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Abstract 

WC give a characterization of span program size by a 
combinatorial-algebraic measure defined on covers of pairs 
of O’s and l’s of the function computed. The measure we 
consider is a generalization of a measure on covers which 
bar; been used to prove lower bounds on formula size [K, Ry, 
Ra], and has also been studied with respect to communica- 
tion complexity, 

In the monotone case our new methods yield 12*(*~s”) 
lower bounds for the monotone span program complexity 
of explicit Boolean functions in TZ variables over arbitrary 
fields, improving the previous lower bounds on monotone 
span program size. Our characterization of span program 
ai7k implies that any matrix with superpolynomial separa- 
tion between its rank and cover number can be used to obtain 
ouperpolynomial lower bounds on monotone span program 
aizc, We also identify a property of bipartite graphs that 
is sufticient for constructing Boolean functions with large 
monotone span program complexity. 

1 Introduction 

The model of span programs was introduced by Karchmer 
and Wigderson in 1993 [KWj. 

A span program for a Boolean function is presented as 
a matrix over some field, with rows labeled by variables or 
negated variables. The span programaccepts an input assign- 
ment if and only if a fixed nonzero vector can be obtained as 
a linear combination of the rows whose labels are satisfied by 
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the input. The size of the span program is the number of rows 
in the matrix. A span program is monotone if only positive 
literals are used as labels of the rows, i.e. negated variables 
are not allowed. More detailed definitions are given in sec- 
tion 2.1. 

Span programs are related to several other models of com- 
putation. The class of functions computable by polynomial 
size span programs over GF(2) is equivalent to $L/poly, 
i.e. the class of functions computable by polynomial size 
parity branching programs [KW, BDHM]. Span programs 
over other fields are related to other logspace classes [KSV, 
BDHM, ABO]. 

Monotonespan programs are strongly related to the cryp- 
tographicproblem of secret-sharing. A secret-sharing scheme 
is a cryptographic tool where a dealer shares a secret (from a 
finite set of possible secrets) among a set of parties such that 
only the pre-defined authorized subsets of parties are able to 
reconstruct the secret. The authorized subsets correspond to 
a monotone Boolean function f : (0, 1)” + (0, 1) where 
n is the number of parties and the authorized subsets are the 
subsets with their characteristic vectors in f-l(l). (Note 
that the function f has to be monotone. If a set of parties 
can reconstruct a secret then every superset of it has to be 
authorized as well.) Monotone span programs are equivalent 
to a subclass of secret sharing schemes called “linear secret 
sharing schemes”. See [KW, BGP] for references and more 
details on secret sharing. 

There is also a connection between monotone span pro- 
grams and certain algebraic proof systems [PSI. 

One of the main motivations to study span programs is 
that lower bounds for span program size imply lower bounds 
for formula size and other interesting complexity measures 
including branching program size. 

So far the largest known lower bound for span program 
size is R(Yz~/~/ log rz) for the “‘element distinctness” function 
[KW, BGP] (n denotes the number of variables). Proving 
larger than SI(n”) lower bounds for the span program com- 
plexity of explicit functions in n variables would improve 
the largest known lower bound for formula size, which is 
!C?(n3-O@)) proved by Hastad [HI. Proving superpolynomial 
lower bounds for the span program complexity of an explicit 
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function would imply that the function does not belong to 
NC’or NL. 

Lower bounds for the monotone case are important for 
understanding the model and finding new lower bound meth- 
ods. They are also of independent interest since they give 
lower bounds for linear secret-sharing schemes. 

Unlike for Boolean circuits it is not known how much 
monotone span programs are weaker than non-monotone span 
programs. For Boolean circuits, Razborov’s lower bound 
for the perfect matching function [Ra2] gives a superpoly- 
nomial separation between monotone and non-monotone cir- 
cuits, and a result by 8. Tardos [Tj shows an exponentid gap. 
No superpolynomial separation is known between monotone 
and non-monotone span programs. 

Monotone span programs can be much more powerful 
than monotone circuits. A function which is computable by 
linear size monotone span programs but requires superpoly- 
nomial size monotone circuits and esponential size mono- 
tone formulae is exhibited in [B+, BGWJ. This shows that 
size and depth lower bound methods for the monotone cir- 
cuit model (e.g. [Ral, Ra2, Ra3, An, AB, Ha] for circuit 
size, [KWl, RW, GH] for circuit depth) cannot be directly 
applied to monotone span programs. 

