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SUMMARY

Monotone hoolean networks are one of the most widely studied restricted
forms of combinational networks. This dissertalion examines the complexity of
such networks realising single outpul monotone booclean functlions and
develops recent results on their relation lo unrestricted networks. Two stan-
dard analylic techniques are considered: the inductive gate elimination argu-
ment, and replacement rules.

In Chapters(3) and (4) the former method is applied to obtain new lower
bounds on the monotone network complexily of threshold functions. In
Chapter(8) a complete characterisation of all replacement rules, valid when
computing some monotone boolean function, is given. The latler half of the
dissertation concentrates on the relalion betwecen the combinational and
monotone network complexity of monotone functions, and extends work of Ber-
kowitz and Wegener on “slice functions”. In Chapter(6) the concept of "pseudo-
complementation”, the replacement of instances of negated variables by mono-
tone functions, without affecting computational behaviour, is defined. Pseudo-
cormplements are shown to exist for all monctone boolean funclions and using
these a generalisalion of slice funclion is proposed. Chapler(7) examines the
slice funclions of some NP-complete predicates. For the predicates considered,
it is shown that the "canonical” slice has polynomial network complexity, and
that the "central” slice is also NP-complete. This result permits a reformulation
of the P # NF? question in terms of monolone network complexily. Finally
Chapter(8) examines the existence of gaps for the combinational and monotone
network complexily measures. A natural series of classes of monotone boolean
functions is defined and it is shown that for the "hardest” members of each
class there is no asymptotic gap between these measures.



Chapter 1

Preliminaries

In this chapter we present basic definitions and the notation which will be
used below. Readers already familiar with boolean network complexity may

ignore the first two sections of this chapter.

1.1) Boolean Functions

Let X, = {Z,.....Z, | be a set of n boolean variables. Any function
7(%.):{0.13" »{0.1} is called a single output n input boolean function. Functions
F(X.):{0,1}+{0,1}™ are called m output n input boolean functions, or simply
multiple output boolean functions.

B, will denote the set of all single output n input boolean functions. Bim

will denote the set of all m output, n input boolean functions.
Below, unless otherwise stated, "boolean function” will mean "single output
boolean function”.

Order relations, "<", "<", are defined for f,9 € B, by:

7<g <=> vae0" fla)=1=>g(a)=1
f<g <=> f<g andf#g

Let f € B,. f is monotone if and only if:
}\51) v I € Xn

f(z, 22, Tim1.0.T4q0e %) £ (12200 Zim1 1 Tis i Tp)

M, will denote the set of all n input monotone boolean functions.

Mynm the set of all m output, n input monotone boolean funclions.

A monom, m, is a monotone boolean function of the form:

m=z;, ATz A ... NIy and Ty €Xa

where n denotes boolean conjunction.

Let f € M,. A monom m is an implicant of f if m=j. mis a prime implicant
of fif:
Pll) m=<jf
PIR) v monoms m’ such that m < m*, m® is not an implicant of f.
var(m) = {z €X, | m<z |
PI(f) = {m | mis a prime implicant of [}

A clause c, is a monotone boolean function of the form:

€=z, vIVv. vz, and r; €X,

where v denotes boolean disjunction.

A clause c is an implicand of f € M, if f <c. c is a prime clause of f if and
only if:
PCl)f<c
PC2) v clauses ¢’ such that ¢’ < ¢, ¢’ is not an implicand of f.
var(c) = {z €X, |z <c}
PC(f) = {c | cis a prime clause of [}

It is well known that every f € M, may be expressed as the disjunction of its
prime implicants, called Disjunctive Normal Form (DNF), or as the conjunction

of its prime clauses, called Conjunctive Normal Form (CNF).

Let f(X,) € M,. The dual of f (f(X,)) is the monotone boolean function

defined by:

f(xn): '"f("zl ~~~~ "xn)

where "-" denotes negation.

Let f € B, and g € B, where p=n. f(X,) is a projection of g(Y) if 3 a map-

ping 0:Y={X,,,-z,.-Z;,..~Z,,0,1} such that:

F%) = g(o(yy)o(yz)..o(yp))



1.2) Hoolean Networks

Let 0 C By, A boolean -network Tis a directed acyclic graph consisting of
two disjoint sets of nodes: 1is the set of nodes having in-degree cqual to 0 (Lhe
inputs of T). Bach node of 11s associated with some x € X, or with some
~z € {~z,,..,~z, } (if negation is permitted). We shall assume that for every
x € X, there is at most one input node, associated with = and at most one input
node associated with ~z. Gis the sel of nodes having in-degree equal to 2 (the
gates of T). Fach gate g is associated with some boolean operator b € ()
(denoted by op{g) = b or g is a b-gate).

The cut-degree of a node u of Tis called the fanout of w. Nodes of T with
fanout equal to 0, are celled the outputs of T. 1 is referred Lo as the basis of T.

Below we shall make the assumption, that unless otherwise stated, any net-
worl for & boolean tunction has & unique output node L For the sake of brevity,
we shall informally 1dentify the set of variables X, with the set of network inputls
1, and thus refer Lo "the input z; of T" instead of "the input of ' associated with

z, " and to X, as the inputs of T.

A maonotone boolean nefwork, S, is a boolean N-network, with only unne-
gated inputs available, for which 1 = {~,v].

Let S be a monotone boolean network and let u be a node of S. RES (u) is

the monotone boolean function recursively defined by:

xy ifuis the input z; of S
RES(u) = £S(u,) A RES(uy) if uis an A—gale
RES(u,) v KES(up) ifuis an v-gate
where u), up are the inputs of uif uis a gate.
S realises or computes f € M, if and only if RES(t) = f for the output Lof S.
It is well known that monotone boolean networks compute exactly the class of
monotone boolean functions.

RES(0) may be analogously defined for arbitrary boolean networks. An (-

network Twill be called a combinational or unrestricled network if Q = 5,

A partial assignment 7, is an assignment of boolean constants to some sub-
set of {x;,...7, . || will denote the number of variables set by m. i f € M, fI"
will denole the monotone boolean function arising from the application of mto
the inputs of f. fl7"e My, -1n)» and is sometimes called a subfunction of f. Simi-
larly, for monolone boolean networks, SI™ will denote the network S after apply-

ing mwto the inputs of 5.

Let S be a monotone boolean network computing some f € M,. The mono-
tone dual of S, (5) is the monotone network obtained by replacing each a-gate
in S by an v-pgate and each v-gate in S by an A-gate. It may be easily verified,

frorm the definition of dual functionand De Morgan's Laws, that §compules f



1.3) Network Complexity
Let T be an Q-network.

Co(T) = | {g | g is a gate in T} |
Let f € B,

Co(f) = min {Cy( T) | Tis an Q —network realising f }
1t 1 = B, we shall write these quantities as C(T), C(f) respectively, the latter

being called the combinational complezxity of f.

If f €M, and 0 = {A,v] we shall refer to these measures as the monotone
network size of Sand the monotone network complexity of f, denoting these by
C™(S) and C™(f). Clearly for f € M,:

CU) = c=(f)
C(f1...Jm) and C®(f,,...f;») denote the corresponding quantities for (f,,...f,,) in

By
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1.4) Specific Monotone Boolcan Functions

Let X;, = {z,....z, }. The symmetric boolean functions are those functions
whose value depends only on the number of inputs which have the value 1.

The k-th threshold function (TP) is the monotone boolean function defined
by:

1 if at least k inputs have the value 1

B (X)) =

0 otherwise
The threshold function 774 ,2| is called the majority function and is

denoted MAJ, (X, ).

The threshold functions are the monotone symmetric boolean functions.

Let X9={z; | 1<i<j<n ] be a set of n(n—1)/2 boolean variables. The
n-vertex undirected graph G(XY) is defined as having an edge between vertices i

andj if and only if z;; = 1.

A k-cligue is a complete graph on k vertices. A graph (undirected or
directed) has a hamiltonian circuit if there is a simple cycle which contains

every vertex.

1 if G(XP) contains an (n/2)-cligue
(n/R)-cligue (X) =
0 otherwise

Let XP={z; | 1<si<j=n ] be a set of n(n—-1) boolean variables with an
n-vertex directed graph G(XP), defined analogously.
1 if G(XP) contains a directed hamiltonian circuit

DHC(XD) =
0 otheruwise

UHC(XP) is defined similarly for the Undirected Hamiltonian Circuit predi-

cate.



1.5) Notation

Let G be an n-verlex graph.

VIG) = Set of vertices in G

1(G) = Set of edges in G

For further graph-theorelic definitions see Berge[2] or Even[11]

Let f.g:N-R*

G1) f(n) = O(g(n))if 2 constants ¢ K > 0 such that:

Jn)

Mg (n))if 2 constants ¢ & > 0 such that:

i

Ge) s(n)

=

cgn) vnzk

fn)ezcgn) vnzK

i

G3) f(n) = O(g (n))if:

fn) = 0g(n)) end f(n) = Ng(n))

o
=
S~
—

o
—

[

= o(g(n))if:

G5) J(n) = olg(m))il:

lim

e

lim

T oees

< f -

Chapter 2

2.1) Introduction

In recent years the study of the complexity of realising boolean functions
by boolean networks has been an increasingly active research area. Such net-
works have been shown Lo be a reasonable model of computation by Fischer and
Pippenger [14], who demonstrated that any function computable by a deter-
ministic Turing machine in 7T steps, could be realised by a boolean network con-
taining O( 7' logT ) gates.}).

In 1649, Shannon [45], proved that all but a vanishingly small fracticn of
the 22" boolean functions in £, have combinational complexity (I(2*/n ). How-
ever, litlle is known aboutl the difficulty of realising specific boolean functions.
For networks which allow any of the 16 functions in B; as gate operations, the
best known lower bounds on explicitly defined functions, are linear. The largest
of these are the bounds of 2.5n by Paul [38] and 3n by Blum [7]. both the func-
tions used involving a concept of indirect addressing. Lower bounds of 2.5n for
various symmetric functions have been derived by Stockmeyer.[46].

The difficulty of determining the cornplexity of unrestricted networks for
specific boolean functions has led to the consideration of restricted forms of
boolean nelwork, in the hope that these may prove more amenable Lo analysis.
With respect to combinational networks the aims of such rmodels are twofold: to
gain insight into proof techniques for arbitrary boolean networks via lower
bound techniques for the restricted model; and to determine if such models
may efficiently simulate unrestricted networks. One such special model, the

monotone networks, will be the main object of study in this dissertalion. Before

Y Al logerithms in this dissertation ere to the base 2
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considering the monotone network model in more detail, we shall briefly survey
some of the other forms of boolean network which have been examined in the

literature.

