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A characterization of span program size and improved lower bounds
for monotone span programs

Anna Gal*

Abstract

We give a characterization of span program size by a
combinatorial-algebraic measure defined on covers of pairs
of 0's and 1’s of the function computed. The measure we
consider is a generalization of a measure on covers which
has been used to prove lower bounds on formula size [K, Ry,
Ra], and has also been studied with respect to communica-
tion complexity.

In the monotone case our new methods yield n
lower bounds for the monotone span program complexity
of explicit Boolean functions in n variables over arbitrary
ficlds, improving the previous lower bounds on monotone
span program size., Our characterization of span program
gize implies that any matrix with superpolynomial separa-
tion between its rank and cover number can be used to obtain
superpolynomial lower bounds on monotone span program
size. We also identify a property of bipartite graphs that
is sufficient for constructing Boolean functions with large
monotone span program complexity.

Q(logn)

1 Introduction

The model of span programs was introduced by Karchmer
and Wigderson in 1993 [KW].

A span program for a Boolean function is presented as
a matrix over some field, with rows labeled by variables or
negated variables, The span program accepts an inputassign-
ment if and only if a fixed nonzero vector can be obtained as
1 linear combination of the rows whose labels are satisfied by
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the input. The size of the span program is the number of rows
in the matrix. A span program is monotone if only positive
literals are used as labels of the rows, i.e. negated variables
are not allowed. More detailed definitions are given in sec-
tion2.1.

Span programs are related to several other models of com-
putation. The class of functions computable by polynomial
size span programs over GF(2) is equivalent to @L/poly,
i.e. the class of functions computable by polynomial size
parity branching programs {KW, BDHM]. Span programs
over other fields are related to other logspace classes [KW,
BDHM, ABO].

Monotone span programs are strongly related to the cryp-
tographicproblem of secret-sharing. A secret-sharing scheme
is a cryptographic tool where a dealer shares a secret (from a
finite set of possible secrets) among a set of parties such that
only the pre-defined authorized subsets of parties are able to
reconstruct the secret. The authorized subsets correspond to
a monotone Boolean function f : {0,1}" — {0,1} where
n is the number of parties and the authorized subsets are the
subsets with their characteristic vectors in f~1(1). (Note
that the function f has to be monotone. If a set of parties
can reconstruct a secret then every superset of it has to be
authorized as well.) Monotone span programs are equivalent
to a subclass of secret sharing schemes called “linear secret
sharing schemes”. See [KW, BGP] for references and more
details on secret sharing.

There is also a connection between monotone span pro-
grams and certain algebraic proof systems [PS].

One of the main motivations to study span programs is
that lower bounds for span program size imply lower bounds
for formula size and other interesting complexity measures
including branching program size.

So far the largest known lower bound for span program
size is Q(n%/2/ log n) for the “element distinctness” function
[KW, BGP] (n denotes the number of variables). Proving
larger than Q(n3) lower bounds for the span program com-
plexity of explicit functions in n variables would improve
the largest known lower bound for formula size, which is
Q(n3-°(1)) proved by Hastad [H]. Proving superpolynomial
lower bounds for the span program complexity of an explicit
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function would imply that the function does not belong to
NClorNL.

Lower bounds for the monotone case are important for
understanding the model and finding new lower bound meth-
ods. They are also of independent interest since they give
lower bounds for linear secret-sharing schemes.

Unlike for Boolean circuits it is not known how much
monotone span programs are weaker than non-monotone span
programs. For Boolean circuits, Razborov’s lower bound
for the perfect matching function [Ra2] gives a superpoly-
nomial separation between monotone and non-monotone cir-
cuits, and a result by E. Tardos [T] shows an exponential gap.
No superpolynomial separation is known between monotone
and non-monotone span programs.

Monotone span programs can be much more powerful
than monotone circuits. A function which is computable by
linear size monotone span programs but requires superpoly-
nomial size monotone circuits and exponential size mono-
tone formulae is exhibited in [B+, BGW]. This shows that
size and depth lower bound methods for the monotone cir-
cuit model (e.g. [Ral, Ra2, Ra3, An, AB, Ha] for circuit
size, [KW1, RW, GH] for circuit depth) cannot be directly
applied to monotone span programs.