The following lower bounds are known for the mono- 
tone span program complexity of explicit Boolean functions 
in n variables. Karchmer and Wigderson [KSVj proved an 
Q(n log n) lower bound for the size of monotone span pro- 
grams over GF(2) computing threshold functions. A lower 
bound of Csirmaz [Cs] for general secret sharing schemes 
implies Q(n2/ log n) lower bounds for the size of monotone 
span programs over arbitrary fields computing explicit func- 
tions. Beimel, Gal and Paterson [BGP] developed a lower 
bound technique which allows one to prove lower bounds on 
monotone span program size by a combinatorial criterion on 
the family of minterms of the function. As a first application 
of this technique [BGP] proved a Q(n5i2) lower bound for 
monotone span programs over arbitrary fields computing the 
6-clique function. [B+, BGW] obtained nSlttosn~ros’osn) 
lower bounds for monotone span programs over arbitrary 
fields computing esplicit functions based on the combina- 
torial criterion from [BGP]. 

In this paper we give a characterization of span program 
size by a combinatorial-algebraic measure defined on covers 
of pairs of O’s and l’s of the function computed. The mea- 
sure we consider is a generalization of a measure on covers 
which in communication complexity terms can be described 
as the partition number of the relation defined by all triples 
(21, u, i) such that for a given Boolean function f, f(u) = 0, 
f(u) = 1 and zli # vi (see section 2.3). This measure has 
been used to prove lower bounds on formula size by Rychkov 
[Ry] and Razborov [Ra], and first appeared implicitly in the 
method of Khrapchenko [a. We define a generalization of 
the above measure over arbitrary fields and prove that the 
new measure is esactly equal to the span program complex- 
ity of the Boolean function over the given field. 

In the monotone case our new methods yield nntrosn) 
lower bounds for the monotone span program complexity of 
explicit Boolean functions over arbitrary fields, improving 
the previous lower bounds on monotone span program size. 
We prove that any matrix whose rank is significantly larger 
than its cover number can be used to prove lower bounds on 
monotone span program size. We also identify a property 
of bipartite graphs that is sufficient for constructing Boolean 
functions with large monotone span program complexity. 
Based on this property, we derive nntlosn) lower bounds on 
monotone span program size by two different methods: us- 
ing our new characterization of span program size, and the 
lower bound criterion from [BGP]. 

The r~o@‘s~/~~s’~s~) lower bounds in [B+, BGWJ are 
proved for explicit Boolean functions defined by bipartite 
graphs with certain properties. The functions we work with 
in this paper are defined by bipartite graphs similarly. How- 
ever, we are able to make use of a different property of the 
underlying bipartite graphs, and this gives the improvements 
in the lower bounds. Noga Alon [A] observed that the three 
constructions given in [AGHP] can be easily modified to 
have the same properties sufficient for the nnt’u~n~10~*us’8) 
lower bounds as the Paley-type bipartite graphs used in [B+, 
BGW’J, but while the proof for the Paley graph construc- 
tion is based on the Weil character sum estimates [AGHP, 
AMN, B+, BGWj, the proofs for the other two construc- 
tions in [AGHP] are purely combinatorial. In our case, Palcy 
graphs and all the constructions in [AGHP] as well as the 
construction of [NNJ satisfy the sufficient condition for ob- 
taining nRttusn) lower bounds for esplicit Boolean functions 
defined based on these constructions. 

Finally, our lower bounds imply nnt*“sn) lower bounds 
for the size of monotone span programs computing the clique 
function, deciding whether an input graph on n vertices con- 
tains a clique of size n/2. 

2 Definitions 

2.1 Span programs 

We describe the formal definition of the model of span pro- 
grams introduced in [KWj. 

Let r be a field. For a matris M over T spcsn(M) de- 
notes the linear subspace generated by the rows of M, that is 
the set of vectors which are linear combinations of the rows 
ofM. 

A span program over T is given by a matris M over 
r with its rows labeled by literals (~1, . . . , c~, 51, . . . , Z,} 
and a fised nonzero vector tf (Sometimes t’is called the far- 
get vector.) For an input a = (~61,. . . , a,) E (0, 1)” let Ma 
denote the submatrix of M obtained by keeping those rows 
whose labels are satisfied by CI. That is, Ma contains rows 
labeled by I such that ai = 1 and rows labeled by Zt such 
that ai = 0. The span program accepts the input a if the 
fixed nonzero vector <belongs to span(ll&). 

A span program computes a Boolean function 
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f : {O,l}” 3 (0, 1) if it accepts exactly those inputs (I 
whcrc f(a) = 1, 

The size of a span program is the number of its rows. 
The number of columns is not counted as part of the size. 