2.2) Restricted Forms Of Boolean Networks

2.2.1) Formulas

Formulas are boolean networks in which gate nodes have fanout at most
one. The measure of complexity is taken to be the number of gates employed,
(or sometimes the total fanout from the input nodes, which is precisely one
more). A number of general lower bound techniques have been derived for this
cese. The methods of Khrapchenko [19] apply only to the basis {A,v,-} and yield
lower bounds of Q(n?) for the n-input parity functions, (i.e. those boolean func-
tions whose result is determined by whether the number of inputs with value 1
is odd or even). These functions require only n—1 gates in formulas with basis
B, . Neciporuk [33] developed methods yielding lower bounds of Q(n?/logn) on
the size of unrestricted formulas, by considering the number of distinct sub-
functions of a boolean function f € B,. Hodes and Specker [17] and Fischer,
Meyer and Paterson [13)] have also derived bounding methods for arbitrary for-
mulas, by showing that boolean functions with "small" (e.g linear) formula size
must satisfy certain conditions. The arguments of Hodes/Specker lead to
Q(n log ‘n) lower bounds. Those of Fischer, Meyer and Paterson yield lower
bounds of O(n log n). For some symmetric functions, such as T for fixed k, the
methods of Hodes/Specker have recently been sharpened by Pudlak [39] to give
lower bounds of (}(n log log n).

Despite the closeness of asymptotic bounds for "almost all" formulas Lo
similar bounds for networks, formulas have complexity (2" / (log n)) {40].[26].

networks G(2"/n) [45], [R4]. it is not known if formulas can efficiently simulate

-10_

combinational networks. Paul [38] has constructed functions for which an
almost quadratic gap between formula and network size is provable. The best
known simulations of networks by formulas give exponential increases in size.

(Paterson and Valiant [34]).

2.2.2) Planar Networks

For planar networks the underlying undirected graph is required to be
planar, the complexity of such a network being the number of gates it contains.
An interesting feature of this model is that it may be related to the Thompson,
Brent/Kung model of VLSI chip complexity [47], [8] as shown by Savage [41]. The
known lower bound methods combine information flow arguments with the
planar separator construction of Lipton & Tarjan [22]. In this way lower bounds
of (n?) on boolean convolution [23] and matrix multiplication [41] have been
obtained. These results do not translate into lower bounds on combinational
networks, as the best known simulations require a quadratic increase in the
number of gates used. McColl [27] has recently derived tight asymptotic lower

bounds on the planar network complexity of “almost all” boolean functions.

2.2.3) Bounded-Depth Networks

In this model arbitrary fan-in A-gates and v-gates are available as gate
operations and negation may be applied to the network inputs only. The length
of any path from an input node to the output gate is bounded above by some
constant k.2) The complexity of a depth-k network is defined to be the total
number of wires used. Such networks were introduced by Lupanov [25] as a gen-
eralisation of Conjunctive and Disjunctive Normal Form. Lupanov proved

asymptotic upper and lower bounds for the depth-k complexity of "almost all”

2) An alternative mode), in which arbitrary boolean functions are available as gate opera-
tions, has been considered by Chandra, Fortune and Lipton [8] for multiple-output funec-
tions. Slowly growing non-lineer lower bounds are obtained for certain prefix computa-
tions.



-11 -

boolean functions. There has been considerable recent inlerest in this model,
arising from the result of Fursl, Saxe and Sipser [16] that parily functions can-
not be realised by polynormial size bounded depth nelworks. Fagin, Klawe, Pip-
penger & Stockmeyer have extended this result by characterising those sym-
metric functions which require superpolynomial depth-k network size [12].
Although these results do not translate into techniques for proving lower
bounds on combinational nelwork size, [16] shows that sufficiently large lower
bounds in this model lead to important results concerning the separation of
complexity classes. Program Logic Arrays (PLAs) are a method of implementing
arbitrary boolean functions in VLSI chips (see [30] for details). [18] also states
thet this model has immplications for the size of PLA's realising certain boolean

functions.

Each of the network models described above employs some graph-theoretic
restriction in altempting to account for the complexily of specific boolean
functions. All of them are functlionally complete, in the sense that all boolean
functions are realisable in any of these models. Monotone networks, since they
compute exaclly the class of monotone boolean functions, clearly do not have
this property. Despite this there are several reasons for considering this res-
triction. Many computationally interesting functions are actually monotone or
have incarnations as monotone functlions, examples of the latter being Mualtipli-
cation since a special case of this is boolean Convolution, which is monotone.
For other monotone alpgebraic computations, strong lower bound techniques
have been derived yielding exponential lower bounds on specific functions
(Schnorr [44), Jerrum & Snir [18], Lingas [21]). Finally, it has recently been
shown that sufficiently large superlinear lower bounds on the monotone net-
work complexity of certain classes of function, imply superlinear lower bounds

on combinational network size [3]. We shall return to this last point below. We

note thal restricted monotone networks of the forms described above are also
definable. In particular exponential lower bounds for the depth-3 monotone
complexity of n/2-cligue have been oblained by Valiant [61) and for the
majority function by Yao [58). For the planar network model McColl has shown
that certain monolone functions cannot be realised by networks which are

both rnonotone and planar.[28]

In the following section we shall describe some of the known lower bounds

on monotone network complexity and discuss the proof techniques applicd.

2.3) Monotone Network Complexity

Although the techniques of Schnorr [44] for analysing the complexity of
monotone arithmetic computation are not known to apply to monotone boolean
networks (cf Wegener [53]), a number of strong lower bounds have been derived
for several computationally inleresting multiple output functions. Lamagna
[20]} proved lower bounds of ((n log n) for sorting, merging and boolean convo-
lution. Paterson [36) and Mehlhorn & Galil [32] obtained N(n%?) lower bounds
on NxNxN matrix multiplication (where n = N*®). Paterson further demon-
strated that there is essentially only one optimal monotone network structure
for this function, namely to use N¥ an-pates, each computing one prime impli-
cant of one output function, and N3-N? v-gates Lo collect Lhe appropriate
prime implicants for each specific output. Superlinear lower bounds have also
been obtained for certain sets of boolean sums (((n3/2) Wegener [54], Q(n5/3)
Mehlhorn [31]). The ((n log n) lower bound on boolean convolution has been
improved by Blum [6] (((n*/3) on the number of A-gates) and Weiss [87] ((N(n¥/?)
on the number of v-gates). To date, the largest lower bound is thal of
N(n?/(log n)) due to Wegener, for a generalisalion of malrix product [55].

Common to many of the proof techniques employed is the concept of

applying some “replacement rule" in combination with an inductive argument,
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e.g [36].[32).[31).[54].[65].[57).

The basic form of the inductive argument is easily stated. Suppose that
{f‘-lw..J% ..... { is an infinite family of monotone boolean functions, f;, € M; . To
prove a lower bound of I(n) on the size of monotone networks computing f, one
proceeds by first showing that C=(f; )= l(1,) (Inductive base), and then under
the assumption that C‘“(jg)zl(ij) for all i; <, proving that for every optimal
monotone boolean network, S, computing f,, there exists some partial assign-

ment 7 with the properties that:
al) fi" = fy and 4, <n
a2) S!¥contains g fewer gates than S.

(Under the application of m to the inputs of S, some gates become redun-

dant because, for example, they have constant functions as inputs.)
Now if 1(1) + g =1(n) the desired lower bound follows by induction on n.

The strength of this form of argument is limited in two ways. Clearly to
prove even modest linear lower bounds it must be proved that enough gates may
be eliminated, and this quantity is determined by the partial assignment used.
Frequently the choice of partial assignment is limited by the need to project
onto a smaller instance in the family, e.g for 7f with k fixed, only partial
assignments which set inputs to 0 are applicable. Where this method has been
applied to combinational networks, sophisticated arguments have been
employed to remove the cases where insufficient gates can be directly elim-
inated. Thus, often it happens that the inductive step cannot be made without
some knowledge of the structure of optimal networks. Replacement rules intro-
duced by Paterson [36] and Mehlhorn & Galil [32], are one method of gleaning

such information. A replacement rule for f € M,, is a rule of the form:

In any monotone network realising f, any node computing the function g

= 14 =

may be replaced by a node computing the function A, and the resulting

network will still compute f.

Now, if one wishes to show that an optimal monotone network for f, does
not contain any node cdmputing some function g, it is sufficient to show that g
may be replaced by a constant function or by an input of f. Applications in this
“pure" form are not always possible, but by assuming that some functions are
available as additional network inputs, similar deductions may be made. Such

an approach has been used by Wegener in [54], [65].

The complexity of monotone networks realising single output functions
has not been widely examined. The largest lower bound known is that of 4n for
the function, (z A T) v Tp_,, by Tiekenheinrich [4B8]. In Chapter(3), below, we
shall prove a new lower bound on 7@ for fixed k, and in Chapter(4) slightly
improve the lower bound on the majority function to 3.5n. This compares with
an upper bound of O(n log n) by Ajtai, Komlos and Szemeredi [1]. Before detail-
ing the organisation of the remainder of this dissertation we shall briefly

return to the relation between combinational and monotone complexity.

Let f € M,,. Define the k -slice of f to be the function f;:
fo = FATE)v TPy

Clearly f, is the function which has value 0 when fewer than k inputs have
the value 1, which equals f when exactly k inputs are true, and which has the
value 1 when more than k inputs are 1. Berkowitz [3] showed that a combina-
tional network for f may be efficiently constructed from combinational net-
works realising the n k-slice functions of f (1 €k <n) and further proved that
for a k -slice, f;, the combinational and monotone complexities of f; differed by
at most an additive term of O(n 2log n) (subsequently improved to O(n log?n)
[52]). These results lead to the conclusion that a monotone boolean function f

has "large" combinational complexity if and only if some k-slice has "large”



monotone network complexity, These results are stated formally in Chapter(8)

below and in [56].

2.4) Thesis Organisation

The work below divides into two main sections. The first, consisting of
Chapters (3), (4) and (9) concentrates on the complexity of mmonotone networks
for threshold functions and examines replacement rules in greater detail. The
second part, conlaining chapters (7) and (B), develops the work of Berkowitz
and Yegener [51] on slice functions. Chapler(6) gives some results linking these

two parts. In Chapter(9) we present conclusions and some open questions.