The following lower bounds are known for the mono-
tone span program complexity of explicit Boolean functions
in 7 variables. Karchmer and Wigderson [KW] proved an
Q(nlog n) lower bound for the size of monotone span pro-
grams over GF(2) computing threshold functions. A lower
bound of Csirmaz [Cs] for general secret sharing schemes
implies Q(n2/ log n) lower bounds for the size of monotone
span programs over arbitrary fields computing explicit func-
tions. Beimel, G4l and Paterson [BGP] developed a lower
bound technique which allows one to prove lower bounds on
monotone span program size by a combinatorial criterion on
the family of minterms of the function. As a first application
of this technique [BGP] proved a Q(n%/2) lower bound for
monotone span programs over arbitrary fields computing the
6-clique function. [B+, BGW] obtained nflogn/loglogn)
lower bounds for monotone span programs over arbitrary
fields computing explicit functions based on the combina-
torial criterion from [BGP].

In this paper we give a characterization of span program
size by a combinatorial-algebraic measure defined on covers
of pairs of 0’s and 1’s of the function computed. The mea-
sure we consider is a generalization of a measure on covers
which in communication complexity terms can be described
as the partition number of the relation defined by all triples
(u, v, %) such that for a given Boolean function f, f(u) = 0,
f(v) = 1 and u; # v; (see section 2.3). This measurs has
been used to prove lower bounds on formula size by Rychkov
[Ry] and Razborov [Ra], and first appeared implicitly in the
method of Khrapchenko [K]. We define a generalization of
the above measure over arbitrary fields and prove that the
new measure is exactly equal to the span program complex-
ity of the Boolean function over the given field.
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In the monotone case our new methods yield nf(osn)
lower bounds for the monotone span program complexity of
explicit Boolean functions over arbitrary fields, improving
the previous lower bounds on monotone span program size.
We prove that any matrix whose rank is significantly larger
than its cover number can be used to prove lower bounds on
monotone span program size. We also identify a property
of bipartite graphs that is sufficient for constructing Boolean
functions with large monotone span program complexity,
Based on this property, we derive n(1°6") Jower bounds on
monotone span program size by two different methods: us-
ing our new characterization of span program size, and the
lower bound criterion from [BGP].

The nf¥legn/loglogn) 1ower bounds in B+, BGW] arc
proved for explicit Boolean functions defined by bipartite
graphs with certain properties. The functions we work with
in this paper are defined by bipartite graphs similarly, How-
ever, we are able to make use of a different property of the
underlying bipartite graphs, and this gives the improvements
in the lower bounds. Noga Alon [A] observed that the three
constructions given in [AGHP] can be easily modified to
have the same properties sufficient for the nf(logn/loglogn)
lower bounds as the Paley-type bipartite graphs used in [B+,
BGW], but while the proof for the Paley graph construc-
tion is based on the Weil character sum estimates [AGHP,
AMN, B+, BGW], the proofs for the other two construc-
tions in [AGHP] are purely combinatorial. In our case, Paley
graphs and all the constructions in [AGHP] as well as the
construction of [NN] satisfy the sufficient condition for ob-
taining n(1°€") Jower bounds for explicit Boolean functions
defined based on these constructions.

Finally, our lower bounds imply n(°8%) Jower bounds
for the size of monotone span programs computing the clique
function, deciding whether an input graph on n vertices con-
tains a clique of size n/2.

2 Definitions
2.1 Span programs

‘We describe the formal definition of the model of span pro-
grams introduced in [KW].

Let F be a field. For a matrix M over F span(M) de-
notes the linear subspace generated by the rows of M, thatis
the set of vectors which are linear combinations of the rows
of M.

A span program over F is given by a matrix M over
F with its rows labeled by literals {z1,..., 24, Z1,...,&n}
and a fixed nonzero vector £. (Sometimes { is called the tar-
get vector.) For an inputa = (a1, ...,a,) € {0,1}" let M,
denote the submatrix of M obtained by keeping those rows
whose labels are satisfied by a. That is, M, contains rows
labeled by 2; such that a; = 1 and rows labeled by &; such
that a; = 0. The span program accepts the input a if the
fixed nonzero vector £ belongs to span(M,).

A span program computes a Boolean function



f : {0,1}* — {0,1} if it accepts exactly those inputs a
where f(a) = 1,

The size of a span program is the number of its rows.