It is always possible to restrict the matrix of a span program 
to a set of linearly independent columns without changing 
the function computed by the program, therefore it is not 
necessary to use more columns than rows. However, in some 
of our arguments it will be convenient to work with a very 
Iargc number of columns. 

The choice of the fixed nonzero vector <does not effect 
the size of the span program. It is always possible to replace 
fby another nonzero vector 2 via a change of basis without 
changing the function computed and the size of the program. 
Most often t”is chosen to be the i vector (with all entries 
equal l), 

A span program is called monotone if the labels of the 
rows are only positive literals (21, . . . , CC,}. Monotonespan 
programs compute only monotone functions, and every mono- 
tone Boolean function can be computed by a monotone span 
program, 

We denote by SP&) (respectively mSPF(f)) the size 
of the smallest span program (respectively monotone span 
program) over T that computes f. 

2.2 A mcasurc on cover5 

Our characterization of span program size is based on a gen- 
eralization of a combinatorial measure which has been used 
to prove lower bounds on formula size by Rychkov [Ry] and 
Razborov [Ra], and first appeared implicitly in the method of 
Khrapchenko [K], We describe this measure and its relation 
to formula size, 

Let U and V be arbitrary finite sets, such that UnV = 0. 
A rectangle (or combinatorial rectangle) is a set UO x VO, 
where UO s U and VO C V. A cover of U x V is a set R of 
rectangles such that every pair (u, U) E U x V belongs to at 
least one rectangle in R, We say that a cover R’ is embedded 
in 72 if every rectangle in R’ is a subset of some rectangle in 
72, 

For a cover R of U x V we consider the following mea- 
fiurc 

a(a) := min{ In’1 : R’ * 1s a disjoint cover embedded inR} . 

Theorem 2.1 [Ra] For any cover ‘R of U x V and any nonzero 
rriatrix A on U x V over an arbitraryJield T the following 
holds, 

where An is the submatrixof A corresponding to the rectan- 
gle R, 

Let u, v E {O,l}” such that U n V = 0. We consider 
the following rectangles, for i = 1, . . . , n. 

Rli:={(u,v):uEU,vEV,ui=l,vi=O}. 

Since U n V = 0, every pair (u,v) differs in at least 
one coordinate, thus the above rectangles form a cover of 
U x V. This cover is called the canonical cover of U x V 
and is denoted by R,,,(U, V). Let f be a Boolean func- 
tion (0, 1)” + {O,l}. We use the notation 7&,,(f) = 
%afa(f-‘(O), P(l)). 

If f is a monotone Boolean function, then the pairs (u, U) 
for u E U C f-’ (0) and II E V E f-‘(l) must differ 
in a position such that ui = 0 and vi = 1. Thus in this 
case the rectangles Ro; for i = 1, . . . , n form a cover of 
U x V. This cover is denoted by ?E,,, (U, V) and is called 
the monotone canonical cover of U x V. We also use the 
notation R,,, (f) = 7&,, (f-l(O), f-l (1)). 

The measure CY on the canonical covers of Boolean func- 
tions gives lower bounds on formula size. L(f) denotes the 
formula size of the Boolean function f, and L,,,(f) de- 
notes monotone formula size. 

Theorem 2.2 [K, Ry, Ru]L.et U E f-’ (0) and V 5 f-l (1). 
Then 

and 

In the monotone case, Theorem 2.1 can be used to prove 
lower bounds for LY@,,,~,, (f)). Razborov [Ra] proved that 
in the non-monotone case (when we have to work with 
R,,,(f)), for every function f and every matrix A we get 

+(A) 
m=RER,,, (f) rk&w 

= O(n). 

The following lemma is helpful in constructing functions 
with large monotone complexity from covers with certain 
properties. 

Lemma 2.3 [Ra] Any cover of size t for U x V for arbitrary 
disjoint sets U and V can be interpreted as the monotone 
canonical coverfor some monotone Boolean function f with 
t variables and some sets U’ c f-’ (0) and V’ c f-l (1). 

2.3 Communication complexity 

We briefly describe the communication complexity measures 
that we refer to in the paper. 

Let f : X x Y + {O,l} be a Boolean function. The 
two party communication problem introduced by Yao [yl is 
to compute ~(cc, y) by two players, one that knows 2 and an- 
other that knows y. The deterministic communication com- 
plexity of this problem is the number of bits the players have 
to send to each other in order to determine the value of the 
functionon an arbitrary input, using a deterministicprotocol. 
Nondeterministiccommunication complexity was defined by 
Lipton and Sedgewick [Ls]. 
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The Boolean function f : X x’ Y + (0, 1) can be rep- 
resented by a matrix Aj on S x Y with the value f(~, y) 
at the (z, y) entry. For a matrix A let D(A) denote the de- 
terministic communication complexity of the corresponding 
two party communication problem. We denote by N(A) the 
maximum of the nondeterministic and co-nondeterministic 
communication complexity of the corresponding problem. 
A rectangle R is called monochromatic for A if each en- 
try in An is the same. The cover number C(A) of A is 
the smallest number of monochromatic rectangles needed to 
cover A (possibly with intersections). With the above nota- 
tion, N(A) = [log, C(A)] (see [KNJ). 