2.4.1) Chapter 3

¥We consider the function 70, and prove that any monotone network com-
puting this contains at least 2.6n 5.5 gates. This improves the previous lower
bound of 2n =3 and implies similar lower bounds for all threshold functions, 77,
with 3<k £n -2 The proof is in two stages: the first an inductive argument;
the second a wire counting process. This second part is used to establish the
lower bound for the single case where it is not possible to eliminate sufficient

pates directly using partial assignments.

2.4.2) Chapler 4
We prove a general lower bound on the monotone network complexity of 77
which is of the form:
C™{Tp) = p(n k)
Where g(n k)1s a piecewise-linear function depending onn and & .
This is used Lo deduce lower bounds of 3.5n for the n-inpul majority func-
tion and of (247, )n for T}, where:k <n /2, k =0(n)andr, > 1/2isaconstant

depending on k. The argument employed is a generalisation of the standard
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inductive gate elimination method. Applying any partial assignment to a thres-
hold function yields another threshold function, on fewer variables. We define a
concepl of the "distance” of a threshold function from /MAJ, and use this to
describe the effect of any partial assignment n on a monotone network S com-
puling 79, in terms of: the distance of (7#)!" the number of inputs of S set to
constants by mand the number of gates eliminable frorm Sby applying m. We call
these three values the descriptor of w. A reduction (), is a set of pairs of
descripltors with the following properties:

1) v monotone networks S computing 77, 3 (d,.d,) in K such that partial

assignments, mand 7, applicable to S can be found with:
descriptor () = d, and descriplor (1) = d,
R2)
distance (((79)17) + distance ( (Tp)1") = 2 distance ( T3 )

By analysing how general reductions relate to the network size and by
demonstrating the correctness of a specific reduction, ve derive the lower
bounds stated. The lower bounds are obtained entirely by an inductive argu-
ment, there are no “special cases” to consider, as in Chapter(3), and the
approach used permits a modicum of freedom in the choice of partial assign-

ment.

2.4.3) Chaptler 5
Ye characlerise all replacement rules of the form:
“g isreplaceable by h in monotone networks computing f."”
This characterisation is performed in two stages:

a) We determine the widest range of monotone boolean functions [h.h;]

depending on f and g such that:

g isreplaceable by h when computing f if and only if:
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h,<h < h,
b) Similarly we determine the widest range of monotone boolean functions

[g,.92] depending on f and h such that:
g is replaceable by h when computing f if and only if:
g1 =9 =92
For (b) the special cases when h is a constant function are examined. These

results are applied in reproving a number of specific replacement rules.

2.4.4) Chapter 6

Berkowitz proved that for any k-slice, fi (X;). in any {A,v,-}-network com-
puting fi having negation restricted to the inputs, all instances of -~z; could be
replaced by 77 !'(X,-z;) and the resulting network would still compute f;.
{A,v,~}-networks, which can compute any boolean function, can be converted
to networks in which only inputs are negated by applying De Morgan's Laws.

Such networks are at most a constant factor larger than optimal networks.

We prove that for every f € M, there exists for each z; , a monotone boolean
function h; depending on f and z;, such that h; may replace any instance of
-z; in Q-networks of the form above, computing f. We call such replacing funec-
tions ‘pseudo-complements” and for any given f, z; determine the unique
interval in which these must lie. Unfortunately, these results do not appear, in
general, to yield an efficient simulation of combinational networks by mono-
tone networks. We give an alternative proof of Berkowitz' result (cf Wegener [58])
and introduce a generalisation of slice functions obtaining similar, slightly

weaker, translational results for these.

2.4.5) Chapter 7

This chapter considers the slice functions of some monotone boolean NP-

complete predicates. The predicates examined have a special slice called the
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canonical slice which appears to be the most natural candidate for a "hard"”
slice function. However, Wegener has shown that the canonical slice of the
(n/R2)—cligue function is computable by a linear-sized monotone network. We
develop this result, showing that the canonical slices of Undirected Hamil-
tonian Circuit and related predicates (Directed Hamiltonian Circuit, Per-
manent) are computable by polynomial size monotone networks. In addition, we
prove that if the canonical slice of a function has polynomial complexity then
all slice functions "within a constant distance"” may be realised by polynomial
size monotone networks.

In the second section of this chapter the notion of central slice functions
is defined. We consider the central slices of (n/2)—cligue and DHC and show
that if these slices are realisable by polynomial size monotone networks then
the associated NP-complete predicates are computable by polynomial size com-
binational networks. The proofs involve a “padding argument” which demon-
strates that all slices of these predicates may be computed by projecting from
the central slice functions of slightly larger problem instances. These results
effectively establish that the central slice of these and related functions is

NP-hard.

2.4.6) Chapter B

The results of Berkowitz do not preclude the possibility that some mono-
tone function f with large monotone complexity may be efficiently realisable by
a combinational network: f may have large monotone network complexity but
only easy slice functions. As we observed above, the construction of Chapter(6)
appears to do little to remove this possibility. In this chapter we define, for
each positive integer 7, a natural class g, ,) of monotone boolean functions. A
standard counting argument shows that “almost all* members of &g ,) have

superlinear combinational complexity. It is proved that for the "hardest”
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members of cach class, there is no asymptotic gap between combinational and
monotone network complexity. In addition we obtain the stronger result that
this relation holds for all members of the class @ ). These results are
developed by extending them to multiple output functions and to broader

classes of monotone boolean functions.

- 20 -

Chapter 3

A Lower Bound On 717

3.1) Introduction

In this chapter the following resull is proved:

Co(Ip (X, ))=n26n ~-55 forn=k and 3<k <n-2 (3a)
ILis sufficient to consider only the case k = 3, since for4 <k <n/2 it will be
clear that the same proof is applicable, and forn/2 <k <n -2, the relation:
= Nan

establishes the result by duality.

In this section we shall outline the proof technique employed.

In common with previous lower bounds on the combinatianal complexity of
functions in 4, the melhods used combine an inductive analysis of optimal
monotone networks with a counting arpument (cf Paul [38], Blum [7]). The
inductive stage consists of selecting an arbitrary network input, x; say, and
proceeds by a case analysis on the fanout of this input and the type of gates it
enlers. By setting z; equal to 0 il is possible to eliminate 3 gates, except when
z; enlers exaclly 2 v-gates. Since the resulting network computes 73 ™! of
X, —{z; | thisis (more than) sufficient to prove the lower bound for these cases.
However, because the analysis applies to any nelwork input, i.e. not only those
which enter gates al a maximal distance from the output node, it follows that
the only network structures from which sufficient gates cannot be directly
eliminated are those in which every network input enters exactly 2 v-gates.
After showing that one special case of this can be handled inductively, we estab-
lish some properties of networks of this type which compute TP and deduce the

lower bound via a wire counting argument. In the style of Paul [38] this
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argument reasons about the existence of gates which may be quite distant from

the network inputs. The technique is however different from Paul.

As observed above (Chapter 2, Section 2.3), for the inductive stage only par-
tial assignments which set inputs to 0 are useable. To prove similar or larger
bounds by setting an input to 1 would require at least n/2 gates to be elim-
inated. The functions analysed by Blum and Paul and the Congruence functions
of Stockmeyer [46] are not constrained in this way.

The remainder of this chapter is organised as follows. In Section(3.2) a new
replacement rule, for monotone networks computing T, is proved. This rule
will be used in the inductive analysis to deal with the case where some input has
fanout equal to 1. Section(3.3) gives the first part of the lower bound proof con-

sisting of the inductive stage and a preliminary wire counting argument which
is sufficient to prove a lower bound of 2 é—n on T#. In Section(3.4) this wire

counting argument is improved to yield a lower bound of 2.5n. In Section(3.5)
an upper bound of kn on the monotone network complexity of 77, for fixed k, is

derived.

-po-
3.2) Preliminary Results

Lemma 3.1

Let Sbe an optimal monotone network computing 77 (X,,) at some node t. S

does not contain any gate g for which:

TP, < RES(g) v1<k,<k andk =2

Proof
Suppose Scontains a gate g such that:
¢, < RES(g)
for some k,; as above.
Ye shall show that Sis not optimal.
Let Sdenote the monotone dual network of S This network computes

Th s +1. Let RES(g) be the dual function of RES(g) computed in §. Clearly:

RES(g) < TPk u
By a result of Mehlhorn and Galil [32], (see Chapter(5), Fact(5.1) below), g in Sis
replaceable by the constant 0. Thus, by duality, g in Sis replaceable by the

constant 1.1t follows that Swas not optimal.
o

Lemma 3.2

There is an optimal monotone network S computing T#, such that every

input z; of Swhich has fan-out equal to 1, enters an A-gate.

Proof
We show how to restructure Sto a network S° satisfying the lemma.

Let z; be an input of Shaving fan-out equal to 1 and entering an v-gate g

whose other input is some function f. Observe that:
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For suppose {x, ..., {isa subset of X, such that the monom formed by n-ing
the variables in Lhis set is an implicant of f. The partial assignment:

Ty = 1 visjsk-1

leaves Sindependent of z;, but under this assignment Sshould compute
k-1

TPoE (X, —j%}llrlv};), which depends on z; . This contradiction establishes every
prime implicant of f is an implicant of 7.

But now, since g # t, Scan be restructured as follows:
1)  Replace gate g in Sby the input z; .
2)  Add one v-pate to Swith inputs f and the outputof t
Clearly the new network contains no more gates than 5, and compultes . ltg
has only a single v-gale as successor then the steps above may be repeated.
Eventually the fan-out of z; must increase or xy must enler an n-pate. As the
fan-out of other Inputs is not affected, this process may be applied repeatedly
until the lernma is true for all inputs.

Lemma 3.3
Let Sbe any monolone nelwork which computes 77 (wheren > k ). Let x;
be any input of Swhich enters exactly 2 v-gates, whose other inputs are f,. fo.

v 7T 2srsk~—]

If 3 monom m, over X;, = {z; | such thal:

wy € fyon TR = ()

Then notd any monom mg over X, - {z; { such thal:

mp = .fL’ s T8, (X,, o 12‘ i)

Proof

Suppose m, and m, are two such monoms. The partial assignment
z; =1 vz; €var(m,) | var(mp) leaves Sindependent of z; . But under the

assignment Sshould compute 7779 (X, - var (1) — var (mg)) (where

g = |var (m,) U var (m,) |) and this depends on z; since ¢ <k —1. Contradiction.

