any such gate can be removed from the circuit). The predecessors of the gate
e are the gates that have outgoing edges entering into e.

For each product gate × we distinguish one of the predecessors and call the
edge that connects them prohibited. Below we shall demonstrate that it is always
possible to distinguish a predecessor whose weight is less than l. Let ψ(e) be an
element of the semiring P (Nn) calculated by the aforementioned predecessor of the
gate e. In what follows we consider only (directed) paths that visit no prohibited
edges. Let C be some path that joins the gate e with the output of the circuit S
and let e1, . . . , em be all the product gates involved in the path C excluding e (it
may be that m = 0). We set Ψ(C) = ψ(e1) × · · · × ψ(em); if m = 0 we define
Ψ(C) = {(0, . . . , 0)}. The disjunction

∨
C Ψ(C) taken over all paths C that join

the gate e with the output of circuit S will be denoted by Ψ(e) (if there are no such
paths we set Ψ(e) = ∅).

A set of gates or constants of the circuit is called a cut if any path that connects
a constant with the output of the circuit goes through at least one gate of this set.

Lemma 3. For any cut E of the circuit the following relation is satisfied :

mon f =
∨
e∈E

ϕ(e)×Ψ(e).

Proof. The inclusion mon f ⊃
∨

e∈E ϕ(e)×Ψ(e) follows since mon f ⊃ ϕ(e)×Ψ(C)
which is obvious for any path C joining the gate e with the output of the circuit.

The reverse inclusion mon f ⊂
∨

e∈E ϕ(e)×Ψ(e) is established by induction on
the complexity of the circuit S. The base case, which corresponds to a circuit that
involves a single constant, is evident.
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Let us perform the inductive step. Denote the output of the circuit by e′. We
shall assume that e′ /∈ E (otherwise, the inclusion is clearly satisfied).

Consider the case where e′ is an OR gate. Let e′1 and e′2 be its predecessors
and denote by Si the circuit obtained by eliminating the gate e′ from S and spec-
ifying the output gate e′i, i = 1, 2. If e′1 = e′2, then the required relation follows
immediately as we pass to the subcircuit S1. Therefore, we shall assume below that
e′1 ̸= e′2.

Let C be an arbitrary path that connects an internal gate of the circuit S with
the gate e′. The direct predecessor of this gate in the path C is one of the gates e′i,
and the path C can be obtained by adding the gate e′ to the corresponding path
C ′ of the subcircuit Si. It is evident that Ψ(C) = Ψ(C ′).

Set Ei = E ∩ Si. For any gate ei ∈ Ei and subcircuit Si we define Ψi(e) in
the same way as Ψ(e). Then Ψ(e) = Ψi(e) for any e ∈ Ei \ E3−i and Ψ(e) =
Ψ1(e) ∨ Ψ2(e) for any e ∈ E1 ∩ E2. Applying the inductive hypothesis to the
subcircuits Si and using distributivity we obtain the required inclusion

mon f = ϕ(e′) = ϕ(e′1) ∨ ϕ(e′2) ⊂
( ∨

e∈E1

ϕ(e)×Ψ1(e)
)
∨

( ∨
e∈E2

ϕ(e)×Ψ2(e)
)

=
( ∨

e∈E1\E2

ϕ(e)×Ψ1(e)
)
∨

( ∨
e∈E2\E1

ϕ(e)×Ψ2(e)
)

∨
( ∨

e∈E1∩E2

ϕ(e)× (Ψ1(e) ∨Ψ2(e))
)

=
∨
e∈E

ϕ(e)×Ψ(e).

It remains to consider the case when e′ is a product gate. Then mon f = ϕ(e′) =
ϕ(e′1)×ψ(e′), where e′1 is the only gate connected with e′ by an unforbidden edge.
Let S1 denote the circuit obtained from S by eliminating the gate e′ and specifying
the output gate e′1.

Any path C in the circuit S that connects an internal gate with the gate e′ can
be obtained by adding the gate e′ to some path C ′ that lies in the subcircuit S1

and ends with the gate e′1. Since Ψ(C) = Ψ(C ′) × ψ(e′), we apply the inductive
hypothesis to the subcircuit S1 and use the distributive property to obtain the
relation Ψ(e) = Ψ1(e) × ψ(e′) for any e ∈ E (where Ψ1(e) is defined in the same
way as in the previous case). This gives the required inclusion

mon f = ϕ(e′) = ϕ(e′1)× ψ(e′) ⊂
( ∨

e∈E

ϕ(e)×Ψ1(e)
)
× ψ(e′)

=
∨
e∈E

ϕ(e)×Ψ1(e)× ψ(e′) =
∨
e∈E

ϕ(e)×Ψ(e).

The proof of the lemma is complete.

Lemma 4. Let the product gate e in the circuit S implement a (k, l)-thin subset
mon f of the set Nn. Then the weight of one of the predecessors of the gate e is
less than l.

Proof. Suppose the contrary. Then ϕ(e) = ϕ1×ϕ2, where |ϕi| > l. Consider a cut of
the circuit that contains the gate e (it may be added to any cut). Applying the result
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of the previous lemma to this cut we derive the inclusion mon f ⊃ ϕ(e) × Ψ(e) =
ϕ1 × (ϕ2 × Ψ(e)). But |ϕ2 × Ψ(e)| > |ϕ2| > l, contradicting the assumption that
the set mon f is (k, l)-thin.

In deriving these relations we have used the associativity of multiplication and
the inequality |A×B| > max{|A|, |B|}, which follows from the inclusions {a}×B ⊂
A × B and A × {b} ⊂ A × B, where a ∈ A and b ∈ B, which are obvious (in fact,
a stronger inequality |A × B| > |A| + |B| − 1 is valid). The proof of the lemma is
complete.

From now on we will assume that for each product gate in the circuit S the for-
bidden edge is chosen to come out of a predecessor whose weight is less than l. With
this convention we may assume that for any product gate e the estimate |ψ(e)| < l
is satisfied. Otherwise we may replace each product gate e with a single-input gate
that implements multiplication by ψ(e).

On every path of the circuit S that goes from the input to the output of this
circuit, consider the OR gate having weight at least l and located closest to the
input (if there is such a gate) together with its preceding gate (or constant) along
this path. Denote the set of the distinguished OR gates by V = {v1, . . . , vm}, and
the set of their direct predecessors by U = {u1, . . . , ut} (it may happen that m = 0).

The case m = 0 means that there are no OR gates in the circuit S whose weights
are higher than l − 1. We will show that in this case the theorem holds. In such
a circuit any path that joins a constant with the output of the circuit ends up
with a (possibly empty) series of product gates preceded by a constant or an OR
gate of weight less than l. Therefore, such a circuit implements a set of the form
A1×· · ·×Ap, where |Ai| < l for all i. Consequently, |mon f | 6 h (by the definition
of h), and under this condition the statement of the theorem is satisfied.

From now on we shall assume that m > 0.

Lemma 5. The sets V and U are cuts of the circuit S.

Proof. We will show that V is a cut. Suppose that some path C does not go through
elements of V , which means that it contains no OR gates of weight higher than
l − 1. Consider an arbitrary path C ′ that meets V . The paths C and C ′ share
a common gate e′, the output of the circuit, and consequently they have a common
subpath C ′′ which ends up at the gate e′. Let e be the first node of this subpath
counted from the inputs.

The elements of the set V ∩ C ′ do not occur in the subpath C ′′; hence, they
appear along the path C ′ before the gate e, which implies that the weight of e is
less than l. Since e ∈ C, it cannot be an OR gate. Then e is a product gate.
However, a product gate has a single input and then its direct predecessor also
lies on C ∩ C ′, which contradicts the choice of e as the first gate on the common
subpath of C and C ′.

We have shown above that any path in the circuit contains an element of the
set V . Consequently, by construction, it also contains an element (or constant) of
the set U . The proof of the lemma is complete.

Now we will transform the circuit S as follows. Replace each gate ui with the
corresponding constant that implements ϕ(ui); this constant will also be denoted
by ui. Then eliminate from the circuit all the edges that enter into the gates ui.
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If all the edges issuing from some gate are eliminated, then we remove this gate
together with all the edges that enter into it, and so on.

After this transformation, the set implemented by the circuit remains unchanged
and neither the number of OR gates, nor the number of all other types of gates,
has increased. We shall denote the resulting circuit by Ŝ.

Now we define a matrix (βi,j) in the following way: we set βi,j = 1 if and only
if the edge (ui, vj) occurs in Ŝ, and βi,j = 0 otherwise.

Lemma 6. The following relation holds :

mon f =
∨
i,j

βi,j=1

ϕ(ui)×Ψ(vj).

Proof. It follows from Lemma 5 that the set U∩Ŝ is a cut of the circuit Ŝ. Applying
Lemma 3 and the definition of the function Ψ(e) to Ŝ, we obtain

mon f =
t∨

i=1

ϕ(ui)×Ψ(ui) =
∨
i,C

ui∈C

ϕ(ui)×Ψ(C),

where {C} denotes the set of paths going from the outputs of constants uj to the
output of the circuit Ŝ (if ui /∈ Ŝ, then we set Ψ(ui) = ∅). Let C be an arbitrary
path of this kind issued from constant ui.