The number of columns is not counted as part of the size.
It is always possible to restrict the matrix of a span program
to a set of lincarly independent columns without changing
the function computed by the program, therefore it is not
necessary to use more columns than rows., However, in some
of our arguments it will be convenient to work with a very
large number of columns,

The choice of the fixed nonzero vector i does not effect
the size of the span program., It is always possible to replace
{'by another nonzero vector # via a change of basis without
changing the function computed and the size of the program.
Most often £ is chosen to be the T vector (with all entries
equal 1),

A span program is called monotone if the labels of the
rows arc only positive literals {2, ..., z, }. Monotone span
programs compute only monotone functions, and every mono-
tone Boolcan function can be computed by a monotone span
program,

We denote by SPx(f) (respectively mSPx(f)) the size
of the smallest span program (respectively monotone span
program) over F that computes f.

2.2 A measure on covers

Our characterization of span program size is based on a gen-
eralization of a combinatorial measure which has been used
to prove lower bounds on formula size by Rychkov [Ry] and
Razborov [Ra), and first appeared implicitly in the method of
Khrapchenko [K], We describe this measure and its relation
to formula size,

Let U and V be arbitrary finite sets, such that UnV = .
A rectangle (or combinatorial rectangle) is a set Up x Vp,
where Up CU and Vo C V. A coverof U x V isaset R of
rectangles such that every pair (u,v) € U x V belongs to at
lenst one rectangle in R. We say that a cover R’ is embedded
in R if every rectangle in R’ is a subset of some rectangle in
R,

For a cover R of U x V we consider the following mea-
sure

a(R) i=min{|R'| : R’ is a disjoint cover embedded inR} .

Theorem 2.1 [Ra] For any cover R of U xV and any nonzero
matrix A on U x V over an arbitrary field F the following

holds.
rhr(A)
maxper rkx(AR)

where Ap is the submatrix of A corresponding to the rectan-
gle R,

<a(R),

Let U,V C {0,1}" such that U NV = . We consider
the following rectangles, fori = 1,...,n.

Ry 1= {(U,U):UGU,‘UG V, u; =0,‘U,'=1},
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Ry;:={(u,v) :ue€U,v e V,u; = 1,v; = 0}.

Since U NV = {, every pair (u,v) differs in at least
one coordinate, thus the above rectangles form a cover of
U x V. This cover is called the canonical cover of U x V'
and is denoted by Rcqan (U, V). Let f be a Boolean func-
tion {0,1}* — {0,1}. We use the notation Rcqan(f) =
Rean(f~1(0), F71(2))-

If f is a monotone Boolean function, then the pairs (u, v)
foru e U C f1(0)and v € V C (1) must differ
in a position such that ¥; = 0 and v; = 1. Thus in this
case the rectangles Rg; for7 = 1,...,n form a cover of
U x V. This cover is denoted by Runon (U, V) and is called
the monotone canonical cover of U x V. We also use the
notation Rmon (f) = Rmon (F~2(0), F~2(2)).

The measure « on the canonical covers of Boolean func-
tions gives lower bounds on formula size, L(f) denotes the
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formula size of the Boolean function f, and Lpyon(f) de-
notes monotone formula size.

Theorem 2.2 [K, Ry, Ra]LetU C f~(0)andV C f~1(1).
Then

L(f) 2 a(Rean(f)) 2 a(Rean (U, V),
and

Lion (f) > a(Rmon(f)) > c‘('Rmon(U; V))

In the monotone case, Theorem 2.1 can be used to prove
lower bounds for &(Rmon(f)). Razborov [Ra] proved that
in the non-monotone case (when we have to work with
Rcan(f)), for every function f and every matrix A we get

rkx(A) _
MAXRER on(s) ThF(AR) —

O(n).

The following lemma is helpful in constructing functions
with large monotone complexity from covers with certain
properties.

Lemma 2.3 [Ra] Any cover of sizet for U x V for arbitrary
disjoint sets U and V can be interpreted as the monotone
canonical cover for some monotone Boolean function f with
t variables and some sets U' C f~1(0) and V' C f~1(1).

2.3 Communication complexity

We briefly describe the communication complexity measures
that we refer to in the paper.

Let f : X x Y — {0,1} be a Boolean function. The
two party communication problem introduced by Yao [Y] is
to compute f(z, y) by two players, one that knows z and an-
other that knows y. The deterministic communication com-
plexity of this problem is the number of bits the players have
to send to each other in order to determine the value of the
function on an arbitrary input, using a deterministic protocol.
Nondeterministic communication complexity was defined by
Lipton and Sedgewick [LS].