123
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3.3)AR é—n—l,ower Bound on T

Theorem 3.1

Cm (T (X)) = 25n -5

Proof

We proceed by induction on n=3

Base n=3

Obvious

Inductive Step
Assume the theorem is true for all values <n and prove it holds forn.

Let Sbe an optimal monotone network computing 7§ (X,) at a unique node
t. Select some input z; of S. It will be shown that by setting z; =0, 3 gates may be
eliminated, except when z; enters exactly 2 v—gates. We proceed by a case
analysis on the fan-out of z; . It is assumed that Shas been subjected to the
process of Lemma(3.2) and thus any input having fan-out equal to 1 enters an

~r-gate in S.

Case 1 fanout(z; }=3
Setting z; =0 eliminates at least 3 gates. The resulting network S* com-

putes T3 (X, —{z; }). By the inductive hypothesis:
Cm(Tp) = Co(S) = 3+ Co( T3 ) > 2%-71 -5

Case 2 fanout(z; )=1
z, enters some A-gate, g say. Let h be the gate which supplies the other

input of g. It is easy to see that:

- 286 -
al) g #t
aR) TE~'(X,—lz}) < RES(h)
Setting z; =0 eliminates g and its (by (al)) successor. The resulting network
computes T§ 1 (X, -{z; }). but still contains gate h, with
T3V (X, ~{z;]) < RES(h). From Lemma(3.1) the gate A may be replaced by 1 in
this network. Thus setting z; = 0 eliminates 3 gates.
Case 3 fanout(z; )=2

3.1) z; enters at least one n—gate.

Ji e T2

Figure 3.1

If z; isset to 0, the gates g, .9, and all the successors of the A—gate may
be eliminated. The A—gate must have at least one successor as it cannot be

the output gate.

3.2) z; enters 2 v—gates

N @ T2

Figure 3.2

Therefore the only case for which insufficient gates can be eliminated

directly by setting an input to 0, is when every input, z; , enters exactly 2



Lo

AR)

-7 -

v-gates.

)
438

Figure 3.3

Suppose Sis a network for which the induetive step fails. If g 15 a gate
both of whose inputs are variables (Fig(3.3)), then g has fanout exactly 1
and enters an v-gate Forif g, hasfan-oul>1 or enters an A-gale, then at
least b gales may be eliminated by selting z; =x; =0. This would be suffi-
cient to prove the result.

To summarise il may now be assurmned that:

Ivery network input enters exactly 2 v-gales, 9,.92

From Lemma(3.3): for at most one of the functions f,.fz which enter these
gatesisit true Lthat:

There exists z, such that z, <f; (i=1 or 2)

If g, hasinputs z; and x; then g, hasonly one immediate successor and

thisis an v-gate,

For any 7§ netwerk which is not of this form sufficient gales can be eliminated

to apply the inductive argument.

The lower bound for the remaining case is derived by a wire counting argu-

ment Lel:

OUT(Q) = |{ The set of wires out of a set of nodes Q]|

H

T fv-gates g | RES(y) =z vf, z; is aninpul of g
and 3 z; ¥z such that z; < f |

R = {v-gates g |z, is an input of g, g § T}
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7y = {v—gates geT | x; z; are inputs of g |

T, = T-T,

M = {v-gates g | g is the unigque successor of some hely, g § T,
U = {v-gates g €T, | g is the unique successor of some heT, ]

E=lglo¢T URUM]

We can observe Lhe following:

B1) OUT(X,) = 2n (By analysis above).

B2) OUT(R)= || (By optimality of S).

B3) OUT(T)= | T| (By optimality of S).

B4) OQUT(T,) = |T,| = |U| + | M| (By (A3))).

B5) OUT(E)= || (By (AR), as each gate in £ must have one input from a gate
notin R 1 T U M).

BG) 2|7, | + |Te] + |R| = OUT(X,)

B?7) |7y + |T2] = |T| (Bydetinition).

BB8) OUT(M) = | M| (By optimality).

Now, it is clear that for any network S

C™(S) = 1/2 OUT (X, UG)

The analysis above and (B1)-(B8) are sufficient to cstablish a lower bound

i . ; ; . .
of 27.;11 for 7}. To avoid unnecessary repetition, this derivation is given only

for the improved bound of Theorem(3.2), below.

121

To prove 2.5n we improve the lower bound given by (B2).

1) (84) holds as cuch gate in U has only one input from & gate in T, Although a gatein M
mey have two inputs from getes in I'y, since I'y getes have fanout =1, by (A3), S mey be
restructured in this case so that esch gete in M has only one input from & Ty gate.
(Fip(3.4))
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Restructures to:

91€T).,92€U ,gs€T,

Figure 3.4
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3.4) An Improved Wire Counling Argument
In this section the relation (B2) above, is improved by showing that:
OUT(R) = |R| + |U|
As will be demonstrated below, this and the previous analysis will establish

a lower bound of 2.5n-5.50n T§.

Definition 3.1

Let Scompute T§. A U-configuration is a subnetwork a of S consisting of 5

gates {g; .9; .9x .94 .95} arranged as below: (Figure(3.5)).

Figure 3.5

Lemma 3.4
Let P={i j .k} and let Sbe an optimal monotone network computing 7§. S
may be restructured to a monotone network S° which is no larger than S, com-
putes T§ and satisfies:
(*) For each U-configuration in S°, there exists some p € P such that every
path from g, to an a-gate splits, i.e there exists a gate u on a path from g,

to an ~n-gate h such that fan-out(u)>1.
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Proof

Suppose S does not satisfy the lemma. Let « be any U-configuration for
which (*) is false.

Let Ay, hj, hy be the first n-gate encountered on paths from g; V95 9k -
(Note that there can only be one "first” A-gate on each path as no path splits).
All the gates on the paths [g, h, ) are v-gates. Let /i, F} , F; be the function
v-ed with z;, 7; , 7, on these paths. Let B;, B;, B, be the function fed to the

other input of hy , hy, hy , so that RES(h, ) = B, » (F

>V Ip )

We perform one modification.

C) Il z,<B, then compute (z, v F, ) A B, by using one A-gate to compute
Fp, A B, and v theresult with z, . h, and g, can then be eliminated.
(Fig(3.8))

Thus we may assume that:

vpelijk] z, £ 5,

We now prove three properties of this subnetwork.

Property 1

hi, h;j and h; aredistinct.

Proof

Suppose, wlog, that h; =h;,sothat 5; =x; v F; and B; =z; v F;.Consider
the assignment z, =1. By arguments similar to the proof of Lemma(3.3) it is
easytoseethatz,z)$ F;, v F vz X, —{z .z; }. Thus slee =1 depends on z; .z;
only via h; . This implies that all gates whose result depends on z, , other than
those on the path [g, ,h, ) are descendants of h; (p =14 o7 7). But:

RES(hy)=(z; v F; )a(z; v )

and the only prime implicants of this function involving z; or z; have the form

lzp =1
I;Zj OF T;T,Xy Or T;T,x, where p#q.ThereforeS cannot compute
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78V (X, —{xy ) and this contradiclion establishes Lhe properly.

Property 2
Let g be a gate of Ssuch that:
bl) z.z;z, < RES(g)
b2) v €lighk]y isnotadescendant of any gate on a path [g, h, 1.

Then:xz, v x; v, =RES(g)

Proof
All such gates are descendants of g5 . Partition these descendants into sels
according Lo their distance from g, , e.g. By breadth-first search rooted at g5

The proc! proceeds by induction on d, the distance of sets from g5

Base d =0

Obvious, as the only gate invelved is g5 itsell.

Inductive Step

Ve assume that Property(2) is true tor all gates at distance less than d
from g5 and prove it holds for all gates at distance d. Let g be a gate at dis-
tance d from g, such that z;x;z, < RES(g). Let g and g” be the inputs of g,

bolh of which satisfy (b2).

Case 1

g is an v-gate. Then z;x;z, < RES(97) or xyzjz, < RES(9"), wlog suppose the

former. Since the distance of g' from g5 isless than d, by the inductive
hypothesis, z, v z; v, = RES(g"). and so by monotonicity

J

I, vz v = RES(g).

S

Case 2
g is an A-gale. In this case zyzjz, < RES(9)) and zy257, < RES(9”) and Case(2)

follows by a similar argument.

Property 3

Forall pclig.k{zyx,z, 5,

Proof

Suppose, wlog, that z,z;z, = B . The gale which compules B mustbe a
descendant of h; or hy . To see this recall that hy # hy and hy # hy (Pro-
perty(1)), and so if this observation were false, Property(2) would apply and
z; v x; v <[5 contradicting the modification (C). Tt follows that h; is a des-
cendant of h; (or hy ) and thus zyz;x, < 5 (or by ). By repeating the argument
twice a cycle in Swould result. This contradiction proves the claim.
Lemma(3.4) now follows easily for:

Consider the partial assignment X,,-{z; .z; x, }=0. Then B, =0v peliy ki
(Property(3)). Sunder this partial assignment cannot compute T3 (z, .2 .2, ) as
it only depends on z; , x; and =, via g5 which computes T (z,.1; .z, ). Contrad-

iction, 122
Corollary 3.4.1)
OUT(R) = |R|+ |U|

Proof

Let a be any U-configuration in S. Wiog suppose a path from g; in a splils
before meeting an A-gate. Let F; be the function v-ed with x; on this path
before it splits. It is clear that Smay be restructured in such a way that ;
enters an v-gale y whose other input is /; with fanout(g)z 2. This may be done

withoul increasing the size of S, and for all U-configuralionsin 5. (]
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This now gives:

Theorem 3.2)

Co(T3) = 25n-5.5
Proof

Combining the analysis of Theorem(3.1) with (B1)-(BB) and Corollary(3.3.1)

yields:

OUT(GUX,) = OUT(RUE UTUM UX,)
= (|[R|+|U)+ |R|+|T|+ |M|+2n
>4n + (|R|+ U+ |M|-|T,| (by B6,B7)
= 4n + |R| (B4)
= 5n (as |R|=n fram (42))

Thus;

C™(T$) = Cm(S) = 2.5n —55

and theorem follows.

]
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3.5) An Upper Bound On 77

The lower bound on 7§ proved above, is possibly sub-optimal. This section

presents a monotone network construction for 77.

Lemma 3.5 (Adleman)?
Letk €N

C™(TP) < kn +o(n)

To prove the upper bound the following combinatorial result is required.