Let us show that the gate that follows ui in this path belongs to V . First, we
shall prove that V ∩Ŝ is a cut of the circuit Ŝ, which means that the path C contains
an element of V which is different from ui. Suppose the contrary. It follows from
the definition of ui that there is a subpath C ′′ in S that joins some input of the
circuit with the gate ui and contains no elements of V . Consider the subpath C ′

in S obtained by extending the subpath C ′′ with the help of the path C. It follows
from the definition of the set V that C ′ ∩ V ̸= ∅. However, in this case we have
(C \ {ui}) ∩ V ̸= ∅, which contradicts our assumption. Hence, V ∩ Ŝ is a cut of
the circuit Ŝ.

If the gate ui is not followed by an element of V on the path C, then ui is
the direct predecessor of some gate uj , which contradicts the condition that in the
circuit Ŝ all the elements of U are constants. Thus, all edges belonging to U ∩ Ŝ
have their heads in V .

Let ui and vj be the first elements of the path C; denote the rest of the path
by C ′. Then Ψ(C) = Ψ(C ′) and as the set Ψ(vj) is the disjunction of all possible
Ψ(C ′), vj ∈ C ′, we obtain the equality

mon f =
∨
i,C

ui∈C

ϕ(ui)×Ψ(C) =
∨
i,C′

{ui}∪C′ is a path

ϕ(ui)×Ψ(C ′) =
∨
i,j

βi,j=1

ϕ(ui)×Ψ(vj).

The proof of the lemma is complete.

Lemma 7. The following relation holds :
∑

i,j βi,j > h−1|mon f |.
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Proof. It follows from

|ϕ(vj)| > l, ϕ(vj)×Ψ(vj) ⊂ mon f,

that |Ψ(vj)| < k for all j. Otherwise the set mon f would not be (k, l)-thin.
Now we will verify that any set ϕ(ui), where ui ∈ U , can be represented in the

form B1×· · ·×Bp, where |Bj | < l, Bj ⊂ Nn for any j. According to the definition
of U , there exists a path in which the gate (or constant) ui is not preceded by the
OR gates having weight higher than l − 1. Then the set ϕ(ui), which is computed
by the subpath ending up at ui, admits the required representation.

Using Lemma 1, from the facts established above we obtain the estimate
|ϕ(ui) × Ψ(vj)| 6 h, and now the inequality in the proof follows directly from
Lemma 6. The proof of the lemma is complete.

We again consider the circuit Ŝ and show that the number of OR gates in this
circuit is not less than

∑
i,j βi,j − 1.

We denote the number of gates which have exactly i incoming edges by ri,
i = 1, 2, and count up the total number of edges in this circuit in two ways. On the
one hand, this number equals r1 +2r2 (the total number of incoming edges), on the
other hand, it is not less than r1 + r2 +

∑
i,j βi,j − 1 (the total number of outgoing

edges). Consequently, r2 >
∑

i,j βi,j − 1 (in fact, we are using known arguments,
which can be found in [2], for example). Finally we obtain∑

i,j

βi,j − 1 6 r2 6 L∨(Ŝ) 6 L∨(S),

which, with Lemmas 2 and 7 proves inequality (i) of the theorem.
To prove item (ii) of the theorem, on every path of the circuit S we distinguish the

gate vi ∈ V which is closest to the circuit inputs. Also, distinguish the single-input
gate that precedes vi and is closest to it along this path (or the constant from
which this path emanates, if vi has no single-input predecessors) and the closest
single-input gate that succeeds vi (or the circuit output, if vi has no single-input
successors). Denote the set of all distinguished predecessors by W = {w1, . . . , wp′}
and the set of distinguished successors by Z = {z1, . . . , zq′}. If the output e′ of the
circuit S is contained in Z, then we set ψ(e′) = {(0, . . . , 0)}.

Let us change all elements of W to constants using the same arguments as we
used when constructing the circuit Ŝ, and denote the resulting circuit by S̆.

Lemma 8. There exists a Boolean matrix (µi,j) such that

mon f =
∨
i,j

µi,j=1

ϕ(wi)× ψ(zj)×Ψ(zj).

Moreover, µi,j = 0 if wi /∈ S̆ or zj /∈ S̆.

Proof. The set W ∩ S̆ is a cut of the circuit S̆ since it contains all the inputs.
Therefore, by Lemma 3 we have

mon f =
∨
i,C

wi∈C

ϕ(wi)×Ψ(C),
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where {C} denotes the set of paths that connect constants wi with the output of
the circuit S̆. The sets V ∩ S̆ and Z ∩ S̆ are also cuts of circuit S̆— this can be
demonstrated in the same way as in Lemma 6.

We will show that W ∩ Z ∩ S̆ = ∅. Suppose the contrary, that is, assume
that there exists an element wi = zj ∈ S̆. Obviously, such an element cannot be
a constant of the circuit S; nor can it be an OR gate. Then it is a single-input gate
and in any path that connects the input and the output of circuit S, this gate is
preceded by the same element e. Since there is a path in which zj is preceded by an
OR gate with weight at least l, we have |ϕ(e)| > l. Now if e is a product gate, then
zj cannot belong to Z, whereas if e is an OR gate, then wi cannot belong to W ,
which contradicts our assumption.

The above arguments also imply that a product gate belonging to the set Z is
necessarily preceded by an OR gate with weight at least l.

Consider an arbitrary path C starting at constant wi. By the construction of
circuit S̆, the path C contains no elements of W other than wi. Let zj be the
element of the set Z on the path C that is closest to the circuit input. We will
show that the path segment C ′′ between wi and zj contains no other single-input
gates.

First, this segment necessarily contains an OR gate with weight at least l. If
the element zj itself is not an OR gate (that is, the output of the circuit), then
this follows from the above remark about the direct predecessor of a single-input
element of Z. Let v be the OR gate which is closest to wi. Then, in accordance
with the definition of wi, the element v is the closest to the input OR gate having
weight at least l in some path of S that contains C ′′ as a subpath (that is, v ∈ V ).
Then the existence of a single-input gate in C ′′ that differs from wi and zj would
immediately imply that the subpath C ′′ contains either an element of W other than
wi, or an element of Z other than zj . This, in turn, disagrees with the definition
of the circuit S̆ or with the choice of the element zj , respectively.

Thus, the only elements that can occur between wi and zj are OR gates.
Consider the subpath C ′ of C which connects the element zj with the circuit

output. According to the definition of Ψ, we have Ψ(C) = ψ(zj) × Ψ(C ′). As
a consequence, any path C ′ that joins the element zj with the circuit output may
be extended to some path C that joins the element wi with the circuit output and
satisfies the condition Ψ(C) = ψ(zj)×Ψ(C ′). Therefore,

ψ(zj)×Ψ(zj) =
∨
C′

ψ(zj)×Ψ(C ′) =
∨
C

wi,zj∈C

Ψ(C),

where the first disjunction involves all subpaths {C ′} starting from zj . This means
that there exists a Boolean matrix (µi,j) such that

mon f =
∨
i,C

wi∈C

ϕ(wi)×Ψ(C) =
∨
i,j

µi,j=1

ϕ(wi)× ψ(zj)×Ψ(zj).

Here, by construction, the last disjunction involves only pairs of elements wi and
zj in S̆. The proof of the lemma is complete.
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Lemma 9. The following relation holds :
∑

i,j µi,j > h−1|mon f |.

Proof. As in the proof of Lemma 7, it is sufficient to show that any set ϕ(wi) ×
ψ(zj) × Ψ(zj) can be represented as a product of sets each having weight less
than l. Once we have established this the required inequality follows directly from
Lemmas 1 and 8.

It is evident that |ψ(zj)| < l. Moreover, since |ϕ(zj)| > l and ϕ(zj) × Ψ(zj) ⊂
mon f , we have |Ψ(zj)| < k 6 l. Finally, the set ϕ(wi) is calculated by a certain
path which contains no OR gates of weight higher than l− 1. Hence, the set ϕ(wi)
and, consequently, the set ϕ(wi)× ψ(zj)×Ψ(zj) has the required form. The proof
of the lemma is complete.

Let |W ∩ S̆| = p and |Z ∩ S̆| = q. Then, since all the elements of W ∪ Z apart
from, perhaps, n+ 2 elements, are single-input elements, and since W ∩Z ∩ S̆ = ∅
(this was proved in Lemma 8), we have

L×(S̆) > p+ q − n− 2.

Using the inequalities p+ q > 2
√
pq and pq >

∑
i,j µi,j , we obtain

L×(S) > L×(S̆) > p+ q − n− 2 > 2
√∑

i,j

µi,j − n− 2.

With Lemmas 2 and 9 this estimate yields inequality (ii) of the theorem.
Now we will establish inequality (iii), which improves inequality (ii) in the asymp-

totic sense. For the sake of convenience we shall remove from the sets W and Z all
the elements that correspond to zero rows and zero columns of the matrix (µi,j).
We will also remove all the zero rows and columns from (µi,j) again denoting the
resulting matrix by (µi,j). The statement of Lemma 8 remains valid for the modified
sets (with an appropriate rearrangement of the indices) and matrix.

Now we assume that (µi,j) has the least size (the number of rows and the number
of columns) among all matrices for which Lemma 8 holds true.

Then none of the sets ϕ(wi) can be represented as a disjunction of some other sets
ϕ(wj), j ̸= i, and the same is true of the sets ψ(zi)×Ψ(zi). Indeed if, for instance,
the set ϕ(wi) were represented in the form

∨
j∈J ϕ(wj), i /∈ J , then replacing all

occurrences of ϕ(wi) in the statement of Lemma 8 with
∨

j∈J ϕ(wj), making the
corresponding transformations, and removing wi from the set W , we would obtain
a similar formula with a new matrix (µ′i,j) having fewer rows.