Razborov [Ra] showed that any matrix A for which there 
is a superlinear gap between D(A) and N(A) can be used to 
obtain superpolynomial lower bounds on monotone formula 
size (see also in [KNJ). 

Our characterization of span program size implies that 
any matrix with superpolynomial separation between its rank 
and cover number can be used to obtain superpolynomial 
lower bounds on monotone span program size (see Theorem 
4.1). 

We note that the measure cr(‘K& (f)) can be described 
in communication complexity terms as the partition num- 
ber of the relation defined by all triples (u, u, i) such that 
f(u) = 0, f(v) = 1 and pi # vi. The following com- 
munication problem was considered in [KWl]. Let f be a 
Boolean function. Player A gets an input u E f-‘(O), player 
% gets an input u E f-l (1) and their goal is to find a coor- 
dinate i where U; # ‘ZQ . One can represent this problem by a 
If-WI x If-W matrix with the (u, v) entry containing 
all indices i such that u; # VI. The partition number of the 
problem is the minimum number of disjoint monochromatic 
rectangles covering this matrix. (A rectangle is monochro- 
matic if some index appears in each entry of the rectangle.) 
It is easy to see that a(7ZLcora (f)) is the partition number of 
the above communication problem for f, and cr(‘&,, (f)) 
is the partition number of the monotone version of the com- 
munication problem. 

3 Characterization of span program size 

In this section we define a generalization of the measure on 
covers described in the previous section. We prove that the 
new measure gives a characterization of span program size 
over every field. 

As before, let U and V be arbitrary finite sets, such that 
l?Jnv=tL 

We will consider IV] by IV] matrices of rank 1 over given 
fields. We say that a set K of rank 1 matrices is embedded in 
a set TL of combinatorial rectangles, if for every Ii E K all 
the nonzero entries of Ii’ belong to some R E R. 

For a cover 7Z of U x V we define the following measure, 
with respect to a field FT. 

Definition 3.1 Let F be afield. 

where X: is a set of rank I matrices over T embedded in 72, 

For a [VI by II/( matrix Q the notation Q z 1 means thnt 
Q(u, v) = 1 for each pair u E U, v E V. 

We prove the following properties of the above measure. 

Lemma 3.2 For any cover ‘R of U x V and any nonzero 
matrix A on U x V over a given field T the following holds. 

where AR is the submatrixof A corresponding to the rectan- 
gle R 

Proof: Let Ic be a set of jUl by [IfI matrices of rank 1 over 
T embedded in R such that CKEn- Ii’ s 1. Let 
A*K denote the element-wise product of A and Ii, that is let 
A*IC(u,v) = A(u,v)I’(~,v). Then A = &.ExA~: Ii 
holds. The first inequality in the statement of the lemma 
follows from 

&F(A) < c rbF(A*Ii) 
KG 

< llcl ~~;rh&kK) 

5 1x1 ggyrb(AR) , I. 

since K is embedded in R. 
To prove the second inequality we observe that for every 

combinatorial rectangle R the IUl by 1171 matrix with value 
1 in entries that belong to R and 0 in every other entry is n 
rank 1 matrix over any field. •I 

Lemma 3.3 For any cover R of U x V 

where QCu is an arbitrary IUl by [VI matrix over T such 
that all n&zero entries Of (i&R are covered by R 

Proof: Follows from the fact that the rank of a matrix Q is 
the same as the minimum number of rank 1 matrices whose 
sum equals Q. 0 

We prove that the above measure cry on the canonical 
cover of a Boolean function is exactly equal to its span pro- 
gram complexity over the given field T. Similarly, the mea- 
sure on the monotone canonical cover of a Boolean function 
is exactly equal to its monotone span program complexity. 