The Boolean function f : X x ¥ — {0, 1} can be rep-
resented by a matrix Ay on X x Y with the value f(z,y)
at the (2, y) entry. For a matrix A let D(4) denote the de-
terministic communication complexity of the corresponding
two party communication problem. We denote by N (4) the
maximum of the nondeterministic and co-nondeterministic
communication complexity of the corresponding problem.
A rectangle R is called monochromatic for A if each en-
try in Ag is the same. The cover number C(A) of A is
the smallest number of monochromatic rectangles needed to
cover A (possibly with intersections). With the above nota-
tion, N(4) = [log, C(A)] (see [KN]).

Razborov [Ra] showed that any matrix A for which there
is a superlinear gap between D(A) and N(A) can be used to
obtain superpolynomial lower bounds on monotone formula
size (see also in [KN]).

Our characterization of span program size implies that
any matrix with superpolynomial separation between its rank
and cover number can be used to obtain superpolynomial
lower bounds on monotone span program size (see Theorem
4.1).

We note that the measure a(Rcqan(f)) can be described
in communication complexity terms as the partition num-
ber of the relation defined by all triples (u,v,%) such that
f(uw) = 0, f(v) = 1 and u; # v;. The following com-
munication problem was considered in [KW1]. Let f be a
Boolean function. Player A gets an inputu € f~1(0), player
B gets an input » € f~*(1) and their goal is to find a coor-
dinate ¢ where ¢; # v;. One can represent this problem by a
[£=1(0)] % {f~1(1)] matrix with the (u,v) entry containing
all indices Z such that u; # v;. The partition number of the
problem is the minimum number of disjoint monochromatic
rectangles covering this matrix. (A rectangle is moncchro-
matic if some index appears in each entry of the rectangle.)
It is easy to see that a(Rcan(f)) is the partition number of
the above communication problem for f, and a(Rmon (f))
is the partition number of the monotone version of the com-
munication problem.

3 Characterization of span program size

In this section we define a generalization of the measure on
covers described in the previous section. We prove that the
new measure gives a characterization of span program size
over every field,

As before, let U and V be arbitrary finite sets, such that
Unv=40.

We will consider || by |V| matrices of rank 1 over given
fields. We say that a set X of rank 1 matrices is embedded in
a set R of combinatorial rectangles, if for every K € K all
the nonzero entries of K belong to some R € R.

For a cover R of U x V we define the following measure,
with respect to a field F.
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Definition 3.1 Let F be a field,

ar(R) =min{lK| : > K=1},
KeK
where K is a set of rank 1 matrices over F embedded inR.

For a {U{ by [V'| matrix @ the notation @ = 1 means that
Q(u,v) = 1foreach pairu e U,v € V.
We prove the following properties of the above measure.

Lemma 3.2 For any cover R of U X V and any nonzero
matrix A on U x V over a given field F the following holds.

rkr(A)
maXxrenr 'f'k]-'(AR)
where AR is the submatrix of A corresponding to the rectan-
gle R,

Proof: Let K be a set of |U[ by |[V| matrices of rank 1 over
F embedded in R such that 3 - K = 1. Let

A=K denote the element-wise product of A and K, that is let
AxK(u,v) = A(u,v)K(u,v). Then A = ) e Ax KK
holds. The first inequality in the statement of the lemma
follows from

< ar(R) < a(R),

rkr(4) < ) rhr(AxK)
Kek
< K] max rhr(AxI)
< IKlmaxrks(Ag),
since K is embedded in R.

To prove the second inequality we observe that for every
combinatorial rectangle R the |U| by |V| matrix with value
1 in entries that belong to R and 0 in every other entry is a
rank 1 matrix over any field. O

Lemma 3.3 For any cover R of U x V
ar(R)=min{ Y rkr(Qcr): Y Qcr=1},

ReER ReR

where Qg is an arbitrary |\U| by |V| matrix over F such
that all nonzero entries of Qcr are covered by R.

Proof: Follows from the fact that the rank of a matrix @ is
the same as the minimum number of rank 1 matrices whose
sum equals @. O

We prove that the above measure a on the canonical
cover of a Boolean function is exactly equal to its span pro-
gram complexity over the given field F, Similarly, the mea-
sure on the monotone canonical cover of a Boolean function
is exactly equal to its monotone span program complexity.