A Boolean matrix will be called (k, l)-thin if it contains no (k × l)-submatrix
whose entries are all 1.

Lemma 10. Matrix (µi,j) is (α(k), α(l))-thin and (α(l), α(k))-thin.

Proof. Suppose, for example, that (µi,j) is not (α(k), α(l))-thin. Then according to
Lemma 8, there exist an α(k)-element set I and an α(l)-element set J which satisfy
the inclusion (∨

i∈I

ϕ(wi)
)
×

(∨
j∈J

ψ(zj)× ψ(Zj)
)
⊂ mon f.
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Now if |
∨

i∈I ϕ(wi)| < k, then in a certain (k − 1)-element set there is a system
of α(k) distinct nonempty subsets none of which can be represented as a disjunc-
tion of two other subsets (in fact, any assembly of other subsets). Adding the
empty set to it, we obtain a system of α(k) + 1 subsets with the same property,
which contradicts the definition of α(k). Therefore, |

∨
i∈I ϕ(wi)| > k and similarly

|
∨

j∈J ψ(zj) × ψ(Zj)| > l. However, this contradicts the (k, l)-thinness of the set
mon f .

The fact that (µi,j) is (α(l), α(k))-thin is verified in the same way. The proof of
the lemma is complete.

The following lemma is an immediate corollary of the estimate for the weight of
a thin Boolean matrix in [53], where Nikiforov improved the corresponding estimate
proposed in [54]. In what follows the number of 1s in a Boolean matrix is referred
to as its weight.

Lemma 11. Let α 6 β. Then the weight of an (α, β)-thin and (β, α)-thin Boolean
(p× q)-matrix A does not exceed

(β − α+ 1)1/α

(
p+ q

2

)2−1/α

+ (α− 1)
(
p+ q

2

)2−2/α

+ (α− 2)
p+ q

2
.

Proof. The upper estimate [53] for the weight of a (β, α)-thin (p× q)-matrix A has
the form

(β − α+ 1)1/αp1−1/αq + (α− 1)p2−2/α + (α− 2)p.

We write down a similar estimate for the weight of its transpose (which is (β, α)-thin
as well) and consider the arithmetic mean of both estimates. Using the known
inequalities

pq 6

(
p+ q

2

)2

,
p1/α + q1/α

2
6

(
p+ q

2

)1/α

,

which imply the relations

p1−1/αq + q1−1/αp

2
=
pq

2

(
1

p1/α
+

1
q1/α

)
6
pq

2

(
1
p

+
1
q

)1/α

= (pq)1−1/α

(
p+ q

2

)1/α

6

(
p+ q

2

)2−1/α

,

we finally establish the desired bound. The proof of the lemma is complete.

Together with Lemma 9 the last two lemmas yield the estimate

h−1|mon f | 6 (α(l)− α(k) + 1)1/α(k)

(
p+ q

2

)2−1/α(k)

+ (α(k)− 1)
(
p+ q

2

)2−2/α(k)

+ (α(k)− 2)
p+ q

2
,

which implies that

p+ q > 2(D − aD(2α(k)−2)/(2α(k)−1) − bDα(k)/(2α(k)−1))α(k)/(2α(k)−1), (1)



1428 S.B. Gashkov and I. S. Sergeev

where

D =
|mon f |

h(α(l)− α(k) + 1)1/α(k)
,

a =
α(k)− 1

(α(l)− α(k) + 1)1/α(k)
, b =

α(k)− 2
(α(l)− α(k) + 1)1/α(k)

,

if the expression in the parentheses in (1) is positive; this in turn is guaranteed by
the condition in item (iii): it can be assumed that for a sufficiently large D we have
D > (a + b) × D(2α(k)−2)/(2α(k)−1). Now the inequality in item (iii) follows from
the estimate L×(f) > p+ q − n− 2. The proof of the theorem is complete.

Remark 1. It also follows from the proof that α(k) in estimate (iii) can be replaced
by the function α∗(k), which is defined in the same way as α(k) with the difference
that now disjunctions not only of pairs but of any assemblies of other vectors are
disallowed. However, this yields no essential improvement of the estimates, since
it follows from Kleitman’s result that α∗(k) ∼ α(k), and in addition, α∗(k) = α(k)
for k 6 4.

Remark 2. In the particular case k = 2 the bound in item (iii) implies that
L×(f) = Ωl(|mon f |2/3) and, if k = 3, that L×(f) = Ωl(|mon f |3/5). Below we
show in Theorem 6 that none of these estimates can be improved in order.

§ 4. Additive complexity of the permanent

We set
pern =

∑
π∈Sn

x1,π(1) · · ·xn,π(n),

where Sn is the set of all permutations of {1, . . . , n}.

Lemma 12. Let f = pern. Then for any m = 0, . . . , ⌈n/2⌉ − 1 the set mon f is
(m! + 1, (n−m− 1)! + 1)-thin.

Proof. Suppose that A×B ⊂ mon f . Denote the set of indices of all nonzero rows
in matrices in A by RA, and the set of indices of nonzero columns by CA. We shall
denote the same sets of rows and columns in matrices in B by RB and CB .

It is clear that the entries of a matrix in A ∪ B can only be zeros and ones.
It is also evident that any row or column of such a matrix has at most one entry
that is one. Therefore, each matrix in A (in B) contains at most min{|RA|, |CA|}
(at most min{|RB |, |CB |}, respectively) ones.

We will verify that RA ∩ RB = ∅ = CA ∩ CB . If, for instance, RA ∩ RB ̸= ∅,
then the sets A and B contain matrices which have a one in the same rows and
then the sum of such matrices contains either a two or more than one entry of 1 in
the corresponding row; hence, the sum of these matrices does not belong to mon f .

Now we observe that the total number of ones in any two matrices belonging
to A and B equals n. Thus, we have |RA| + |RB | = |CA| + |CB | = n, where
|RA| = |CA| = k and |RB | = |CB | = n − k. Consequently, any matrix in A has
exactly k ones, which are arranged one in each row of RA and one in each column
of CA. Therefore, |A| 6 k! . Similarly, we have |B| 6 (n− k)! .
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As a result, we see that there is no value ofm = 0, . . . , n for which the inequalities
|A| > m! and |B| > (n− 1−m)! can hold simultaneously. The proof of the lemma
is complete.

Theorem 2. The additive complexity of the permanent obeys the bound

L+(pern) >
n!

(⌊n/2⌋!)2
− 1.

Proof. We will show that the quantity h in the statement of Theorem 1 satisfies
the inequality h 6 (⌊n/2⌋!)2.

By Lemma 12 in the definition of h it can be assumed that l = ⌊n/2⌋! + 1. Let
A1 × · · · × Ap ⊂ mon f , |Ai| 6 ⌊n/2⌋! for all i = 1, . . . , p, and each set Ai consists
of n× n Boolean matrices.

Repeating the arguments in the proof of Lemma 12, we find that each of the
Boolean matrices in Ai has exactly ki ones. These entries are arranged one in each
row determined by the index set Ri and one in each column determined by the
index set Ci. At the same time,

|Ri| = |Ci| = ki,

p∑
i=1

ki = n,

p⋃
i=1

Ri =
p⋃

i=1

Ci = {1, . . . , n}, |Ai| 6 ki! .

Without loss of generality we can assume that k1 > ki > 1 for all i. For p = 2
the inequality |A1 × · · · × Ap| 6 (⌊n/2⌋!)2 is obvious; thus, below we assume that
p > 3.

If k1 > ⌊n/2⌋, then

|A1 × · · · ×Ap| 6 |A1| · k2! · · · kp! 6

⌊
n

2

⌋
! (n− k1 − 1)! 6

(⌊
n

2

⌋
!
)2

.

In deriving this estimate we have used the inequality k! (n− k)! 6 (n− 1)! , which
holds for 0 < k < n and, in turn, implies that k2! · · · kp! 6 (k2 + · · · + kp − 1)! =
(n− k1 − 1)! .

If k1 < ⌊n/2⌋, then we apply the inequality x! y! 6 (x − 1)! (y + 1)! , which is
valid for x 6 y, and obtain

|A1 × · · · ×Ap| 6 k1! · · · kp! 6

⌊
n

2

⌋
! · k′2! · · · k′s!,

where 1 6 k′i 6 ⌊n/2⌋, s 6 p,
∑s

i=1 k
′
i = ⌈n/2⌉. This also gives the required

estimate. The proof of the theorem is complete.

Thus, for odd n we have L+(pern) > nC
(n−1)/2
n−1 − 1 ≍

√
n2n. Since the com-

plexity of the permanent of order n is clearly no less than that of the permanent of
order n−1, for even n we have an estimate of the same order. As is known (see, for
instance, [14], exercises to Section 4.6.4), L+(pern) = O(n2n). Hence, the estimate
obtained is almost sharp.

At the same time, the estimate for L×(pern) obtained by the method suggested
in Theorem 1 is much lower than the actual value of L×(pern) ∼ n2n−1, which was
established in [30].
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As a corollary, we obtain the estimate L+(HCn) = Ω(2n/
√
n) for the additive

complexity of the HamiltonianHCn, since monHCn ⊂ mon pern and |monHCn| =
(n− 1)! .

§ 5. Examples of thin sets

To show how Theorem 1 can be applied to derive high lower estimates for the
monotone complexity of individual polynomials, we shall need effective examples
of thin sets of sufficiently large cardinality. Set En = {0, . . . , n− 1}.