Theorem 3.4 For an arbitrary Boolean function f and EV- 
ev$eld T 

W(f) = LYT(?Ln(f)) * 
For an arbitrary monotone Boolean function f and every 
field F 

m%(f) = w(7Lon(f)). 
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Proofi 
First we prove that SP&) 2 o~(Rcon(f)). 
It is proved in [KW] that every span program comput- 

ing a function f can be transformed into a canonical span 
program with the same number of rows computing the same 
function, and this transformation preserves monotonicity. A 
span program is called canonical if its columns are in l-l 
correspondence with the input vectors where the value of the 
function is 0, and for every u E f-‘(O) the column corre- 
sponding to u in it& is identically 0. In other words, for 
every u E f-‘(O) there is a column b, of the canonical span 
program M computing f with nonzero entries only at rows 
whose label takes the value 0 on U. By the definition of a 
span program computing f, for every 21 E f” (1) there is a 
vector cV with nonzero entries only at rows whose label takes 
the value 1 on V, such that c,M = 1’. (We use 1’ as the target 
vector.) Thus a canonical span program gives us sets of vec- 
tors {cV : 21 E f-l (1)) and {b, : u E f-l (0)) such that for 
every (u, V) E f-‘(O) x f-l(l) we have cvbu = 1. 

We denote by ci’ and by by the parts of c, and b, respec- 
tively, that belong to rows of M labeled by zi, We denote by 
# and by b:’ the parts of c, and b, respectively, that belong 
to rows of M labeled by 5i. 

Recall that the canonical cover Reon (f) of the Boolean 
$ctii;,f : (0, 1)” + (0, 1) consists of the 2n rectangles 

et ‘=l ,,,.,aande=O,l. 
We defme Qc{(u, V) = bf’,tcf. Then we have Cci Qf; E 

1. We observe that all the nonzero entries of QLi are covered 
by R,r because Qei(u, V) = btcf is nonzero only if bf and 
ctl have a common nonzero coordinate, and this can only 
happen if ui= e and q = 1 - E. 

Clearly, the rank of each matrix Qci is at most the num- 
ber of rows in cz{ (and bit), thus SPF(f) 1 Cdi rb(Qe;). 
Applying Lemma 3,3, SPF( f) 2 &Rcon (f)) follows. 

Next we show that given If-‘(O)1 by If-‘(l)1 matrices 
Qcr over T such that all nonzero entries of Qci are covered 
by Rer and Ccl Qer 3 1 then we can construct a span pro- 
gram computing f of size ELI rk~(Q~i). 

We will construct a canonical span program computing 

:’ 
In fact, we will construct sets of vectors 

cV : v E f”‘(l)} and {b, : u E f-l(O)} such that for 
every (u,v) E f-‘(O) x f-‘(l), we have cvbu = 1. Then 
we can take the vectors b, as columns and obtain a canonical 
span program computing f. 

Let r = rlz~(Q~~). Let (~1,. . , , u,} be vectors from 
f-l (0) such that the corresponding rows of Qci are linearly 
independent, For v E f” (1) we let ct consist of the corre- 
sponding P coordinates of the column of Qci indexed by v. 
Par j = 1, . . , , r we set b”,: := e$, where e!j denotes a vector 
of length r with 1 in the j-th position and 0 in every other 
position, For cvcry u E f” (0) the row of Qci indexed by u 
can be obtained as a linear combination of the rows indexed 
by w , , , , , u,.. We let bf consist of the corresponding coeffi- 
cients in this combination, Putting togetherthepieces bf and 
ck’ we obtain vectors b, and cv with the desired properties. 

Thisprovesthat SP7(f) 5 a&R,,,(f)). 
The proof for the monotone case works in a similar way. 

0 

4 Lower bounds for monotone span programs 

In this section we prove n*(t”sn) lower bounds on the size 
of monotone span programs computing explicit functions in 
n variables. 

First we prove that any matrix whose rank is significantly 
larger than its cover number can be used to prove lower bounds 
on monotone span program size. Next we identify a property 
of bipartite graphs that is sufficient for constructing Boolean 
functions with large monotone span program complexity. 
Based on this property, we derive n*tt”s”) lower bounds on 
monotone span program size by two different methods: us- 
ing our new characterization of span program size (Theorem 
3.4) and by applying the lower bound criterion of [BGP]. 

4.1 Lower bounds by separating the rank and the 
cover number 

In this section we show using the characterization of span 
program size given in Theorem 3.4 that any matrix whose 
rank is significantly larger than its cover number can be used 
to prove lower bounds on monotone span program size. 

Let f be a monotone Boolean function in n variables, 
U C f-l(O), V E f-l(l) and R = R,,,(U,V). Our 
characterization of span program size in Theorem 3.4 and 
Lemma 3.2 suggest the following approach to prove lower 
bounds on the size of monotone span programs computing 
f over a given field 3. Suppose we could find a matrix A 
on U x V such that AR is monochromatic for each R E ‘IL 
Then rk+iR) = 1 for each R E R, and by Lemma 3.2 
together with Theorem 3.4 we get rl;?(A) < mSPF( f ). 