Fact 3.1
Let:
Yi = <YiYipW, > €N° (wherek =2)
Let ]'I‘,:N’c -»N* be the projection which sets the Yi, position of y; to 1. Finally let
COVER; be a predicate defined on sets of k-tuples ¥ = (¥1.....¥s) by:

1ifvisg=<k, 3ylyleY

such that Iy (yf) = T (y7) and i#j
COVERy (y1.-...Ys) =

0 otherwise

Then:
;1;1“5‘1 (Y| | COVER.(Y) =1} = k+1
Proof
Upper Bound
Elementary

%) This result is reported by Bloniarz [5] but no proof is given and the construction of Adle-
man is as yet unpublished. The method presented here wes suggested by Paterson [37], the
proof of its correctness is by the author.
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Lower Bound

By induction on k2. The base k=2 is immediate, so we assume the lower
bound holds for all values less than k.

Let Y = {y,...y, | be any set of k-tuples such that COVER, (Y) = 1. Wog it
may be assumed that:

My ) = M(ye)
Thus, as COVER,(Y) = 1, the selof (s —1) (k —1)-tuples
“

<y, T (<3, >
i=3

must satisfy COVER, _,. By the Inductive Hypothesis:
s=1 2k => s = k+1

The lewer bound follows.

121

Proof of Lemina(3.5) (Outline)

For ease of exposition, suppose n = p* for some positive integer p. 1L is

casy to see how to amend the construction below if . is not of this form. Let:

o= U =

l=r;=p
1Xrp=p

lsr, =p
To avoid a plethora of subscripts <r,..7 > will denote x|, .1t will be con-
venient to consider the elements of {1,2,..p1* "V arranged in lexicographic
order. Thusy; = <rlrf  7Ff7'>istheith element. epgr, = <1,1,1...1>
The g ~partition of X, is constructed as follows.
T1) X, is partitioned into p* ' blocks, B2, where 1 =21 <p* ! Each block con-

tains p elements of X, .

T2) The particular elements of X, in a block B? are given by:

By = C) f<rd, @ g gty ks
j=
where <rd,. 7> isthe ¢th elementof {1,2,...p}* ) in the ordering
described above.
The g —partition of X, thus consists of p* ! blocks each block being defined by

a distinet (k ~1)-tuple.

Clearly there are k possible g —partitions of X,,. We claim that:

k
) = VTR TR (B TE (B ) (")

If this assertion holds, it gives rise to a recursive construction for a mono-
tone network compulting 77. Solving Lthe underlying recurrence relation yields
the upper bound stated. We justify this assertion as follows.

First observe that if fewer Lhan k elernents of X,, are assigned the value 1
then the righthand side of (*) is 0. Since the KHS is elearly monotone it is suffi-
cient to prove that it attains the value 1 whenever exactly k members of X, are
k.

Consider any assignment to X, for which exactly k variables are set to 1.
Let:

Y = {yiyee ¥

R RS TRV TV TRU QNS VT g |
1 ‘ 1 13 &

be the &k variables of X, which are fixed to 1. From Fact(3.1), since | Y| < k+1,

COVER, (Y) = 0. It follows thal there exists some s (with 1 s < k) such that:

CSY e Y, Wy e Yy 2 e Y Y, Yk, oYy > )

a-1"

are distinct (k —1)-tuples in {1,2,..p {*-). Therefore by the definition of
g —partition:
Y € 8f and y; € B <=> i=j
Thusnotwo y,'s (i.e variables of X, which are set to 1) are in the same

block of the s —partifion of X,,. So:
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B ( TR(BI.IR(BE)...TR(BA) ) = 1 : Let k=3 and n=p

dth RHS of (*) is 1.
@ therstord the FER el (715 1 Xo = [<L1,1>, <1,1,2>, <1,21>, <1.2,2>, <2.1,1>, <2,1,2> , <2,2.1>, <2.2.2> ]

)
| 1-partition
Figure(3.7) illustrates the construction forn = 8 and k = 3. ‘

B} = {<1.1,1>,<2,1.,1>} ; B} = {<1,1,2>, <2,1,2>]}
Bd = {<1,2,1>,<R21>} ; B} = {K1,22>,<2,22>}

i 2-partition
B? = {<1,1,1>,<1,21>) ; B = {<1,1,2>, <1,2,.2>}
B} = {<R,1,1>,<R.2,1>] ; B} = [<2.1,2>, <R,R.2>}

3-partition
B} = {<1,1,1>,<1,1,2>] ; Bf = {<1.2,1>,<1,2.2>}
Bf = {<2,1,1>,<2,1,2>] ; B} = {<2.2.1>,<2,2,2>}

Figure 3.7
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Chapter 4

Lower Bounds On Arbitrary Threshold Functions

4.1) Intraduction

Theorem(3.2) above yielded an improved lower bound on 77" when k was
fixed. In this chapter a general lower bound on 77, which gives larger bounds
fork =0(n). k <[n/2) is presented. Our main result is the following:

v <k <[n/2|
Ccm(7p) = max {2n+3k 25n+1.8k]-C (48)
‘here C is a constant.

For the majority function, we deduce a lower bound of 3.6n, slightly
improving Bloniarz’ 3n Jower bound [5].

The remainder of this section discusses the proo! technique employed. In
Section(4.2) a general lower bound on 7§ is derived and in Section(4.3) we
develop the resulls of this section Lo obtain the relation (4a) above.

The approach is a generalisation of the standard inductive gate elimina-
tion argument described in Chapter(2). Three ideas are central to the proof
method: extending the definition of "lamily of functions” as used in the Induc-
Live step; the notion of the "distance” of 77 from MAJ, ; and the concepl ol a
reduction. This last was briefly deseribed in Chapter 2, Section(2.4.2).

Instead of considering a family of monotone functions {f....J, ...}, in which
for each n there is at most one n-input function, we consider families of sets of

functlions:

ifpr-“"zf..--.[ﬁ'“} ..... g

In this way each f € F}, is an n-input function. For the Inductive step it is

then sufficient to project onto a member of a smaller indexed set. (The
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definition should not be confused with inductive methods for multiple output
functions.) This generalisation is not new, it is, for example, inherent in Weiss'

lower bound method for Convolution [57]. The family we shall use is:

n=2

Thus the n'th member is the set:

¢T3 TR
The "distance” of TP from majority is related fo the minimum value of ||,

where mis the partial assignment such that:

(T2 = MAJ,_|y, and n—|m|is even
Using these concepts the lower bound proof divides into three parts: we
first show how an arbitrary reduction may be used to reason about the size of
monotone networks computing 77, then, assuming the correctness of a specific
reduction, it is proved that & particular piecewise-linear function ¢(n k), gives
lower bounds for Tf. The final stage is to verify the correctness of this reduc-

tion. Thisis done by a case analysis on the structure of optimal networks.
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4.2) Main Result

Definition 4.1

Define A(TZ) to be n/2—k . A represents the "distance” of 7 from MAJ, and

may be negative and non-integral.

Definition 4.2

Let Sbe a monotone network computing T7. Let 7 be a partial assignment
such that SZS'. i.e SI" =S, where S computes 77" The descriptor of m, (), is a
triple (r,s.t) where:

| { mputs of Sset by m} |
= A(TpT)
| { Gates deleted from Sby applying 7} |

(2B ]
[

"

Definition 4.3
An aB-reduction for 77, is a set of g descriptor pairs, { <a;,8;> ] such that:

For any Scomputing 77,3 < &;.f; > and partial assignments , n applicable

to Sfor which:

6(m) € {oy.Bi ) o
6(") =0y <=> 6(7T') =B (2)
v <a; ;> BA(TE) - (si+s{) =0 -
Lemma 4.1

Let Scompute 7 and let { <o;,8;> { be an aﬂ-reductibn for S. Let A(TP) = s.
If there is a function ¢(n,s) » Q* such that:
p(n-ris) + &

p(n.s) < max (4b)
p(n—Tis) + &

v <o B> = <(rs0t;)(rsib)>
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and
e A(TP)) = ¢n A7) = n ~ Conslant
then
o) = gln.s)
Proof

By induction onn

Base
The recurrence of (4b) will terminate at p(n A(T]P)) or ¢(n,0(77). The condi-

tions on ¢ yield the lower bound for Lthe inductive base.

Inductive Step
We assume vn' <n, v k' that:
C(T) = opln's)

where A(T™) = s
X

and show that this implies the result.
Thus let Sbe a monotone network computing T As { <o B> | is an af-
reduction, there exist partial assignments m, 1, applicable to S, such that:

<HEME(m) > = < agf >

for some 1 =1 <q.

Thus:
CR(pnT Yol

C™(7M) = max

c"%T““”. R

Tl. =
(-

By the inductive hypothesis:

.
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{ pln—rs.) + t;
C=(71) = max
pln—ris)) + 1
But:
pin—ros) + 1

¢(n.s) < max
pln —risd) + 4

Hence: C™(71P) = p(n.s) ]

Lemma(4.1) yields a recurrence expression for Lhe monolone network

complexily of 77'. Ve do not attempt to find a genera! solution to this, but illus-

trate that a particular g(n,s) is given by a specified ag-reduction.

Lemma 4.2
1f:

AB = [ <(1,s+1/2,4). (1, s=-1/2,3) >,
<(l,s+1/2,6),(1,s=1/2,2)>
<(2,s+1,8), (2, 5s-1,6)>
<(1,s+1/2,8),(1,s=1/2,4) >
<(l,s+1/2,2), (1, s=-1/2,8) >
< (2, s+1,6), (8, s-1,8) >4

is an af-reduction for every S computing 77,

[ asn—|s|-C 0=|s|<3/2
pln.s) = |
{ 35n-3s [+8-C |s|=3/2
Y
satisfies:
pln e s) 1
@(n.,s) < max
l pln—r.s) + t§

v <o B> o < (st (risit) > € AB
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Proof

By inspection. =

Some intuition for the choice of ¢(n,s) may be garnered from Figure(4.1).
This illustrates p(n,s) for values of n, n—1 (Vertical axis) against s. In terms of

the usual form of inductive argument, Fig(4.1) can be viewed as follows:

"For any monotone network Sy which realises 7', one can find partial

assignments m,,m,...,7m, such that:

(i1 :
(S’L) —S’i+1 YV 0<i<rT
and the network S, computes a threshold function which is “close to"
majority. Then, for any T2, close to majority, it is possible to choose partial
assignments, 7, which eliminate, on average, 3.5 gates and such that

( 7@ )!7is also close to majority.”