We noted earlier that in an Abelian group the notion of a 2-thin subset coincides
with that of a Sidon set.

A survey of the known approaches to constructing Sidon sets and of the bounds
for their cardinality is given in [52] and the works cited there. For our purposes the
following facts are important: the cardinality of a Sidon set in En and in the group
Zn is asymptotically no greater than

√
n. This bound is sharp in the first case for

all (sufficiently large) n; in the second case— for some values of n. We give some
well-known examples.

a) Singer’s set of cardinality q + 1 in Zq2+q+1, where q is a prime power, is
defined as

{0} ∪
{
si | θsi/(θ + αi) ∈ GF (q), GF (q) = {α1, . . . , αq}

}
,

where the notation GF (q) is used for the Galois field of order q, θ is a primitive
element of the field GF (q3). See [55] for details.

b) Bose’s set of cardinality q in Zq2−1, where q is a prime power, is defined as
{si | θsi = θ + αi, GF (q) = {α1, . . . , αq}}, where θ is a primitive element of the
field GF (q2).

c) Alekseev’s set [56] of cardinality p− 1 in Zp(p−1), where p is prime, is defined
as {si | si ≡ i mod (p − 1), si ≡ ζi mod p}, where ζ is a generator of the multi-
plicative group of the field GF (p).

Any of the sets in the above examples can be transformed into a Sidon set of
cardinality (1−o(1))

√
n in En. This is due, first, to the fact that a thin subset in ZQ

must also be thin in EQ (in the sense of the natural one-to-one homomorphism from
EQ to ZQ). Second, if QR(m) denotes the largest number not greater than m of
the form R(p), where R is a given polynomial and p is prime, then it is known
that QR(m) ∼ m as m → ∞ (this follows from the results on the density of the
distribution of prime numbers, see, for instance, [57]).

Some more examples of thin subsets are given by the following theorem.
Let ψn denotes the following (quite natural) mapping from GF (2n) to Nn. We

will represent GF (2n) as a vector space of dimension n over GF (2). Then ψn maps
vectors over GF (2) to vectors over N so that zeros go to zeros and ones to ones.

Theorem 3. (i.a) In the group (GF (q)2, +), where q is odd, the parabola

{(x, x2) | x ∈ GF (q)}

is a 2-thin subset of cardinality q.
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(i.b) In the semigroup (N2n, +) the ‘cubic parabola’

{(ψn(x), ψn(x3)) | x ∈ GF (2n)}

is a 2-thin subset of cardinality 2n.
(ii.a) In the group (GF (q)3, +), where q is odd, the sphere

{(x, y, z) | x2 + y2 + z2 = γ},

where −γ is a quadratic nonresidue in GF (q), is a 3-thin subset of cardinality q2−q.
(ii.b) In the group (GF (q)3, +), where q = 22k+1, the surface

{(x, y, z) | x3 + y7 + z15 = 1}

is a (47, 315)-thin subset of cardinality q2.
(iii) In the group (GF (qt), +) the set {x | x(qt−1)/(q−1) = 1} of elements with

unit norm is a (t, t! + 1)-thin subset of cardinality (qt − 1)/(q − 1).

Proof. First we prove item (i.a). We need to verify that the nonzero differences of
two-dimensional vectors over GF (q) being equal:

(x, x2)− (y, y2) = (z, z2)− (u, u2) ̸= (0, 0)

implies that x = z and y = u. Indeed, the system of equations{
x− y = a,

x2 − y2 = b

over this field for a ̸= 0 is equivalent to the systemx− y = a,

x+ y =
b

a
,

which has a unique solution.
Thus, the parabola under consideration is a semi-difference and, hence, a 2-thin

subset in GF (q)2.
The example considered in item (i.b) was suggested in [39], [40] (overall the proof

is similar to that of item (i.a)).
The statement of item (ii.a) was actually proved by Brown [58] for the case of

a prime number q. To be precise, he showed that the intersection of any three
distinct spheres S(a, b, c) = {(x, y, z) | (x− a)2 + (y − b)2 + (z − c)2 = γ} consists
of at most two points. However, his reasoning applies to the general case as well.

So, assume that the sphere S(0, 0, 0) is not a 3-thin subset, that is, A + B ⊂
S(0, 0, 0), where |A| = |B| = 3. Then, as any sphere S(a, b, c) can be represented in
the form {(a, b, c)}+S(0, 0, 0), we can deduce that the set B of cardinality 3 is con-
tained in each of the spheres S(a, b, c), where (−a,−b,−c) ∈ A, which contradicts
Brown’s result.

The fact that the cardinality of S(0, 0, 0) is equal to q2 − q follows, for instance,
from the statement of problem 14 in [59], Algebraic Supplement, § 3.
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The example considered in item (ii.b) was presented in [43]. We omit its proof
because it is complicated.

The statement of item (iii) follows directly from results in [50], where it is shown
that any t distinct sets

N(a) = {x | (x− a)(q
t−1)/(q−1) = 1}

intersect in at most t! points and conversely, any t! + 1 such sets have at most t− 1
common points. Now the fact that the set N(0) is (t, t! + 1)-thin is established by
the same arguments as in item (ii). The proof of the theorem is complete.

Theorem 3 provides examples of thin sets of large cardinality in multidimen-
sional vector spaces. We will now give a method for transforming such sets into
(‘one-dimensional’) thin sets of numbers. We shall need

Lemma 13. Set Nq,t = {
∑t−1

i=0 ai(2q − 1)i | ai ∈ Eqt} and let A,B ⊂ N and
A×B⊂Nq,t. Then there exist one-to-one mappings ξA : A→Nq,t and ξB : B→Nq,t

such that relation a+ b = ξA(a) + ξB(b) holds for any a ∈ A, b ∈ B.

In essence, this lemma claims that if the elements of the Minkowski sum A×B
of two sets of numbers A and B written in the number system of the base 2q − 1
only use ‘digits’ from 0 to q−1, then the elements of the sets may be transformed in
such a way that writing them in the indicated number system will also only involve
the digits from 0 to q − 1, while the pairwise sums remain unchanged.

Proof. We shall use induction on t. If t = 1, then inevitably A,B ⊂ Eq; thus, we
can take ξA and ξB to be the identity mappings. Before we perform the inductive
step we shall conduct an auxiliary discussion.

In the residue ring Zm = {0, . . . ,m− 1 } we introduce the concept of a segment
[a, b ] defined for a 6 b as {a, a+ 1, . . . , b }, and for a > b as {a, . . . ,m− 1, 0, . . . , b }.
The length of the segment is defined as |[a, b ]| − 1, that is, in the first case it is
b − a and in the second case it is b +m − a. For any subset M ⊂ Zm there exists
a segment of shortest length (perhaps, not unique) that contains M . Obviously,
both ends of this segment must belong to M . The length of the shortest segment
containing M will be called the diameter of M , denoted by d(M). We note that
if d(M) 6 (m − 1)/2, then the shortest segment for M is uniquely defined and is
contained in any other segment containing M and having length at most (m−1)/2.
It is easy to show that

max{d(M1), d(M2)} 6 d(M1 ×M2) 6 min{d(M1) + d(M2), m− 1}.

We will prove the following fact. If d(M1×M2) 6 (m−1)/2, then d(M1×M2) =
d(M1) + d(M2). Moreover, if [a, b ] and [c, d ] are the shortest segments for the sets
M1 and M2, respectively, then the shortest segment for the set M1 ×M2 is

ρ =
[
(a+ c) mod m, (b+ d) mod m

]
(we recall that under the conditions we have imposed all shortest segments are
uniquely defined).
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The case where one of the sets has zero diameter is trivial. Therefore, without
loss of generality we can assume that 0 < d(M1) 6 d(M2). Since d(M2) 6 (m−1)/2,
the segment ρ has length d(M1) + d(M2) and contains the set M1 ×M2. Assume
that this is not the shortest segment for M1 ×M2. Since all the residues

(a+ c) mod m, (b+ c) mod m, (a+ d) mod m, (b+ d) mod m

belong to the set M1 × M2, if d(M2) > d(M1) any segment containing this set
contains one of the segments

ρ =
[
(a+ c) mod m, (b+ d) mod m

]
,

[
(b+ c) mod m, (a+ c) mod m

]
,[

(a+ d) mod m, (b+ c) mod m
]
,

[
(b+ d) mod m, (a+ d) mod m

]
,

and for d(M1) = d(M2) it contains one of these segments other than the third one.
The second and fourth segments have length m − d(M1) > (m − 1)/2, and for

d(M2) > d(M1) the third segment has length m − (d(M2) − d(M1)) > (m − 1)/2.
Consequently, the shortest segment for M1×M2 must include the segment ρ, which
contradicts the assumption made above.

Now we shall proceed with the proof of the inductive step of the lemma. Let
t > 2 and assume that the statement of the lemma holds for t − 1 instead of t.
Define the set of ‘least significant digits’ A0 = {a mod (2q − 1) | a ∈ A} and,
accordingly, the set B0. By hypothesis, in the residue ring Z2q−1 we have the
inclusion A0×B0 ⊂ [ 0, q − 1 ]. Let ρA = [ lA, rA ] and ρB = [ lB , rB ] be the shortest
segments for A0 and B0, respectively. Then, by what we proved above,

ρ =
[
(lA + lB) mod (2q − 1), (rA + rB) mod (2q − 1)

]
is the shortest segment for A0×B0. It is clear that ρ ⊂ [ 0, q − 1 ] (since any segment
that contains some subset of Zm and has length at most (m − 1)/2 also includes
the shortest segment for this subset).