Theorem 3.4 For an arbitrary Boolean function f and ev-
ery field F
SP}'(f) = o".'&"'((}r\"‘can(.f)) .
For an arbitrary monotone Boolean function f and every
field F
mSPx(f) = az(Rmon(f)) .



Proof;

First we prove that SPx(f) > ar(Rean(f))-

It is proved in [KW] that every span program comput-
ing a function f can be transformed into a canonical span
program with the same number of rows computing the same
function, and this transformation preserves monotonicity. A
span program is called canonical if its columns are in 1-1
correspondence with the input vectors where the value of the
function is 0, and for every u € f~1(0) the column corre-
sponding to u in M, is identically 0. In other words, for
every u € f~1(0) there is a column by of the canonical span
program M computing f with nonzero entries only at rows
whose label takes the value 0 on u. By the definition of a
span program computing f, for every v € f~1(1) there is a
vector ¢, with nonzero entries only at rows whose label takes
the value 1 on v, such that ¢, M = I. (We use I as the target
vector.) Thus a canonical span program gives us sets of vec-
tors {ey : v € f~1(1)} and {by : u € f~1(0)} such that for
every (u,v) € f~1(0) x £~1(1) we have cyby = 1.

We denote by % and by b% the parts of ¢, and b, respec-
tively, that belong to rows of M labeled by ;. We denote by
e and by by the parts of ¢, and b,, respectively, that belong
to rows of M labeled by ;.

Recall that the canonical cover Rean(f) of the Boolean
function f : {0,1}" — {0, 1} consists of the 2n rectangles
Ry, fori=1,,..,nande=0,1,

We define Q¢ (u,v) = b¢ct. Then we have 3_; Qei =
1. We observe that all the nonzero entries of Q; are covered
by Res because Qe(u,v) = b&fcS is nonzero only if b’ and
¢¢ have a common nonzero coordinate, and this can only
happenifu; =candyy =1—e.

Clearly, the rank of each matrix Q. is at most the num-
ber of rows in ¢! (and b¢), thus SPx(f) > S-; rk#(Qei)-
Applying Lemma 3.3, SPx(f) > ax{Rean(f)) follows.

Next we show that given |f~1(0)] by |f~*(1)| matrices
@ over F such that all nonzero entries of @; are covered
by Re and 3", Q¢ = 1 then we can construct a span pro-
gram computing f of size )~ ; rkx(Qei).

We will construct a canonical span program computing
J In fact, we will construct sets of vectors
{ev 1 v € f~Y(1)} and {by : v € f~(0)} such that for
every (u,v) € f~1(0) x f~(1), we have cyby = 1. Then
we can take the vectors by, as columns and obtain a canonical
span program computing f.

Let » = 7kr(Qe). Let {ug,...,u,} be vectors from
J~(0) such that the corresponding rows of Q; are linearly
independent, For v € f~1(1) we let ¢ consist of the corre-
sponding r coordinates of the column of Q; indexed by v.
Forj=1,...,r weset b, := ef, where e} denotes a vector
of Iength » with 1 in the j-th position and 0 in every other
position, For every u € f~*(0) the row of Q.; indexed by u
can be obtained as a linear combination of the rows indexed
by u1,..., ur. We let b consist of the corresponding coeffi-
cients in this combination, Putting together the pieces b&f and
c¢! we obtain vectors b, and c, with the desired properties.
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This proves that SPx(f) < ax(Rcan(f))-
The proof for the monotone case works in a similar way.
]

4 Lower bounds for monotone span programs

In this section we prove n(°87) Jower bounds on the size
of monotone span programs computing explicit functions in
n variables.

First we prove that any matrix whose rank is significantly
larger than its cover number can be used to prove lower bounds
on monotone span program size. Next we identify a property
of bipartite graphs that is sufficient for constructing Boolean
functions with large monotone span program complexity.
Based on this property, we derive nf*(°67) Jower bounds on
monotone span program size by two different methods: us-
ing our new characterization of span program size (Theorem
3.4) and by applying the lower bound criterion of [BGP].

4.1 Lower bounds by separating the rank and the
cover number

In this section we show using the characterization of span
program size given in Theorem 3.4 that any matrix whose
rank is significantly larger than its cover number can be used
to prove lower bounds on monotone span program size.