We observe that the af-reduction AB, can be similarly interpreted, for a
number of different ¢(n.s). One such interpretation is outlined in Section(4.3)

below.

It may be noted that in some <a;.8;>:

pn—ris;) +t;
p(n,s) = min
pln-r{s) + t;

e.g ¢(n.1/2)>p(n-2,-1/2)+ 6
This imposes a strategy in inductively eliminating gates from S computing
Th.s2}-s. in that for those <ay,B;> having this property the step which reduces

to:

p(n-1i80) + 4
p(n,s) < max
pln-ris) +t

must be applied.

1 | I | 1

-5/72

-2

-3/2

!

-1/2

0

1/2 1 3/2 2 5/2

DISTANCE (s)

Figure 4.1
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Lemma 4.8 (Schnorr [43])

If Scomputes 7P and k ¢ §1,n], then every inpul z; entering a gate g al a
maximal distance frem the output of Shas fanout=2,
Yroof

g must have inputs z,, z; . 1f the fanoul of z; equals 1, then there is a par-
Lial assignment z; =c¢ ¢ € {0,1{, such thal 5!%°¢ does not depend on =z, . But
glzr=e = Tt where k'€ {k k ~1], and this function still depends on =, if
k ¢ {1,n}. Contradiction.

(|

Theorem 4.1

Let Sbe any optima! network computing 70 for 1<k <n. Then ABis an ag-
reduction for S.
Proof

Let g, be a pate of Sat a maximal distance from the output. The inputs of

9w must be distinet inputs zy, z; of 5. We proceed by case analysis on the

environment of z; and show that in each case some <o;,8;> € ABis applicable.
Case 1 fanoul{r;)=1

1f 1 <k <n,then from Lemma(4.3) this case cannot occur.

Case 2 fanout(r; )=3

There must exist some constant ¢ € {0,1{ such that setting z; = ¢ elim-
inates at leasl § gates, as two of the gates entered must have the same opera-
tion. But, since the fanout of x; = 3, setting z; = -~¢ must eliminate at least 3

pates. Thus:

<Oz =1),6(z; =0)> € (<apfa>.<as.fs5>)
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Case 3 fanout(z; )=2

e @)

Figure 4.2

3.1) op(g,) = op(g2). wlog op(g )=V

3.1.1) fanout(g,)=2 or fanout(g,)=2

@) @)

4

Figure 4.3

<6(x; =1).6(z; =0)> = <ap,Be>

3.1.2) successor(g,)=successor(gz)
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noE) @)

Figure 4.4

In both possible cases (op (gg) = v o7 A) Sis not optimal.

(3.1.1) and (3.1.2) leave only the subcase (3.1.3) where g, has a unique suc-

cessor gg, and g has a unique successor g, with g,#g3.

Js

3.1.3.1) op(g5)=op(g,) or op{g4)=op(g2)
Then: <6(I:‘- =1),6(z; =0)> = <og.@e>
Thus we need only now consider the case where op{gg)=op(g4)=a
By the choice of gy, the other function, f4 say, input to g4 is either some

input z, of Sor the output of a gate at a maximal distance from the oulput of S.
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3.1.82)op(hy)=n oroplhy)=n

414)/f, =,
<O(zy =1).6(xy =0)>
7y GD z; or = <ayfy >
/I ‘ <6z =1).6(x; =0)>
) ' 9.1.5.3) op(/
J— 7 ﬂ @ : 3.153)oplhy)=v vg 1=9g=3
/ . :
/ i <blxy =zy =1).6(zy =2; =0)> = <ayfy>
\)y | This exhausts Case(3.1), since the case op(y,) = 0op (gz) = » follows by a dual
!7:;{ N {Jq{ n ‘ sregurnent.
U i g
Figure 4.8 3.2) opl9,)¥op (92)
<6(zy =1).6(xy =0)> = <o f,>
3.1.5)
Jiisthe output of a gate b with inputs z; |, x I3 Ja
7 : \/ |
/ /\ s 94
/ Lo g L\ 3
@!h e I i Figure 4.8
|
} 3.2.1) fanout(g,)=2 or fanout(y,)=2
N 394 [
y ‘} <6z =1),8(z =0)> € {<ay B> <oy fy>]
i
|
Figure 4.7 ! 3.2.2) successor(y ,)=successor(g )

In both possible cases Sis not oplimal

3.1.5.1) np(h ])::/\
8.2.3) op{gy)=oply ) or op(g,)=op(y2)
<6z, =1).0(zp =C)> = <ay.fs>
Then: <&z, =1)8(z; =0)> € {<a,.B,>.<a,.B,>}

Thus as in Case(3.1), f, =z, or f, is the oulput of & gale at maximal dis-

tance from the output of 5.
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324)f, =z,

Similar to subcase(3.1.4) above

3.2.5)

f4is the output of gate h; with inputs z, , z;

Figure 4.9

3.2.5.1) op(h |)=v
<6(xyp =1).6(z, =0)> = <0p.B8z>
3.2.5.2) op(h )= orop(hg)=n

<6(z; =1).6(z, =0)> = <a,,B,>

or:
<6(zy =1).6(z; =0)> = <oy.Be>
3.2.5.3) op(hp)=op(hg)=v,op(h )=~

<b(zy =z =1).6(z; =z =0)> = <ay.fg>
This removes the last case. In every inslance some <a;,8;> applies and thus

ABis an af-reduction. ]
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4.3) Consequences Of Theorem(4.1)

Corollary 4.1

vk 3<k=<[n/2]
Co(Tf) = 2n +3k - C CeQ

Proof
Letk =n/2-s,s € Q*. By Lemma(4.2) and Theorem(4.1)

C=(77) = C™(T7,2s) = 38.6n —3s - C'

However:s =n/2-k, thus

C=(77) = 3.5n —3(n/2-k)—C
>2n +3k-C o

Theorem 4.2
Co(T7) = 4(k —3) + C»(T3*+3)—-C
Proof (Outline)
The af-reduction ABmay be interpreted by saying:

"For any monotone network Scomputing 77, 3 some input z; and some

constant ¢ € {0,1} such that setting z; = ¢ eliminates at least 4 gates.”
i Choosing a suitable ¢(n ,A(77)) leads to the theorem.

I o
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Corollary 4.2

1 Cm(TE) = (24 A)n —C then:

en + 8k — Cq
Cm(78) = max
t (R+r)n + (2=A)k - C,

an
2 5 T N o S emns
2n + 3k - Oy k= i1
=
& s . v Lo AT
l (R+M)n + (2-Nk - C, k= T

121
Theorem 4.3
en +3k-Co kan/3
‘t 25n + 158k -C) £k=<n/3
Proof
From Theorem(3.2)

Co(T3) = 25n -55
and the theorem follows from Corollary(4.2) with A=1/2.
=
Corollary(4.2) implies that improved lower bounds on 7§ or any T with k&
fixed, would lead Lo consequenl improvements in Theorem(4.3). In particular a

31 lower bound on TJ would immediately give the 3.5n lower bound on MAJ, .
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Chaptler 5

Replacement Rules In Monotone Boolean Networks

5.1) Introduction

eplacement rules were introduced by Paterson [36] and Mehlhorn & Galil
[32] and used Lo prove tight lower bounds on the monotone network complexity
of boolean rnatrix multiplication. The results applied prove that in networks
cornputing boolean matrix product, gates computing certain functions may be

replaced by the constants 0 or 1 or by an input of the network.
In this chapter we investigate the following problern.

(P1) Given a pair of functions, f,9 € M, whal are the monotone boolean func-
tions h such that for any monotone network S computing f, containing a
S]R.‘?S(u) =

gate u which computes the function g, " still cornputes f?

S'RESM) =M genoles Lhe network S, afler the gate u is replaced by a node
computing h.

The following results are proved:

R1) Yor any f € M, we derive closed form expressions for the maximal 0-

replaceable and minimal 1-replaceable functions with respect to f.

R2) For any pair of functions f, g € M, we determine closed form expressions

! for:
(i) min s such that g is replaceable by s in a network computing f
(1) max s such thal g is replaceable by s in a network computing f
R3) Y¥or eny pair of functions f,g € M, we determine closed form expressions
for:

(i) min s such that s is replaceable by g in a network computing f

(if) reax s such that s is replaceable by g in a network computing f
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Where "minimum" and "maximum" pertain to the partial order relation, "<", of

Definition(1.1.2).
Using (RR) and (R3) we obtain a complete solution for (P1).

This chapter contains four main sections. Sections(5.2), (5.3) and (5.4)
obtain the relations of (R1), (R2) and (R3) respectively. Finally Section(5.5) gen-
eralises these results to deal with multiple output monotone boolean functions

and gives new proofs of some known specific replacement rules.

All the expressions derived are based on the representations of f as a Con-
Jjunctive or Disjunctive Nermal Form. In this way the proof methods are freed of
assumptions about the structure of monotone networks computing f. Such an
approach is possible since the concept of "replaceability”, as outlined above,

gives rise to an ordering relation between g,,9, € M, for each f € M,,. Thus,

s
91 =] g2 if and only if "g, is replaceable by g in monotone networks computing

f". 1t is clear that the relation "él " is reflexive and transitive and therefore
defines a pre-order on the members of M, . Our results may be viewed as estab-
lishing some properties of these pre-orders.

Beynon [4], by considering this purely algebraic formulation and by using
the expressions derived below (as given in [10]), has obtained analogues of (R1),

(R2) and (R3), for the wider context of arbitrary finite distributive lattices.
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5.2) Replaceability By Constant Functions
Definition 5.1)
letf,g .h € M,.
Iy
g is h-replaceable with respect to f (g =| h) ifl:

SIRES():=h  stj]] computes f
for any monotone network S computing f which contains a node u with

RES(u)=g 0O

The following result is the replacement rule due to Mehlhorn and Galil [32].
Fact 5.1)
LA
g = 0iff:

v m € Pl(g) -3 any monom m’ such that
mAm’ € PI(f)
(m}

A corollary of this is:
Fact 5.2)
7
g = 1iff:
vh gnh<sf => h<f
In this section we characterise the largest O-replaceable and smallest 1-
replaceable functions with respect to any function f. Although the results are

implied by Theorem(5.3) below, these cases are presented separalely as the

analysis is simpler.