Now we observe that if lA = 0 or lB = 0, then rA, rB 6 q − 1. Indeed, suppose
that, for instance, lA = 0. Then lB 6 q − 1 and rA 6 q − 1. If we assume that
rB > q, then in the case lB 6 rA we have

d(A0 ×B0) = (rA − lA) + (rB − lB) > rB > q

(which contradicts the condition d(A0 × B0) 6 q − 1), and in the case lB > rA we
have

q 6 rA + rB = (lA + lB) + d(A0 ×B0) 6 lB + q − 1 6 2q − 2

(which contradicts the condition ρ ⊂ [ 0, q − 1 ]). Therefore, rB 6 q − 1.
Further, we note that if 0 ∈ (ρA∩ρB), then 0 ∈ ρ, and consequently lA = lB = 0.

Therefore, if lA ̸= 0 and lB ̸= 0, then 0 /∈ (ρA ∩ ρB); in other words, either
0 < lA 6 rA or 0 < lB 6 rB .

Consequently, we either have lA 6 rA or lB 6 rB . Without loss of generality
we will assume that the first inequality is valid — it means that for any a ∈ A
we have a > lA. We define the mappings ξ′A and ξ′B as follows: ξ′A(a) = a − lA,
ξ′B(b) = b+ lA.
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It is clear that ξ′A(a) + ξ′B(b) = a+ b. Because lξ′A(A) = 0 we also have

0 6 lξ′B(B), rξ′A(A), rξ′B(B) 6 q − 1

(where lξ′A(A) and rξ′A(A) are defined in the same way as lA and rA). As a con-
sequence, we have ξ′A(A), ξ′B(B) ⊂ (2q − 1)N × Eq, which means that an element
a of either of the sets ξ′A(A), ξ′B(B) can be written as a = (2q − 1)a′ + a′′, where
a′′ ∈ Eq, a′ ∈ N . Define the new sets

A′ = {a′ | a = (2q − 1)a′ + a′′ ∈ ξ′A(A), a′′ ∈ Eq},
B′ = {b′ | b = (2q − 1)b′ + b′′ ∈ ξ′B(B), b′′ ∈ Eq}.

For any a′ ∈ A′ and b′ ∈ B′ we have a′ + b′ = ⌊(a + b)/(2q − 1)⌋ for some
a ∈ ξ′A(A) and b ∈ ξ′B(B) because 0 6 a′′+ b′′ 6 2q− 2, where a′′ = a mod (2q− 1)
and b′′ = b mod (2q − 1), and there are no carries from least significant digits (in
the number system of the base 2q−1). Therefore, A′×B′ ⊂ Nq,t−1. Consequently,
by the inductive hypothesis, there exist one-to-one mappings ξ′′A : A′ → Nq,t−1 and
ξ′′B : B′ → Nq,t−1 which keep the pairwise sums unchanged.

Finally, we set ξA(a) = (2q−1)ξ′′A(a′)+a′′, where ξ′A(a) = (2q−1)a′+a′′, a′′ ∈ Eq,
and define ξB(b) similarly. By construction, the mapping ξA (ξB) consists in adding
(subtracting, respectively) some integer constant and is therefore bijective. The
proof of the lemma is complete.

Remark 3. The statement of the lemma holds true if the sum of the powers of
2q− 1 in the definition of the set Nq,t is replaced with the sum of the powers of an
arbitrary number Q > 2q − 1.

Consider the mapping ψq,s,t from Est
q to Es

(2q−1)t which maps the vector
(a0, . . . , ast−1) to the vector

(t−1∑
i=0

ai(2q − 1)i,

t−1∑
i=0

at+i(2q − 1)i, . . . ,

t−1∑
i=0

a(s−1)t+i(2q − 1)i

)
. (2)

Theorem 4. If a subset M ⊂ Est
q of the semigroup (Nst, +) is (k, l)-thin, then

the subset ψq,s,t(M) of the semigroup (Ns, +) is (k, l)-thin as well.

Proof. We shall denote the set of ith components of the set A ⊂ Ns by pri(A);
namely, pri(A) = {ai | (a0, . . . , as−1) ∈ A}. The operator pri possesses the obvious
property pri(A×B) = pri(A)× pri(B).

We will verify that the mapping ψq,s,t preserves the thinness of a set. Now,
by Lemma 13 if some sets A,B ⊂ Ns are such that the set A × B is contained
in ψq,s,t(M), then for any i = 1, . . . , s there is a pair of one-to-one mappings
ξi,A : pri(A) → Nq,t and ξi,B : pri(B) → Nq,t such that ξi,A(a) + ξi,B(b) = a + b
(where Nq,t is defined in Lemma 13). Consequently, the vector-valued mappings
ξA = (ξ0,A, . . . , ξs−1,A) and ξB = (ξ0,B , . . . , ξs−1,B) establish one-to-one correspon-
dences between the sets A and B and Ns

q,t = ψq,s,t(Est
q ) and they also have the

property ξA(a) + ξB(b) = a+ b.
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Now, as the mapping ψ−1
q,s,t establishes a one-to-one correspondence and keeps

the sums unchanged, we conclude that ψ−1
q,s,t(ξA(A)) × ψ−1

q,s,t(ξB(B)) ⊂ M and
futhermore

|ψ−1
q,s,t(ξA(A))| = |ξA(A)| = |A|, |ψ−1

q,t (ξB(B))| = |ξB(B)| = |B|.

The proof of the theorem is complete.

We give one more method for constructing thin subsets in Lemma 14 below.

§ 6. Constructing polynomials of high monotone complexity

If we take mon f1 to be a Sidon set in Em of cardinality asymptotically equal to√
m and apply Theorem 1, (i) and (iii), we shall obtain an example of a monotone

univariate polynomial f1, deg f1 < m, such that L+(f1) &
√
m and L×(f1) & 2 3

√
m.

For m = dn, using the Kronecker substitution xi = xdi

we transform the above
polynomial to a polynomial f̂1 in n variables of degree at most d − 1 in each
of the variables which clearly satisfies the complexity estimates L+(f̂1) & dn/2,
L×(f̂1) & 2dn/3 as dn →∞.

Similar bounds for complexity may be derived using the sets defined in item (i)
of Theorem 3. Higher bounds may be obtained with the help of item (ii).

Item (ii.a) of Theorem 3 says we can find a 3-thin set mon f2 in E3
m ⊂ N3 of

cardinality asymptotically equal to m2. Then, for the corresponding polynomial f2
in three variables of degree at most m− 1 in each of the variables, Theorem 1, (i)
and (iii) provide the complexity estimates L+(f2) & (1/8)m2, L×(f2) & 2−4/5m6/5.
As a consequence, we can find a polynomial f̂2 in 3n variables of degree at most
d − 1 in each of the variables which obeys the bounds L+(f̂2) & (1/8)d2n and
L×(f̂2) & 2−4/5d6n/5 as dn →∞.

These results were obtained in [43], up to multiplicative constants in some of the
estimates and the method of derivation. Combining item (iii) of Theorem 3 with
Theorem 4 gives a stronger result.

Theorem 5. Let m > 2 and n > 1. Then a monotone polynomial f in n variables
of degree at most m−1 in each of the variables can be effectively specified such that

L+(f) = Ω(mn(1−o(1))), L×(f) = Ω(mn(1/2−o(1)))

as mn →∞.

Proof. Let n = 1. Choose the parameters q and t according to the conditions
that q is a prime number, (2q − 1)t 6 m and qt−1/(t!)2 = m1−o(1), and define
the set mon f as the image of the corresponding thin set appearing in item (iii) of
Theorem 3 under the mapping ψq,1,t, see (2). By Theorem 4 the set constructed in
this way is (t, t!+1)-thin. The bounds for the complexity of f follow from items (i),
(iii) of Theorem 1.

An example of a polynomial in n > 1 variables x0, . . . , xn−1 is obtained by
applying the Kronecker substitution xi = xmi

to the univariate polynomial of
degree mn − 1 constructed above.
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The nonzero coefficients of these polynomials may take arbitrary positive values:
the lower bounds derived from Theorem 1 depend only on the set mon f . We shall
restrict our attention to polynomials with coefficients 0 and 1 and show their effec-
tiveness. Namely, we shall establish that the Boolean functions which express the
coefficients of the polynomial in terms of the degree of the corresponding monomial
have polynomial complexity.

The implementation of the Boolean function cf (dn−1, . . . , d0) in question may
be reduced to the following steps (by di we denote the binary representation of the
degree of the variable xi in the monomial).

1) Computing the binary representation of d by its representation [dn−1, . . . , d0]m
in the base-m number system (that is, reducing to a univariate polynomial, see
above).

2) Representing d in the number system of the base 2q−1, which will be denoted
by [at−1, . . . , a0]2q−1.

3) Checking the inequalities 0 6 ai < q hold. If any of these inequalities is
violated, then the value of function cf is set equal to 0.

4) If all the inequalities in item 3) are satisfied, then the vector (at−1, . . . , a0)
is interpreted as an element X of the field GF (q)t. The element X(qt−1)/(q−1) is
computed and the function cf is set equal to 1 if the result is 1 ∈ GF (q)t, and 0
otherwise.

The above steps can be implemented by a circuit of complexity b logO(1) b with
respect to the size b = Θ(logmn) of the input of function cf , provided that the
conversion between the number systems is performed using the fast Schönhage
algorithm (see, for instance, [14]), and raising to the power of special form in a finite
field is carried out using the method of additive chains (see, for instance, [60]).