If we want to use this approach and obt& a large lower 
bound then rk~(A) must be significantly larger than the cover 
number C(A), since the number of variables off is at least 
C(A). To see that the number of variables of f is at least 
C(A) recall that R = X&o,, (V, V) is a cover of U x V 
by n rectangles. Since we require for our approach that AR 
is monochromatic for each R E R, ‘R is also a monochro- 
matic cover of A by n rectangles, thus n 2 C(A). Since 
r&(A) _< 2D(A) [MS] and by definitionN(A) = [loga C(A)1 
this also means that D(A) must be significantly larger than 
N(A). However, unlike in the case of formula size, a sepa- 
ration between D(A) and N(A) is not sufficient for proving 
lower bounds on monotone span program size. Nevertheless, 
our characterization of span program size implies that any 
matrix A with +(A) significantly larger than C(A) can be 
used to prove lower bounds on monotone span program size 
over the field 3. 

Theorem 4.1 Given an arbitrary matrix A over a field 3 
one can define a monotone Boolean function in C(A) vari- 
ables with monotone spanprogram complexity at least r,&(A) 
over 3. 
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qroofi By the definition of G(A) there is a cover R of A by 
C(A) monochromatic rectangles. Since the rectangles in 7Z 
are monochromatic ~lr’y(A~) = 1 for each R E R and any 
field T. By Lemma 2.3 the cover R can be interpreted as the 
monotone canonical cover of some set U x V such that U E 
f”(O) and V E f-l(l) for a monotone Boolean function 
f in C(A) variables. For U c f” (0) and V C f-’ (1) we 
have a3(TLmon(f)) 2 &Tnaon(U, V)), thus by Lemma 
3.2 and Theorem 3.4 we get mSPF(f) 2 7+3(A). 0 

The rzr@*gn) lower bound on monotone formula size in 
[Ra] is based on a superpolynomial separation between the 
rank and the cover number of the following matrix. 

Let Disjr denote the (R, < t)-disjointness matrix, such 
that the rows and columns of Dis$ are indexed by subsets 
of size at most t of an n element set, and Disjr (2, y) = 1 
if and only if t rl y = 0. Razborov [Ra] proved that for 
t = @(log a) we get C(Disjp) = O(n) but rk3(Dis$) = 

nn(‘@gn) for any field T. Razborov [Ra] also showed that 
one can obtain covers of Disj; fort = O(logn) by O(n) 
monochromatic rectangles from random bipartite graphs and 
Paley graphs can be used to obtain explicit monochromatic 
covers of size O(n). 

Given any explicit monochromatic cover of size O(n) of 
Sisjr fort = @(log n), we consider the monotoneBoolean 
function provided by Lemma 2.3. Our characterization of 
span program size in Theorem 3.4 together with Lemma 3.2 
immediately implies nn(logn) lower bounds for the mono- 
tone span program complexity of these explicit Boolean func- 
tions over arbitrary fields (see the proof of Theorem 4.1). 

We describe in more details the functions to which the 
above lower bounds apply in the next section. 

4.2 A sufficient condition for proving Iower bounds on 
monotone span program size 

In this section we identify a property of bipartite graphs that 
is sufficient for constructing functions with large monotone 
span program complexity. 

We will need bipartite graphs on vertex set V = VI U VZ 
which satisfy the property that whenever lsvl, IV2 G VI are 
disjoint subsets of at most k vertices each, then there is a 
vertex 2, E 172 which is joined to every vertex in I$$ and is 
not joined to any vertex in I&. For appropriate values of 
k, this is a well known property of random graphs (see for 
example in [Bo]). 

Definition 4.2 1% say that a bipartite graph on vertex set 
V = VI U Vz satisfies the isolated neighbor condition@- k 
lyfir arbitraq disjoint subsets WI, FV2 c VI of at most k 
vertices each there is a vertex w E VZ which is Q common 
neighbor of all the vertices in WI and is isolatedfrom all the 
vertices in W2. 

A set T E (0, 1)” of vectors is called an (n, k) univer- 
sal set, if for any subset of k indices S = {il, . . . , i,:} the 
projection of T on the indices in S contains all possible 2” 
configurations. Such sets of vectors with as few members as 

possible have been studied for example in [KS, SB, Al, NN]. 
It is clear that bipartite graphs such that the columns of their 
adjacency matrix form an (n, 21;) universal set of vectors sat- 
isfy the isolated neighbor condition for b. On the other hand, 
the columns of the adjacency matrix of bipartite graphs sat- 
isfying the isolated neighbor condition for k form an (n, I:) 
universal set of vectors. 