Let f be a monotone Boolean function in n variables,
UC FfY0),V C f1(1) and R = Rmon(U, V). Our
characterization of span program size in Theorem 3.4 and
Lemma 3.2 suggest the following approach to prove lower
bounds on the size of monotone span programs computing
f over a given field F. Suppose we could find a matrix 4
on U x V such that Ap is monochromatic for each R € R.
Then rkr(Ar) = 1 for each R € R, and by Lemma 3.2
together with Theorem 3.4 we get rkx(4) < mSP#(f).

If we want to use this approach and obtain a large lower
bound then rkx(A) must be significantly larger than the cover
number C(A4), since the number of variables of f is at least
C(A). To see that the number of variables of f is at least
C(A) recall that R = Rmon(U,V) isacover of U x V
by n rectangles. Since we require for our approach that Ag
is monochromatic for each R € R, R is also a monochro-
matic cover of A by n rectangles, thus n > C(A). Since

rkz(A) < 2P(4) [MS] and by definition N (4) = [log, C(4)]

this also means that D{A) must be significantly larger than
N(A). However, unlike in the case of formula size, a sepa-
ration between D(A) and N (A) is not sufficient for proving
lower bounds on monotone span program size. Nevertheless,
our characterization of span program size implies that any
matrix A with rkr(A) significantly larger than C(A) can be
used to prove lower bounds on monotone span program size
over the field F.

Theorem 4.1 Given an arbitrary matrix A over a field F
one can define a monotone Boolean function in C(A) vari-
ables with monotone span program complexity at least vk r(A)
over F.




Proof: By the definition of C(A) there is a cover R of .4 by
¢ (A) monochromatic rectangles. Since the rectangles in R
are monochromatic rkx(Ag) = 1 for each R € R and any
field . By Lemma 2.3 the cover R can be interpreted as the
monotone canonical cover of some set I/ X V such that 7 C
f~1(0) and V C f~1(1) for a monotone Boolean function
fin C(A) variables. For U C f~1(0) and V C F~1(1) we
have a7(Rmon(f)) > ax(Rmon (U, V)), thus by Lemma
3.2 and Theorem 3.4 we get mSP#=(f) > rkr(4). O

The nf(1°8») Jower bound on monotone formula size in
{Ra] is based on a superpolynomial separation between the
rank and the cover number of the following matrix.

Let Disjf* denote the (n, < t)-disjointness matrix, such
that the rows and columns of Disji® are indexed by subsets
of size at most t of an n element set, and Disj (z,y) = 1
if and only if x Ny = 0. Razborov [Ra] proved that for
t = O(log n) we get C(Disj}) = O(n) but rkr(Disj) =

nfle8n) for any field F. Razborov [Ra] also showed that
one can obtain covers of DisjP fort = O(logn) by O(n)
monochromatic rectangles from random bipartite graphs and
Paley graphs can be used to obtain explicit monochromatic
covers of size O(n).

Given any explicit monochromatic cover of size O(n) of
Disjp fort = O(logn), we consider the monotone Boolean
function provided by Lemma 2.3, Our characterization of
span program size in Theorem 3.4 together with Lemma 3.2
immediately implies 2%(°8") lower bounds for the mono-
tone span program complexity of these explicit Boolean func-
tions over arbitrary fields (see the proof of Theorem 4.1).

We describe in more details the functions to which the
above lower bounds apply in the next section.

4.2 A sufficient condition for proving lower bounds on
monotone span program size

In this section we identify a property of bipartite graphs that
is sufficient for constructing functions with large monotone
span program complexity.

We will need bipartite graphs on vertex set V =11 U V%
which satisfy the property that whenever Wi, Wa C V) are
disjoint subsets of at most % vertices each, then there is a
vertex v € V4 which is joined to every vertex in ¥ and is
not joined to any vertex in W,. For appropriate values of
k, this is a well known property of random graphs (see for
example in [Bo]).

Definition 4.2 We say that a bipartite graph on vertex set
V = V4 U V4 satisfies the isolated neighbor condition for k
if for arbitrary disjoint subsets Wy, Wy C Vi of at most k
vertices each there is a vertex v € Vs which is a common
neighbor of all the vertices in Wy and is isolated from all the
vertices in Ws.