The proof of the theorem is complete.

Since the additive monotone complexity of any polynomial in n variables of
degree at most m− 1 in each of the variables is not higher than mn, and the mul-
tiplicative monotone complexity is of order at most mn/2, the bounds established
in the theorem are close to the best possible estimates.

In the particular cases m = 2 and n = 1 the above theorem provides examples of
a multilinear polynomial and a univariate polynomial of high monotone complexity.

Remark 4. The results in [22] imply the lower bound Ω(2n/2/n) for the additive
complexity (in the complete basis) of the class of all multilinear polynomials in n
variables with coefficients 0, 1. In turn, it follows from Theorem 5 that in the case
of a monotone basis one can effectively construct a multilinear polynomial in n
variables with coefficients 0, 1 having the additive complexity Ω(2(1−o(1))n).

§ 7. Some upper bounds

In this section we consider the problem of how sharp the estimates given by The-
orem 1 are. It is evident that if l does not grow with increasing n, then the estimate
of item (i) for L+(f) cannot be improved in order, because for any polynomial f
we have L+(f) 6 |mon f | − 1, and in the case k = l = 2 the estimate (i) is sharp.

Now we will show that, in general, the estimates of items (ii) and (iii) cannot be
essentially improved either.
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Theorem 6. For any n if k = 2, and any n > 1 if k > 2, there exists a k-thin set
mon f ⊂ En

m such that |mon f | > mcknlog2 3−1
and

L×(mon f) .


Θ(|mon f |(k+1)/(2k)), k > 3,
3|mon f |3/5, k = 3,
3|mon f |2/3, k = 2.

Proof. If A is a finite set, then we shall denote the set of one-element subsets in A
by A∗.

Lemma 14. (i) Let A1 = {a1, . . . , ap} ⊂ En1
m and A2 = {b1, . . . , bq} ⊂ En2

m be
k-thin subsets and let (µi,j) be an l-thin Boolean (p×q)-matrix, n = n1 +n2, k 6 l.
Then the set A = {(ai, bj) | µi,j = 1} ⊂ En

m is ((k − 1)(l − 1) + 1)-thin. Moreover,

L×(A) 6 L×(A∗1) + L×(A∗2) + |A1|, L×(A∗) 6 L×(A∗1) + L×(A∗2) + |A|.

(ii) Let A1 = {a1, . . . , ap} ⊂ En
m and A2 = {b1, . . . , bq} ⊂ En

m be k-thin subsets
and let (µi,j) be an l-thin Boolean (p×q)-matrix. Then the set A = {ai+(2m−1)bj |
µi,j = 1} ⊂ En

2m2 is ((k − 1)(l − 1) + 1)-thin. Moreover,

L×(A) 6 L×(A∗1) + L×(A∗2) + |A1|+ 2n log2m,

L×(A∗) 6 L×(A∗1) + L×(A∗2) + |A|+ 2n log2m.

Proof. We set r = (k − 1)(l − 1) + 1 and verify that the set A defined in item (i)
is r-thin. Suppose the contrary. Then there exist distinct vectors c1, . . . , cr, ci =
(ci,1, ci,2), ci,j ∈ E

nj
m , and distinct vectors d1, . . . , dr, di = (di,1, di,2), di,j ∈ E

nj
m ,

such that
{c1, . . . , cr} × {d1, . . . , dr} ⊂ A.

Denote
Cj = {c1,j , . . . , cr,j}, Dj = {d1,j , . . . , dr,j}, j = 1, 2.

Then for each j = 1, 2 we have the inclusion Cj ×Dj ⊂ Aj .
Since A1 is a k-thin subset, it may be assumed without loss of generality that

|D1| < k. Then (by the pigeonhole principle) one can find at least l equal vec-
tors di,1. Without loss of generality we shall assume that d1,1 = · · · = dl,1. However,
then all the vectors d1,2, . . . , dl,2 must be distinct (as all the vectors di are distinct)
and, consequently, |D2| > l > k. Therefore, the k-thinness of the set A2 implies that
|C2| < k, that is, for similar reasons it may be assumed that c1,2 = · · · = cl,2 and,
as a consequence, all the vectors c1,1, . . . , cl,1 are distinct. The above arguments
show that

{c1, . . . , cr} × {d1, . . . , dr} ⊃ {(ci,1 + d1,1, c1,2 + dj,2) | i, j = 1, . . . , l},

whence it follows that the matrix (µi,j) contains an (l× l)-submatrix of ones, which
contradicts our assumption.

Now we will establish the complexity relations. Implementing all vectors (ai, 0⃗)
and (⃗0, bj) with the multiplicative complexity L×(A∗1) and L×(A∗2), respectively,
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and using the identity {(ai, bj)} = {(ai, 0⃗)} × {(⃗0, bj)}, we obtain the required
estimate for L×(A∗). To derive the first bound, we make use of the formula

A =
p∨

i=1

{(ai, 0⃗)} ×
( ∨

µi,j=1

{(⃗0, bj)}
)
. (3)

Next we prove item (ii). According to what was established in item (i), the
set A′ = {(ai, bj) | µi,j = 1} ⊂ E2n

m is r-thin. Then, by Theorem 4 the set
A = ψm,n,2(A′) is r-thin as well.

We will derive bounds for the complexity. Implementation of the set {2m − 1}
requires at most 2 log2m multiplications provided that a binary additive chain
for the number 2m − 1 is constructed (see, for instance, [14]). Therefore, the
n-tuple of vectors {(2m − 1)e0, . . . , (2m − 1)en−1}, where e0, . . . , en−1 are unit
(basis) vectors in Nn, can be implemented using 2n log2m multiplications. After
that all one-element sets {ai} and {(2m− 1)bj} are implemented with complexity
L×(A∗1) + L×(A∗2). Now the required relations follow from the formulae

{ai + (2m− 1)bj} = {ai} × {(2m− 1)bj},

A =
p∨

i=1

{ai} ×
( ∨

µi,j=1

{(2m− 1)bj}
)
. (4)

The proof of the lemma is complete.

Now we go back to proving Theorem 6. The lemma proved above allows us to
construct thin sets of sufficiently large cardinality and at the same time complexity
which is not too big. Pippenger’s result [61] on the additive complexity of an
assembly of numerical vectors for an arbitrary set A ⊂ En

m yields the estimate

L×(A) 6 L×(A∗) 6 n log2m+ (1 + o(1))
|A|n log2m

log2(|A|n log2m)
+O(|A|). (5)

Therefore, if in Lemma 14, (ii) we also require that |A|=Ω(max{|A1|, |A2|}n log2m),
then implementing A∗1 and A∗2 by Pippenger’s method we obtain the relation
L×(A∗) . |A|.

Below we shall use the following well-known facts: the set Em contains a 2-thin
subset whose cardinality is asymptotically equal to

√
m; there exists a k-thin

(n × n)-matrix with weight Ωk(n(2k)/(k+1)) (see [62]), if k = 3, there is a matrix
with weight (1 + o(1))n5/3 (see [54]), and if k = 2, there is a matrix with weight
(1 + o(1))n3/2 (see [62]).

Now, applying Lemma 14, (i) recursively, with parameters k = l = 2, n1 = ⌊n/2⌋,
and n2 = ⌈n/2⌉, for any n > 2 we can construct a 2-thin subset A in En

m with
cardinality Θ(m1/2(3/2)⌊log2 n⌋

) and complexity L×(A∗) . |A| (as m→∞).
If n = 1, we use item (ii) of Lemma 14 (substituting ⌊

√
m/2⌋ for m) and

construct a 2-thin subset A in Em of cardinality Θ(m3/8) and complexity
L×(A∗) . |A|.

Finally, for n > 1 with n1 = ⌊n/2⌋ and n2 = ⌈n/2⌉, we use the first construction
in Lemma 14 and for n = 1 and k = 2 with parameter ⌊

√
m/2⌋, the second with
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the sets Ai taken equal to the 2-thin sets (or their subsets) constructed above, so
that |A1| = |A2|. The matrices (µi,j) are chosen equal to the aforementioned k-thin
matrices of large weight. In both cases we obtain a k-thin set A satisfying the
complexity estimate L×(A) . 3|A1|. Here, by construction, if n > 1 and k > 3 we
have |A| ≍ |A1|(2k)/(k+1), if n > 1 and k = 3 we have |A| ∼ |A1|5/3, and if k = 2
we have |A| ∼ |A1|3/2. The proof of the theorem is complete.

As a consequence we see that when k = 2 or k = 3 the estimates of Theorem 1
cannot be improved in order (since a k-thin subset is (k, l)-thin).

Remark 5. The constant 3 in the estimate established in Theorem 6 for k = 3 can
be reduced to 5 5

√
2/27 ≈ 2, 971 . . . . To verify this, apply item (i) of Lemma 14 to

the sets Ai such that 4|A1| ∼ 3|A2| and take (µi,j) equal to a 3-thin submatrix of
Brown’s matrix (which has weight (1 + o(1))|A1| |A2|2/3).

Remark 6. If the hypothesis in [62] about k-thin matrices is true, then for k > 3
the exponent (k + 1)/(2k) in the upper estimate for L×(mon f) in Theorem 6 can
be reduced to k/(2k − 1). However, even the last estimate is higher in order than
the corresponding lower estimate established in Theorem 1.