A bipartite Paley graph is defined on vertex sets Vi = 
5. = GF(p) for p odd prime, and two vertices x E l/l 
and y E 15 are joined by an edge if and only if 3: + y is n 
quadratic residue modp. The results of [GS, BT] (see also 
in [Bo]) prove that Paley graphs satisfy the isolated neighbor 
condition for It = @(log n), where 11 is the number of ver- 
tices. An analysis for the bipartite case is given for esample 
in [AGHP]. Also, all the constructions of almost k-wise in- 
dependent random variables in [AGHP, NN] yield bipartite 
graphs satisfying the condition for k = @(log n), 

We use the following notation. Let G be a bipartite graph 
on vertex set V = Vj. U V2, where Ifil = ]VZ~ = n. For a 
set W C_ VI we denote by I’(W) the set of all of its common 
neighbors in VZ, and by f(w) the set of all the common 
non-neighbors of W, that is all the vertices in 1% that are 
not connected to any vertex in W. For our purposes we let 
I’(0) = f(0) = V2. For a set T C V we denote by 5? its 
complement with respect to V, thatis ? = V \ T. We use 
the notation T = {p : T E 7). 

A minterm of a monotone Boolean function is a minimal 
set of its variables such that on any input that assigns 1 to 
each variable in the set the value of the function must be 1 
regardless of the values assigned to the other variables. Sim- 
ilarly, a maxterm of a monotone Boolean function is a mini- 
mal set of its variables such that on any input that assigns 0 
to each variable in the set the value of the function must be 0 
regardless of the values assigned to the other variables. 

We will construct monotone Boolean functions from bi- 
partite graphs the following way. Let G be a bipartite graph 
on vertex set V = v,Uv,,whereIV~I=I~~l=n. 

Definition 4.3 Let fG,t be the function on 2n variables, de- 
fined such that the set of minterms of fG,t consist of all the 
sets W U I’(W), where W is a subset of size at most t of VI. 

We note that our definition of fG,t gives the duals of 
the functions considered in [Ra] for given G, and a simi- 
lar definition of Boolean functions constructed from bipartite 
graphs has also been used in [B+, BGW]. 

Let %G,t := {W U I’(W) : W c 1’1, IWl 5 t} and 
%,t := {IiF’ u f(w) : !I7 E 15, IlfVl < t). With this 
notation, the set of minterms of fG,t is exactly the set 310~ 
by the definition of fG,f. The next lemma shows that under 
certain conditions the members of TG,t contain mayterms of 
fG,t* 

Lemma 4.4 Let G be a bipartite graph on verteS set V = 
VI U VZ satisfying the isolated neighbor conditionfor t. Then 
each set in the family TG,t contains a maxterm of the frmc- 
tion fG,t. That is for T E ‘i&t and input ,Y, if T E: .T 
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then fqt (X) = 0 regardless of the value of the other input 
variables, 

Proof: It is enough to show that for every pair T E ??G,t and 
H E 31a,t we have T I-I H # 0. 

Consider arbitrary T E TG,t and H E %!G,t, say T = 
WTU@VT) andH = WHUI~(WH). Weneed toshowthat 
if WT n WJ~ = 0 then I fl II # 0, which directly 
follows from the conditions of the lemma, since IWTI and 
IWttl areat most& 0 

The following simple lemma is the basis of both of our 
different proofs of Theorem 4.7 and it was implicitly used 
also in Razborov’s argument to prove C(Disjt”) = O(a) 
Wale 

Lemma 4.5 Let G be a bipartite graph on vertex set V = 
VI hl V2 satisfying the isolated neighbor conditionfor t. Then 
for T = WT U I’( WT) E 7~,t and H = WH U I’(WH) E 
31a,t we have 

Proof: We have alretdy proved in Lemma 4.4 that if 
WT n wff = 0 then II’ n I’(WH) # 0. The other 
direction follows from the definitions, since !VH x I’(WH) 
corresponds to an all 1 submatrix, and WT x I’(WT) corre- 
aponds to an all 0 submatrix in the adjacency matrix of the 
graph G. •I 

The following lemma is implicit in Razborov’s proof of 
C(Dinjjt”) = C(n) [Ra]. 

Lemma 46 [Ra] Let G be a bipartite graph on vertex set 
V F: VI U V2 sa$@ing the isolated neighbor condition for 
2, Then Rmon (7&t, %G,t) gives a cover of the (n, 5 t)- 
disjointness matrix Disjp by monochromatic rectangles. 