Aset T' C {0,1}" of vectors is called an (n, k) univer-
sal set, if for any subset of % indices S = {é1,...,%} the
projection of 7" on the indices in S contains all possible 2¥
configurations. Such sets of vectors with as few members as
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possible have been studied for example in [KS, SB, Al, NN].
It is clear that bipartite graphs such that the columns of their
adjacency matrix form an (n, 2k) universal set of vectors sat-
isfy the isolated neighbor condition for k. On the other hand,
the columns of the adjacency matrix of bipartite graphs sat-
isfying the isolated neighbor condition for & form an (n, )
universal set of vectors.

A bipartite Paley graph is defined on vertex sets 14 =
Va = GF(p) for p odd prime, and two vertices € V)
and y € V; are joined by an edge if and only if z - y is n
quadratic residue modp. The results of [GS, BT] (sce also
in [Bo]) prove that Paley graphs satisfy the isolated neighbor
condition for &k = O(logn), where n is the number of ver-
tices. An analysis for the bipartite case is given for example
in [AGHP]. Also, all the constructions of almost k-wise in-
dependent random variables in [AGHP, NN] yield bipartite
graphs satisfying the condition for & = ©(log n).

We use the following notation. Let G be a bipartite graph
on vertex set V = V; U Va, where |Vj| = |Va] = n. Fora
set W C V1 we denote by I'(I) the set of all of its common
nexghbors in V5, and by I‘(W } the set of all the common
non-neighbors of W, that is all the vertices in V5 that are
not connected to any vertex in W, For our purposes we let

T'(@) = I'(§) = Va. Foraset T C V we denote by T its
complement with respect to V/, that is T =V\T. Weuse
thenotation7 = {T: T € T}.

A minterm of a monotone Boolean function is a minimal
set of its variables such that on any input that assigns 1 to
each variable in the set the value of the function must be 1
regardless of the values assigned to the other variables, Sim-
ilarly, a maxterm of a monotone Boolean function is a mini-
mal set of its variables such that on any input that assigns 0
to each variable in the set the value of the function must be 0
regardless of the values assigned to the other variables,

We will construct monotone Boolean functions from bi-
partite graphs the following way, Let G be a bipartite graph
on vertex set V = V) U V3, where |V;| = |Va| = n.

Definition 4.3 Let fg ; be the function on 2n variables, de-
fined such that the set of minterms of fa,; consist of all the
sets WU T (W), where W is a subset of size at most t of V.

‘We note that our definition of fq,; gives the duals of
the functions considered in [Ra] for given G, and a simi-
lar definition of Boolean functions constructed from bipartite
graphs has also been used in [B+, BGW].

Let Hg := {WUT(W) : W C W,|W] < t} and
Top == {WUDL(W) : W C W,|W| < t}. With this
notation, the set of minterms of fg is exactly the set Hey e
by the definition of fg,:. The next lemma shows that under
certain conditions the members of 7+ contain maxterms of

fa,t

Lemma4.4 Let G be a bipartite graph on vertex set V =
V1 U Vs satisfying the isolated neighbor condition fort. Then
each set in the family T, contains a maxterm of the func-
tion fgy. Thatisfor T € Tg,s and input X, if T C X



then fa,(X) = 0 regardless of the value of the other input
variables.

Proof: It is enough to show that for every pair T' € 7g,: and
HeMg,wehave TN H # 0.

Consider arbitrary T € T and H € Hgy, say T =
WUl (Wr) and H = Wi UI'(Wr). We need to show that
if W "Wy = 0 then D(Wr)NT(Wi) # 0, which directly
follows from the conditions of the lemma, since |Wr| and
|Wi| are at most 2, O

The following simple lemma is the basis of both of our
different proofs of Theorem 4.7 and it was implicitly used
also in Razborov’s argument to prove C(Disj}) = O(n)
[Ra],

Lemmad.5 Let G be a bipartite graph on vertex set V =
VAUV, satisfying the isolated neighbor conditionfort. Then
JorT =WpUTl'(Wr) € Tgand H = Wy UT(Wg) €
Na, we have

WrNWy =0 NWr)NT(Wy) #0.

Proof: We have already proved in Lemma 4.4 that if
Wr N Wy = § then (Wr) N T(Wg) # 0. The other
dircction follows from the definitions, since Wy x T'(Wx)
corresponds to an all 1 submatrix, and W x I'(Wr) corre-
sponds to an all 0 submatrix in the adjacency matrix of the
graph G. O

The following lemma is implicit in Razborov’s proof of
C(DisjP) = O(n) [Ra].