§ 8. Thin subsets and thin matrices

It is obvious that with a (k, l)-thin set M ⊂ Zn
m we can associate a symmet-

ric Boolean matrix (µα,β) of size mn × mn that is simultaneously (k, l)-thin and
(l, k)-thin (its rows and columns are indexed by the elements of Zn

m) defined by the
condition

µα,β = 1 ⇐⇒ α+ β ∈M.

This matrix proves to be cyclic, in a certain sense; for n = 1 it is a circulant matrix
(consisting of unit cyclic diagonals).

The property of being cyclic is manifested in that the matrix (µα,β) can be
treated as the matrix of multiplication by a certain element in the ring

Km,n = R[x1, . . . , xn]/(xm
1 − 1, . . . , xm

n − 1).

In particular, a circulant matrix is the matrix of cyclic convolution with some
constant vector. We will prove this.

For brevity, for any α = (α1, . . . , αn) ∈ Zn
m we introduce the notation Xα =

xα1
1 · · ·xαn

n . Define the element a =
∑

α∈Zn
m
aαX

α of the ring Km,n by the following
condition on its coefficients: aα = 1 if α ∈ M , and aα = 0 otherwise. Thus,
µα,β = aα+β for any α, β ∈ Zn

m.
We multiply the αth row of the matrix (µα,β) by the vector of coefficients of

an arbitrary element b =
∑

β∈Zn
m
bβX

β in the ring Km,n whose βth component is
equal to b−β (the components of this vector are indexed in the same way as the
columns of matrix (µα,β)). We have∑

β

µα,βb−β =
∑

β

aα+βb−β =
∑

γ+δ=α

aγbδ,

which equals the coefficient of Xα in the product ab ∈ Km,n.
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The existence of a thin subset of large cardinality means that there exists a thin
matrix of large weight. The interest in constructing such matrices comes from
the Zarankiewicz problem (see [63], [62], [58], [54] and [50]). Thin matrices are
employed in the methodology in [12] and [9]. The role played by thin matrices in
another problem in the theory of complexity of Boolean circuits is described in [64].

Examples of thin sets in Theorem 3, (ii.a) and (iii) in the sense above correspond
to the examples of thin matrices constructed in [58] and [50]. However, for a thin
matrix to be suitable for constructing a thin set (by the method presented above),
the matrix has to satisfy some additional constraints, which means that constructing
a thin set is, in general, more difficult than constructing a thin matrix.

Thin subsets have even more to offer. By the method of Theorem 4 (see also
the proof of Theorem 5) they may be used to effectively construct k-thin subsets
of cardinality n1−o(1) in the cyclic group Zn for a slowly increasing k and, as
a consequence, k-thin circulant matrices of weight n2−o(1). More precisely, item (iii)
of Theorem 3 (with q taken to be prime) and Theorem 4 yield the following result.

Corollary 1. For any n one can effectively 16 specify a (k, l)-thin circulant matrix
of order n and weight αn2, where

k = O

(√
log n

log log n

)
, l, α−1 ∈ 2O(

√
log n log log n).

Without effective specification the existence of circulant thin matrices of large
weight was proved by Grinchuk [65], see also [66]. In view of Theorem 1, his result
can be used to establish the existence of polynomials of degree n with coefficients
0, 1 having additive monotone complexity n1−o(1) and multiplicative monotone com-
plexity n0,5−o(1). Moreover, these estimates will be stronger (in the term o(1)) than
those which follow from the proof of Theorem 5, (iii).

We shall mention one more corollary of item (i) of Theorem 1. For a Boolean
matrix A = (ai,j) we introduce the notation

L+(A) = min
{
L+(BX) | B = (bi,j), bi,j > 0 =⇒ ai,j = 1

}
,

where BX is the linear operator with matrix B. If An is a (k, l)-thin and (l, k)-thin
Boolean (n× n)-matrix, then

L+(An) >

∑
i,j ai,j

h
− n,

where h = max{(k−1)3, (l−1)2}. To show this, it suffices to consider the polynomial
fB =

∑
bi,jxiyj and apply Theorem 1 (the set mon fB is (k, l)-thin).

It should be noted, however, that the inequality

L+(An) >

∑
i,j ai,j

(k − 1)(l − 1)
− n

l − 1

can easily be derived from the results of [67].
16A matrix is considered effective if its entries are determined by a Boolean function of (the

binary representation of) their coordinates implemented by a circuit of polynomial complexity.
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These inequalities are applicable in deriving effective high lower estimates for
L+(AnX), where An is a Boolean matrix. It suffices to set An equal to the matrix
mentioned in Corollary 1. Then L+(An) = n2−o(1). Moreover, such a matrix
satisfies the upper estimate L(An) = O(n1+o(n)) for the complexity in the complete
linear basis {x+y}∪{cx : c ∈ R} (see, for instance, [64]). Therefore, the matrix An

satisfies the inequality L+(An)/L(An) > n1−o(1). This fact is, in a sense, analogous
to one result of [64]. The result in [23] (which, however, can also be established by
Lupanov’s method) yields the upper estimate L+(An)/L(An) 6 O(n/ log n) for an
arbitrary Boolean matrix.

In [16] Heintz and Sieveking effectively construct examples of matrices of com-
plexity Θ(n2) not in the monotone, but in the complete basis. However, it is
essential that the entries of these matrices are algebraic numbers. In deriving the
lower bounds for matrices the authors of [16] follow the same line as in proving lower
bounds for the complexity of univariate polynomials in the same work. In [68] it
is shown that lower bounds for the complexity of matrices are easily derived from
lower bounds for the complexity of univariate polynomials.

§ 9. Monotone and nonmonotone complexity

In this section we improve the result in [31] on the feasibility of reducing the
complexity of a polynomial by means of adding negative constants to the monotone
basis.

Consider the following construction. Let A1, A2 ⊂ En
m be k-thin subsets of

cardinality r. Denote by (µi,j) the circulant matrix of order r from Corollary 1 and
let the set A be constructed from the sets A1, A2 using the matrix (µi,j) with the
help of one of the methods presented in Lemma 14 (A ⊂ E2n

m if item (i) of Lemma 14
is used, and A ⊂ En

2m2 if item (ii) is employed). The following assertion holds.

Lemma 15. Let f be a polynomial with coefficients 0 and 1 such that mon f = A.
Let k = ro(1) and either n logm = ro(1), or deg f = ro(1). Then the monotone com-
plexity of f satisfies L+(f) = Ω(r2−o(1)), and the complexity L(f) of computing f
in the complete basis {x+ y, xy} ∪ R is no higher than r1+o(1).

Proof. The lower bound L+(f) = Ω(r2−o(1)) follows for k = ro(1) from item (i) of
Theorem 1. Let us establish the upper estimate for the complexity of the imple-
mentation in the complete basis.

To implement the polynomial we shall use the more suitable of formulae (3)
and (4). First, we show that all monomials corresponding to the elements of A1,
that is, in the above notation the assembly of polynomials mon−1(A∗1), can be
computed by a circuit of complexity r1+o(1) (and the same result holds for A2).

Now, if deg f=ro(1), the degree of each monomial in mon−1(A∗1) is no higher than
ro(1), and all r monomials may be implemented independently. If n logm= ro(1),
then the complexity estimate r1+o(1) follows from (5).

In calculations using (4) we need to recompute the (2m − 1)st powers of all
variables (since it is these powers that are supplied at the inputs of the circuit
which implements monomials with exponents from A2). The complexity of this
step is at most 2n log2m = ro(1).
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The next step consists in computing linear combinations of monomials corres-
ponding to the set A2 whose coefficients are determined by the rows of the matrix
(µi,j). A circulant matrix is a matrix of multiplication by a constant polynomial
(see the previous section). Therefore, a linear transformation with such a matrix is
performed using the Fast Fourier Transform algorithm (see, for example, [69]) with
complexity O(r log r).

It remains to multiply the monomials which correspond to the elements of the
set A1 by the linear combinations obtained at the previous step and to add up the
results. This can be done with complexity 2r. The proof of the lemma is complete.

Theorem 7. Let m > 2 and n > 1. Then a monotone polynomial f in n variables
of degree at most m − 1 in each of the variables can be effectively specified for
which the ratio between the complexity of the implementation in the monotone basis
{x+y, xy}∪R+ to that of the implementation in the complete basis {x+y, xy}∪R
is at least m(0,5−o(1))n as mn →∞.

Proof. We will make use of the construction suggested in Lemma 15. We take A1

and A2 to be ro(1)-thin subsets of maximum cardinality r = m(0.5−o(1))n in En′

m′ ,
where n′ = ⌊n/2⌋, m′ = m as n → ∞ and n′ = n, m′ = ⌊

√
m/2⌋ otherwise.

For odd n, in the first case the set A ⊂ E2n′

m constructed above is immersed
in En

m via the natural mapping A → (A, 0). Since the condition n logm = ro(1)

is fulfilled, by Lemma 15 the polynomial f , mon f = A, satisfies the estimates
L+(f) = Ω(mn−o(n)) and L(f) = O(mn/2+o(n)).

Effectiveness is established in the same way as in Theorem 5 with the difference
that an additional step is introduced: checking that some element belongs to the
set A obtained using the sets A1 and A2 by the method of Lemma 14 is reduced to
checking that two easily determined elements belong to the sets A1 and A2. Then
proof of the theorem is complete.

Remark 7. It can be shown in a standard way that the non-monotone complexity
estimate given in Theorem 7 is even attained by a circuit that contains only one
non-monotone gate (multiplication by a negative constant). To do this, we have to
represent (an arbitrary) polynomial as the difference of two monotone polynomials.
In such a representation, any operation in the complete arithmetic basis reduces
to several monotone operations over monotone polynomials. The non-monotone
operation is performed at the very end of the computations to pass back to the
usual representation.