For completeness we include a proof based on the argu- 
ments of [Ra], 
Proof: First recall that %G,t E f;,:(l) and $$,t C &i(O), 
and the 2n variables of fG,t correspond to the vertices 21 E 
Vl u I$!, Thus R,,, (TG,t, %G,t) COnSiStS Of 2n re&UIgleS 
R, forv E VI UVZ. 

Next note that the sets H E %G,t and r? E %,t are in l-l 
correspondence with the subsets (WH and WT respectively) 
of 5izc at most t of VI. 

A pair p E $&,t and H E %G,t belongs to l& if and 
only if TV E T n H. By Lcmma 4.5 each pair T E TG,t 
and H E %a,t intersects either in a vertex 21 E VI or in 

a vertex 21 E V2, In the first case the corresponding entry 
DiOj,“(wT, wrr) = 0 and in the second case 
DiOjr(wT, WH) = 1. Thus for 2) E VI the rectangle &, 
will be O-monochromatic and for 2) E V2 the rectangle R, 
will be Lmonochromatic in Disjr. t3 

Now we are ready to present a sufficient condition for 
constructing functions with large monotone span program 
complexity. 

Theorem 4.7 Let G be a bipartite graph on vertex set V = 
VrUv2 with IKl= IV21 = n sati.@ying the isolatedneighbor 
conditionfort = @(log n). Then 

msPF(fG$) = n’(‘ogn) 

over anyfield 3. 

Proof: To prove the lower bound we use our characterization 
of span program size in Theorem 3.4. First we note that for 
U 2 f”(0) and V C f-l(l) we have 

thus 
mSPF(fG,t) 2 Q&&on (%I$, 31~~)). 

By Lemma 4.6 we have rhr((Disjp)R) = 1 for 
R E 72,,, (T;;,t, 31~~). By Lemma 3.2 this implies that 

ms&(fG,t) 1 r&(Disjr) = n@(‘ogn). 

Since the number of minterms of the function is n@(l”gn) it 
is easy to see that the upper bound holds. •I 

As in [BGWJ Theorem 4.7 implies the same lower bound 
for the size ofmonotone span programs computing the clique 
function, since the clique problem is monotone complete for 
NP [SV, GSi]. Let CLIQUE,, be the function on m = (z) 
variables taking value 1 if and only if the input graph on n 
vertices contains a clique of size n/2. 

Corollary 4.8 

mSP~(CLlQUE,J = nn(“gn) 

over anyjield 3. 

4.3 Critical families of minterms 

We show that Theorem 4.7 can also be proved by applying 
the lower bound condition from [BGP]. First we state the 
criterion. 

Definition 4.9 [BGP] Let f be a monotone Boolean func- 
tion and Mj be the family of all of its mintenns. II’e say 
that a subfamily 31 C Mj is a critical family for f, ifevery 
HO E 31 contains a set D(H0) C HO, ID( > 2, such 
that the following two conditions are sarispied. 

1. The set D(H0) uniquely determines HO in the family. 
That is, no other set in the family ?-f contains D(Ho) as a 
subset. 

2. For any subset Y c D(H0) , the set 

sy = U H\Y 
Hc?f,HnY #Q 

does not contain any member of Ml. 

It is proved in [BGP] that if 31 is a critical family for f 
then mSP&f) 2 1311 over any field 3. 

We show the following sufficient condition for obtaining 
critical families. 
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Lemma 4.10 Let G be a bipartite graph on vertex set V = 
1’1 U 1%~ satis-ing the isolated neighbor conditionfor t. Then 
the family 7-l := {W u l?(W) : Iv G r~l,pvl = t}, of 
mintenns of the function fG,t is a criticalfamilyfor fG,t. 

Proof: \?‘e can take the set T,I’M, as the subset D(&), since 
we only include into the family 31 the minterms defined by 
sets of cardinality exactly t. We need to show that for every 
HO E 31 and fl # Y E 1,17~~ the set 

sy := U H\Y 
HGK,HnY#C6 

does not contain any n&terms of fG,t. This will follow if 
we show that every such set Sy is missing a maxterm. More 
precisely, we show that JT E T&t such t,hat T C S$. By 
LeTa 4.5 if Jl’H fl Y # @ then H f~ I’(Y) = 0. Thus 
Y U I’(Y) E Sir, which proves the lemma. 0 

To conclude a proof of Theorem 4.7 by applying the cri- 
terion of [BGP] it is enough to note that I%!1 = n@(“‘s”) for 
t = O(logn). 0 
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