Lemma 4,6 [Ra] Let G be a bipartite graph on vertex set
V = V1 UV, satisfying the isolated neighbor condition for
t. Then Rmon(Ta,e, Ha,e) gives a cover of the (n,< t)-
disjointness matrix Disj? by monochromatic rectangles.

For completeness we include a proof based on the argu-

ments of [Ra], _
Proof: First recall that #,: C fa5(1) and Ta,: € f53(0),
and the 2n variables of fg ¢ correspond to the vertices v €
Vi U V. Thus Rion (76, Ha,e) consists of 2n rectangles
Ry forve UV,

Next note that the sets H € Hg,c and T € T ¢ arein 1-1
correspondence with the subsets (W and Wy respectively)
of size at most £ of V4,

ApairT € ’7'0,: and H € g, belongs to Ry if and
only if v € TN H, By Lemma 4.5 each pair T' € Tg,
and H € g, intersects either in a vertex v € Vj or in
a vertex v € Va, In the first case the corresponding entry
Diojp(Wr,Wrg) = 0 and in the second case
Disjp(Wr,Wn) = 1. Thus for v € Vj the rectangle R,
will be O-monochromatic and for v € V5 the rectangle R,
will be 1-monochromatic in Disj}, O

Now we are ready to present a sufficient condition for
constructing functions with large monotone span program
complexity,
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Theorem 4.7 Let G be a bipartite graph on vertex set V =
WWUVa with |V1| = |Va| = n satisfying the isolated neighbor
condition fort = ©(log n). Then

mSP}'(fG,t) — n@(log n)
over any field F.

Proof: To prove the lower bound we use our characterization
of span program size in Theorem 3.4. First we note that for
UC f10)and V C f~(1) we have

ar(Rmon(f)) 2 ar(Rmon (U, V)),

thus
mSPx(fe,) > ar(Rmon(Tat, Ha,t))-
By Lemma 4.6 we have rkx({Disj )r) = 1 for
R € Rmon(T,t,Ha,t). By Lemma 3.2 this implies that

mSPx(fg,t) > rkr(Disj?) = n®o8") |

Since the number of minterms of the function is n®(1°87) jt
is easy to see that the upper bound holds. O

As in [BGW] Theorem 4.7 implies the same lower bound
for the size of monotone span programs computing the clique
function, since the clique problem is monotone complete for
NP[SV,GSi]. Let CLIQU E,, be the functiononm = ('2‘)
variables taking value 1 if and only if the input graph on n
vertices contains a clique of size n/2.

Corollary 4.8

mSPr(CLIQUE,) = nflosn)
over any field F.
4.3 Critical families of minterms

We show that Theorem 4.7 can also be proved by applying
the lower bound condition from [BGP]. First we state the
criterion.

Definition 4.9 [BGP] Let f be a monotone Boolean func-
tion and M be the family of all of its minterms. We say
that a subfamily H C M is a critical family for f, if every
Hy € H contains a set D(Ho) C Ho, |[D(Ho)| > 2, such
that the following two conditions are satisfied,

1. The set D(Ho) uniquely determines Hy in the family.
That is, no other set in the family H contains D(Hy) as a
subset,

2. For any subsetY C D(Hy) , the set

Sy = U

HeH, HaY #0

H\Y

does not contain any member of M.

It is proved in [BGP] that if # is a critical family for f
then mSP=(f) > |#| over any field F.

‘We show the following sufficient condition for obtaining
critical families.




. Lemma 4,10 Let G be a bipartite graph on vertex set V =
V1 UV; satisfying the isolated neighbor condition fort. Then
the family H = {WUT(W) : W C W,|W]| = ¢}, of
minterms of the function fg ;s is a critical family for fa,s.

Proof: We can take the set Iy, as the subset D(Hy), since
we only include into the family A the minterms defined by
sets of cardinality exactly 2. We need to show that for every
HoeHand@#Y C Wy, theset

U

HeH HnY #0

—
e —

Sy H\Y

does not contain any minterms of fg,:. This will follow if
we show that every such set Sy is missing a maxterm. More
precisely, we show that 3T € Tg , such that T C Sy. By
Lemma 4.5 if Wg NY # 0 then H N I(Y) = 0. Thus
Y UT(Y) C Sy, which proves the lemma, O

To conclude a proof of Theorem 4.7 by applying the cri-
terion of [BGP)] it is enough to note that [#]| = n®(°e") for
t = O(logn). O
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