Definition 5.2) ! by monotonicity
Let m be a monorm, ¢ be a clause and J € My, . Bul m £ x(r) if m is a shortening of r Contradiction.
1) y(m) = vireX, |mgz] (ii) Dross(f) < Z(f)

Q) Zy) = C/l\’l(_f)X (m) Let m € PI( Dross(f) ), by Fact(5.1) there does not exist any monom m’
m

such that m A m' € PI(f). Thus:

3) ple) = alzcX |z gel
vpePlf) m=<yx(p)
' . ) T f ‘ m = N 5 = ¥
UL L rouy’ () i pe Py XLB) )
: Thus:

O
Z(f) = Dross(f)
Theorem 5.1) { 0,1-replacements ) and (A) follows as Dross (f) is by definition the unique largest O-replaceable func-

A) Z(f)is the unique larpest O-replaceable function with respect Lo f. Le tion with respect Lo f.
1 £ p P

g = Z{f) <=> g is O-replaceable wr.t f. (B) Itis easy Lo see that:

(B) U{f)is the unique smallest 1-replaceable function with respect Lo fove Uy = Z/ﬁ
g = U(f) <=> g is l-replaceable w.r.t f. By duality, U(f) is the unique minimal 1-replaceable function with respect
to f.
Prool
]
let:

Dross(f) = vigcM, |y i{ 0}
Ve shall show that:
Z(f) = Dross(f)
(i) Z(f) = Dross(f)
Suppose m < Z(f), but thal m § Dross (f). Then there is some monorm m’ |
such that m A m € PI{f) and so m is a shortening of sorne prime irnplicant r of '

. But:

< 7{f) = = < v/
mez() = A x(p) => me i)
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5.3) Replaceability By Arbitrary Functions (1)
We shall now consider non-constant replacements of the form g:=s,

and determine minimum and maximum solutions for these.

Definition 5.3)

Let M={m,,...,m;} be a set of monoms, and let f be a monotone boolean
function. The Prime- Implicant Extension of M with respect to f (IE,(M)) is

defined to be:

IE/(¥) = {pePIf) | 2 m; € Mwithp<m; |
The Prime-Clause Eziension of a set of clauses C = { ¢;....,¢; ] with respect

to f (CE/(C)) is given by:

CE/(C) = {pePC(f) | 3c; €Cwithe; = p]

A(f.9) =

\4 m
m € IE;(PKg))

B(f.g) =

/\ c
c € CE/(PC(g))
]

Theorem 5.2)

Let f, g be monotone boolean functions. Then:

J
1)  A(f.g) is the unique minimal function s such thatg = s

J
2) B(f.g) is the unique maximal function s such that g = s

Note: Conventionally the empty monom ( clause )is 1 (0).
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Proof

p g
1) Certainly g = A(f.g). as by definition IE;( PI(g) ) is the set of all prime

implicants of f to which g could be extended. So suppose some function, s,
exists, also satisfying these requirements and that A(f,9) £ s There must
be some prime implicant of A(f,g), p say, which is not an implicant of s.

Now:

pePI(f) and 3m €Pl{g)suchthat p<sm
So;g Anp = p €PI(f)
But,s Ap < p

Contradiction, as g is not always replaceable by s when computing f. (viz.
Fig(5.1))

Thus A(f,g) is a minimal function. To establish uniqueness, suppose s,, sz

J
are distinct i.e incomparable minimal functions. Then, since g =| g

i J
g 3 gng => g = siAs:

Thus s; A sp (< §;,52) is also a suitable, but smaller function. Contradiction.

2) By duality
(|
Corollary 5.1)

J
9 = h if and only if:

A(f.9) = h = B(f.9)
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5.4) Replaceability By Arbitrary Functions (11)

Definition 5.4)
Pleew(f.9) = PI)-E(PI() )
PCrulf.9) = PCU)-CE(PC(y) )

D(f.g) = X (m)

N
mePL e, (.9)

E(fg)=

O

v gle)
Ct" lrjclcﬂlu ‘g )
Theorem 5.3)

B g
(A) D(r.g)is the unique maximal s such that s = g.

5 J
(B) £(f.9)is the unique rinimal s such that s = g.

Proof
Agaln (B) will follow from (A) by duality.
’
N DUe) =y
By Cor(5.1) since A(f.D(f.9)) < D(f.g) = B(f.D(f.g))itis suflicient to show
that:

AFDFg)) =9 = D(f.g)
B g=bUy9)
lLel p<g. Then by definition of Pl (f.0):
-3m’ suchthat p Am' € Pl (f.9)

Thus:

v m € Pl (f.g9) p=yx(m)
By the definition of D(f,g) this implies the result.

() AU.D(U9) =g

Lel: pePI( A(S . D(f.9)) ). Now:

H‘:j( },](DU-!] \) ) n 11'1‘,( lenn(.f-.(]) ) = “
(Since, from the proof of Th(5.1), no implicant of D(f,g) can be "extended” to a

member of Pl .(f.9))
Thus either p € PI(f), in which case p is a lenglhening of some prirme impli-
cant m of g or p=0. In both cases p=<g.

2)  D(f.y)is maximal
- J
Suppose s £ D{f.g) ands = g. Then

Jpe Pls)suchthalt pf D(f.g9)
Thus: D(f.g9) = x(p) and Lherefore,

3r € Pl (f.9) such that x(r)<y (p)
(By the definition of D and Plyg,)

Sor= p. Thus:

s Ar = rePIf)
gnr # r (Asre P!n;m(j-g))

Thus s is not g-replaceable with respect to f. (cf Theorem(5.2))
Contradiction.
) I ! LA .
Uniqueness follows easily since: s, = g and s, = g implies that

]I
syvse = g 0O

Corollary 5.2)

I
h =| g if and only if:

E(fg) = h = D(yg)



h 1 P/,

RES(t)=f : RES(h) = p before replacement

RES(t) # f after replacement since pis not a prime implicant of RES(t)
Figure (5.1)
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Beynon [4] has considered a concept of "computational equivalence” within
a different framework. g is said to be equivalent to h when cornputing f
J J
(g )Ll h)ifand onlyif g = h and h 5 g. Inthis context Cor(5.1) and Cor(5.2)

yield:
Theorem 5.4

T
g H hiff

AF.9)v E(fg) = h = B(f.g)~D(9)
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5.5) Multiple Output Functions
Let F={ fy...../m | be any set of m monotone boolean functions over X,.

Theorem 5.5)

Z(F)
U(F)

n

1& Z(f;) is the maximal O—replaceable function w.rt F

"

('}l U(f;) is the minimal 1-replaceable function w.r.t. F

i=
A(F.g) = vIEg (PI{g)) is the unique minimal function s such that g F=| s
B(Fg)

ACEg (PC(g)) is the unique maximal function s such that g F=| s

D(Fg) = w x(» isthe unique maximal s suchthats F=|g.
PE (1U1 PI(r;) |-(Plg)}
E(Fg) = Y #(c) is the unique minimal function s such that
ccI‘U1 PC(y) I-{PCo )]
sF=|yg
where;
m
E{M) = (pe U PI(fi) | 3m; = p]
i=1
m
CEKC) = tre () POG) | 36 < v
=1
Proof
Elementary
[m]

As an illustration we reprove the replacement rule due to Paterson [36] for

Boolean Matrix Product. Let:

BHP, {0,1}®%>{0,13"*

where each output c;; is defined by:

€Y = qzrem (Zge A5 )
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Letnma 5.1) (Palerson [36]) 64

Lel BMP, ={cyy...Cny | Where ¢y is as defined above. Let 1 =44 <n |
s e P pi | The following is due to Wegener[56].
(it #i)andl<jgd sn (§#35).

3.1) zy vz mfnnl 1 Lemma 5.2)
1) zy vz, =
BMF, If g is a k-slice function then:
82y vy =100 ]
v €X,or = oo~ TR
""w’\\
83) ry vy = |1

Proof

|
]
| Fasily derived from Theorem(6.2) above. 0O
1
|

e Corollary 5.3)

/,,/"‘k‘-\ If g is a k-slice function then:

= Z( /\/ (Ii}CVU}b]>) g

1=k sn v €X oz =l xmov TR 0G)
= \/m Proof

1<p #ign ra l<r=n re K
lsg=n l=s #j=n Duality. o
o 7 C',L']'
Thus:
U(BMP, Y= N (s z_ Y. Cii)
" l=i<n rgurs Ty
lj=n

1t is easy to see that for each of the function s in (3.1)-(3.3):

U(BHP)v s =s => UBMP) < s
=3

Ak-slice function of fis a function of the form:

U ~TEY v Ty,
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Chapter 6

A Replacement Rule For Non-Monotone Networks

6.1) Introduction

The results of Chapter(5) characterise all valid replacement rules for func-
tions computed by monotone networks. In this chapter we examine a class of
replacements which transform combinational networks, computing f € M, to
monotone networks. The work below is motivated by the results of Berkowitz [3]
on realising "slice functions”, which have been discussed briefly in the Introduc-

tion.

Definition 6.1)

let f € My, andlet 1 <k <n. The k-slice of f (denoted j; ) is the monotone

boolean function:
fo = (fATEV) By

Fact 6.1) (Berkowilz)

Let f € M,
N ocy) = :3 CUL) + O(n)

ii) C{fe) = CU) + O(n)
iii) C2(fx) = C=(f) + O(n"log-n)

iv) C=(f) = O(C(fi) +n log?n )

Proof
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i)  Let EP(X,) be the boolean function which is 1, when exactly k inputs are 1.

Since:

7(X%) = k\:/x J~AEP jand C(T7..73) = O(n)

and f A EP =fi ~( - TPy ), (i) follows.
) C(7¢) = 0(n)
iii) C=(7p) = O(nlogn) [1]
iv) (Outline)

Any combinational network T, can be changed to an {A,V, -{-network T, in
which negation is applied only to the network inputs. C(T,) is at most a constant
multiple of C(Tg). Berkowitz proved that in such networks computing fi . any

instance of ~z; could be replaced by 77 ! (X, —{z; }). As the n-output monotone

function:

(TR (K ={za ) TR (K =z D

can be computed in O(n log? n) gates [52), so:

C™(fi) = O(C(fp) + n log®n )

A new proof that the replacement at the heart of (iv) is correct, is given
later in this chapter.

Fact(6.1) establishes that f € M,, has combinational complexity w(n log?n)
if some k-slice of f has monotone network complexity w(n log? n). In addition
(i) shows that if the combinational complexity of f is sufficiently large then
there must be some k-slice of f with large monotone network complexity.