Lemma 15 also enables us to answer the ‘open problem’ 9 formulated in the
survey [70]: establish the disagreement between monotone and non-monotone com-
plexity for polynomials of constant degree (the example given in paper [31] involved
polynomials of increasing degree).

First of all, we note that the problem had in fact already been solved by Schnorr
in [29].17 The appropriate examples here are the polynomials SCn and SMn, which
are used to derive lower bounds for the complexity of matrix multiplication and
convolution. But we shall give two more examples. The following assertion holds.

17We remark that no mention of the fundamental work [29] was made in [70].
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Corollary 2. A multilinear polynomial f can be effectively specified
(i) of degree k(k− 1) in n(n− 1) variables whose complexity satisfies the bounds

L+(f) = Ω(n2k−o(1)) and L(f) = O(nk+o(1)) as n→∞;
(ii) of degree 2k in 2kn variables whose complexity satisfies the bounds L+(f) =

Ω(n2k−o(1)) and L(f) = O(n2k−1+o(1)) as n→∞.

Proof. We will prove (i). Take A1 and A2 to be the 2-thin subsets in E
C2

n
2 which

correspond to the characteristic polynomial of the k-clique [29]

CLn,k =
∑

16i1<···<ik6n

∏
16s<t6k

xis,it .

Using the technique in Lemma 15 we use these sets to construct a new set
A ⊂ E

n(n−1)
2 and take f = fA. The complexity of f obeys the estimates of

Lemma 15 since deg f = O(1). Item (i) is established.
The proof of (ii) for k = 1 mentions the polynomial fB introduced in the pre-

vious section, which corresponds to a suitable thin matrix from Corollary 1. This
polynomial is an example of a bilinear form in 2n variables having monotone com-
plexity n2−o(1) and complexity n1+o(1) in the complete basis. Note that the ratio
between the monotone and non-monotone complexity of fB is almost the maximum
possible for polynomials of degree 2, since it obviously cannot exceed O(n).

Set fB,1 = fB . For an arbitrary k the required polynomial f = fB,k may be
constructed by following Lemma 15 using the sets A1 = A2 = mon fB,k−1 as in
item (i).

The effectiveness of the polynomials constructed above follows from the effec-
tiveness of the polynomials CLn,k and fB . The proof of the corollary is complete.

In [29] exact estimates for the additive monotone complexity of systems of bilin-
ear form were obtained which correspond to the problems of polynomial multipli-
cation (that is, convolution) and matrix multiplication. Below we formulate a more
general proposition in terms of thin sets.

Lemma 16. Let {gi(x0, y0, . . . , xn−1, yn−1) | i = 1, . . . , k} be a system of bilinear
forms such that mon gi is a (1, 2)-thin set, mon gi∩mon gj = ∅ for any i ̸= j. Then

L+(g1, . . . , gk) =
k∑

i=1

|mon gi| − k, L×(g1, . . . , gk) =
k∑

i=1

|mon gi|.

Proof. The upper estimates are obvious. To establish the lower bound for the
multiplicative complexity it suffices to observe that all the forms gi cannot be
computed without computing all the monomials separately, which requires |mon gi|
product gates (this follows from the (1, 2)-thinness), and to take into account that
different forms have different monomials. This also gives the required estimate for
the additive complexity, which can otherwise be derived by the method of proof of
Theorem 1. The proof of the lemma is complete.

As a consequence, we see that the convolution

ck(x0, y0, . . . , xn−1, yn−1) =
∑

i+j=k

xiyj ,
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where k = 0, . . . , 2n− 2, has additive monotone complexity n2 − 2n− 1 and multi-
plicative monotone complexity n2. For comparison, we notice that in the complete
arithmetic basis these quantities are estimated as O(n log n) and Θ(n), respectively.

By Lemma 16, multiplication of (n × n)-matrices has additive monotone com-
plexity n3 − n2 and multiplicative monotone complexity n3. In the complete basis
both quantities are estimated above as O(nω), where ω < 2.4.

These problems have Boolean analogues, in which disjunction and conjunction
are used for the operations of addition and multiplication, respectively. While for
the Boolean analogue of the problem of monotone computation of matrix multi-
plication the same sharp bounds have been established (see [71]) in the case of
monotone computation of the Boolean convolution a lower bound Ω(n2/ logO(1) n)
for the number of disjunctions was determined in [66] and an estimate Ω(n3/2) for
the number of conjunctions was announced by Blum in [72]. The Boolean analogue
of Lemma 16 established in [71], Theorem 7.1, allows nontrivial lower estimates to
be derived, however these are not exact in the general case.
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[62] P. Erdős and J. Spencer, Probabilistic methods in combinatorics, Wiley-Intersci.
Ser. Discrete Math. Optim., Academic Press, New York–London 1974.

[63] A.E. Andreev, “On a family of Boolean matrices”, Vestnik Moskov. Univ. Ser. 1
Mat. Mekh., 1986, no. 2, 97–100; English transl. in Moscow Univ. Math. Bull. 41:2
(1986), 79–82.

[64] S.B. Gashkov and I. S. Sergeev, “On the complexity of linear Boolean operators
with thin matrices”, Diskret. Anal. Issled. Oper. 17:3 (2010), 3–18; English transl.
in J. Appl. Ind. Math. 5:2 (2011), 202–211.

[65] M. I. Grinchuk, “Complexity of implementing cyclic Boolean matrices by means of
gate circuits”, Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 7, 39–44; English transl.
in Soviet Math. (Iz. VUZ ) 32:7 (1988), 65–72.

[66] M. I. Grinchuk and I. S. Sergeev, “Thin circulant matrices and lower bounds on
complexity of some Boolean operators”, Diskretn. Anal. Issled. Oper. 18:5 (2011),
38–53. (Russian)

[67] K. Mehlhorn, “Some remarks on Boolean sums”, Acta Inf. 12:4 (1979), 371–375.

[68] S.B. Gashkov and I. B. Gashkov, “On the complexity of calculation of differentials
and gradients”, Diskret. Mat. 17:3 (2005), 45–67; English transl. in Discrete Math.
Appl. 15:4 (2005), 327–350.

[69] A.V. Aho, J. E. Hopcroft and J.D. Ullman, The design and analysis of computer
algorithms, Addison-Wesley, Reading, MA 1974.

[70] A. Shpilka and A. Yehudayoff, “Arithmetic circuits: a survey of recent results and
open questions”, Found. Trends Theor. Comput. Sci. 5:3–4 (2010), 207–388.

[71] I. Wegener, The complexity of Boolean functions, Wiley-Teubner Ser. Comput. Sci.,
Wiley, Stuttgart 1987.

[72] N. Blum, “On negations in Boolean networks”, Efficient algorithms, Lecture Notes
in Comput. Sci., vol. 5760, Springer-Verlag, Berlin–Heidelberg 2009, pp. 18–29.

S.B. Gashkov

Faculty of Mechanics and Mathematics,

Moscow State University

E-mail : sbgashkov@gmail.com

I. S. Sergeev

Faculty of Mechanics and Mathematics,

Moscow State University

E-mail : isserg@gmail.com

Received 29/JUN/11 and 11/APR/12
Translated by A. PANKRAT’EV

http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0196.02401
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0196.02401
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0531.05013
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0531.05013
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0122.05001
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0122.05001
http://dx.doi.org/10.4153/CMB-1966-036-2
http://dx.doi.org/10.4153/CMB-1966-036-2
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0592.12001
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0145.04902
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0145.04902
http://mi.mathnet.ru/eng/dm80
http://mi.mathnet.ru/eng/dm80
http://dx.doi.org/10.1515/156939206779217952
http://dx.doi.org/10.1515/156939206779217952
http://dx.doi.org/10.1137/0209022
http://dx.doi.org/10.1137/0209022
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0308.05001
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0308.05001
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0604.05008
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0604.05008
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0627.05010
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0627.05010
http://mi.mathnet.ru/eng/da608
http://mi.mathnet.ru/eng/da608
http://dx.doi.org/10.1134/S1990478911020074
http://dx.doi.org/10.1134/S1990478911020074
http://mi.mathnet.ru/eng/ivm7991
http://mi.mathnet.ru/eng/ivm7991
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0679.94005
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0679.94005
http://mi.mathnet.ru/eng/da664
http://mi.mathnet.ru/eng/da664
http://mi.mathnet.ru/eng/da664
http://dx.doi.org/10.1007/BF00268321
http://mi.mathnet.ru/eng/dm115
http://mi.mathnet.ru/eng/dm115
http://dx.doi.org/10.1515/156939205774464936
http://dx.doi.org/10.1515/156939205774464936
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0326.68005
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0326.68005
http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1561/0400000039
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0623.94018
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0623.94018
http://www.zentralblatt-math.org/zmath/search/?an=Zbl pre05631966
http://www.zentralblatt-math.org/zmath/search/?an=Zbl pre05631966
mailto:sbgashkov@gmail.com
mailto:isserg@gmail.com

	§1 Introduction
	§2 Main definitions
	§3 Main theorem
	§4 Additive complexity of the permanent
	§5 Examples of thin sets
	§6 Constructing polynomials of high monotone complexity
	§7 Some upper bounds
	§8 Thin subsets and thin matrices
	§9 Monotone and nonmonotone complexity
	Bibliography