These results raise two questions:

Q1) In {A,v,~}-networks of the form above, computing any f € M,, do mono-

tone functions which can replace -z; always exist?
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Q2) Are there other classes of monotone functions, for which resulls similar to

FPact(6.1) can be proved?

Below, we demonstrate that both these questions can be answered
affirmatively. In Section(8.2) the existence of "pseudo-complements”, for each
J €M, is proved, and these are characlerised. Section(B.3) introduces a gen-

eralisation of slice functions and a result analogous to Fact(6.1) is proved.
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6.2) Pseudo-Complementation

Definition 6.2)

Let f be a monotone boolean function over X,,. A pseudo-complernent for z;
is a monotone boolean function X, such that in any (A,v, -,)-network T comput-
ing f, in which negation is applied only to the inputs, any instance of -z;, can be

replaced by h; and the resulling network will still compute f.

Theorem 6.1)
v monotone f, b is a pseudo-complement for z; if and only if:

|2:=0 Jz,:=1

S = h =
Proof

Let fo denote the function computed by T after some instance, z say, of -x;
is replaced byf‘z‘zo. Slmilarlyl let f, denote the function cornputed by T after

lzg=1

this instance, z, is replaced by f . Now since fy = f, it is sufficient'to prove

that:

Ji= S = o
The (monotone) boolean function computed by T after some instance of -z is
replaced by z may be written as:

Gouo VY LYoV ~ZiJowo V 2900 V ~IiZgon VY Hizd o

where the functions g ., are such that:
1) vmePlgay)

(z)% (-2, )P (2)” A
is & monom" cormputed at T.

Y Here, the definition of "monom” from Defn(1.1.4) is extended in & natural way to sllow oc-
currences of —Iy .
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where:

z iféd=1

2) m does not depend on z;, ~z; or z.
Clearly:

S = Fooo Vv Zig100 V ~Zi (Gow V Goor V Gour )
Now let z := fI”i=0 so that f := fy. To prove f < fo, it need only be shown
that:
~Zigom V ~ZiJonn < Jo
=0 =0
However; flz‘ A goon = Yoo and -~z; f‘zi o = ~Z;i Gonn thusf = fo.

lzg=1

Now consider the replacement z:= f . We must show that /, < f.

Similarly we need only prove:

lzg=1 lzy=1 =1
%90 v~ S gon v mf g = f
But:

I A gony < goo = F
2 AT A gon < gon S f
LN ST
Thus f, < f, and the theorem follows. O

Corollary 6.1)

Let F = {f,....fm} be & set of m monotone boolean functions. Then A; is
a pseudo-complement for z; if and only if:
Jz,=1

Iz,=0
.191f Ty = JZ\:f"

We note that for sets of monotone boolean functions, in general the
interval of Corollary(6.1) is not well-defined. However for special cases, such

as slice functions, pseudo-complements exist in this case.

07 il
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Fact 6.2)

Let f € M,. For all k-slices, fi of f, T# ™! (X, —{z;}) is a pseudo-

complement for -~z .

Proof
= (S50 A TP~ ) v TR (Kl )
= TP (X -{=:))
= (B A TP (K —z:) v BTN (X ()
= (fk)l:‘:]

And Fact(8.2) follows from Theorem(6.1). o)

The interval which occurs in Theorem(6.1) may be informally inter-
preted in terms of Theorem(5.2). Observe that since negation is applied to
the network inputs only, the "behaviour” of the network T is monotone.
Thus, if each instance of -z; is replaced by a new variable z;, a monotone
function of {z,.....2,}. is computed. To compute f(X,) correctly, each 2;
must be replaced by a monotone function h; with the properties:

lzy =1

C1) 0" = | i

|z =0

)1’ =K
(i.e. h; "appears to be"” 0 or 1 when z; is 1 or 0)
From Theorem(5.2), h; must therefore satisfy:

sz.{=ﬂvo < h.| < flz‘=1/\l

which is the interval of Theorem(6.1).



6.3) Dissceting Transforms

Definition 6.3)
Let:
I, = { O x| X X0 s a partition of Xinto 7 non-—emply sets |
A dissecting transform of order 7 is a mapping A, defined as [ollows:
D1) &My x T, - ACH,
D2) Letf € M,, P =X X ¢, Then

9 €0, /.P )i and only if:
Bk ek ) with 1=k = | XD =5y

such that:

T f=
Lif v Fighey 8y = 1

g0 = | 7OOI A ER () =1

0 olherwise

Note that g € A, since:

™ T
n, i L H
900 = £ a /N TROO) v N 7T, ()
TSR T Y ; < or 2o
I K= fky ka ok § then g is called the (K, P.r)=block(f) m}

Vithin the context of Defn(6.3), "slice functions” correspond to the
dissecting transforms of order 1. In this section we peneralise Ber-

kowitz' results, for slice functions, to dissecting Lransforms.

Theorem 6.2)

Let y € M,, P =X X" €T, and:

plPr) = U { <ky kg, k> )
T€ky€ny

1€ kysng,

1€k =n,

where: n; = | X{]
Then:

d1)

Cir) = 5 C( (X, P.r)=block(f)) + (r+V)nny.n, + 0(n)

XepPr)
dr)
c( (X.P.r)-block(f)) = CU) + O(n)
d3)
co( (X, Pr)=block(f)) < C™(f) + Onlogn)
d4)

e ( (K, Pr)-block(f)) = O(C( (X, Pr)-block(f)) + n log¥n )

Proof

Below ¢g and ¢, denote constants.

d1)
- Ny ()
A N AR )
But:
I~ /~\) E:(‘ = ((X.P.r)=block(f) ) ~ t/=\x ~T:“H

To compute all the required -( T,:‘” ) costs = i‘ comny =0(n)
(=1

gates. In addition, 7 A-gates are used for each block, to form the pro-

duct of the required - (TI‘“, \) outputs. Finally n\n,..n,.—1 v-gales are
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used to collect all these outputs. 0O

d2)
This relation follows from the fact that all the necessary threshold

functions can be computed using a total of O(n) gates.

d3)
Similarly, all the threshold functions can be computed by a mono-

tone network of size O(nlogn).

d4)

Let Tp be an optimal combinational network computing the
(X,P,7)=block(f). Convert Ty to an {A,V, -}-network T, in which nega-
tion is applied to the network inputs alone. This involves at most a con-

stant factor increase in network size. Now let:

R = T:‘.‘"l xXP-fzi) v NV T;;’n xd)

1<jrisr

It may be verified that:

((X.P.r)=block(f) )|z§=o = b} = ((X.P7)-block(f) )I:,‘:l

Thus from Theorem(6.1), h.é. is a pseudo-complement for z}.

All the hj for 1=1i <7, 1 <q <mn; may be computed using at most.:
X %
<P C(hiLha) + B CR(Th O6)
i=1 i=1
s}i‘ comy log?mny + i c,.my log?ny
i=1 i=1
=0(n log®n)

Thus:
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c=( (k,Pr)~block(f) ) = O(C( (K.P,r)-block(f) ) + n log?n)
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Chapler 7

Slice Functions Of NP-completle Predicates

7.1) Introduction

Facl{6.1) implies that P # NP if some k-slice of some monolone boolean
NP-complele predicate has superpolynomial monotone network complexity.
However this result does not indicate which, if any, slice functions of such
predicates are likely Lo be "hard” to compute, Consider the following class of

slice functions.

Delinition 7.1)

Let f € A, such that:

v p€PIf) |var(p)| =k forsome 1Sk =n
The canonicul slice function of f (c-s(F)) is the k-slice.
IL can be seen that
c-sl(f) = Jv Iy

for those f € A, for which the canonical slice function is well defined. For a
number of monotene boolean NP-complete funcilions the canonical slice exists,
and since this slice funclion seems very similar Lo the original function, it
appears to be the most natural candidate for a "hard” slice. However, Yegener,

considering the complexity of ¢-sl((n/2)—cligue ), proved:

Fact 7.1) ( Wegener [56])

ce( c-sl((n/2)—cligue (X)) = O(N)
where N =n(n-1)/2 = |[XV ]
In Section(7.2), below, it is proved that this is not an isolated case, but that

the canonical slices of Lthe directed & undirected hamiltonian circuit functions
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also have polynomial network complexity, as does the canonical slice of Lhe
NP-hard predicale, Fermanent. In addition we prove that if the canocnical (k)
slice of f can be realised in polynomially many gates, then so can the (k +c)-
slice of f, for any fixed ¢,

In Section(7.3) the central sltice functlion is defined. For each ot the prob-
lems cited above, Lhe corresponding central slice functions are shown to have
polynormial network complexity if and only if the original functions have poly-
nomial network comnplexity. These resulls are obtained by demonstrating that
every slice of these functions is a projection of the central slice of a larger
instance of the problem.

In Section(7.4) similar resulls are proved for the non-graph theorctic

predicale SATISFIABILITY.
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7.2) Upper Bounds On Some Canonical-Slice Functlions

Definition 7.2) 3

Let T, = {o | 0 is a permutation of {1...n}}

n
Permanent (XP) = u\eéﬂ i/=\1 Z (i oi))

where:

0 ifi=o(i)

Tiol) =
Ziq) Otherwise

In graph-theoretic terms, Permanent (XP) is the predicate which is true if
and only if the vertices of G(XP) can be covered by a set of simple non-

overlapping directed cycles. Valiant has shown that Permanent is NP-hard. [49]

Lemma 7.1)
Let N, =n(n-1)/2 and Ny =n(n-1). Then:
C1) C=(c-sl(UHC(XD)) = O(NE)

C2) C=(c-sl(DHC(XD))

O(N8)

C3) C™(c-sl(Permanent (XP))) = O(Ny)
Proof

C1)
c-sl( UHC(XD)) = (UHC(XD) A T) v To%,
On the right hand side of this expression, we may substitute for UHC(XY),

any monotone function g(XP) which agrees with UHC(XY) when exactly n

inputs are 1. We claim:

g, (XY) = ;\Té‘" (X)) A UCON(XD)

i=1
where;
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X = {Za) i) I(i-l,i).l‘(i.m).».-.-’r(;’,n)i

and:

1 if G(XY) is connected
UCON(XY) =
0 otherwise

is such a function. This follows easily from the fact that:
"Any undirected n-vertex graph G, having exactly n edges, contains a ham-
iltonian circuit if and only every vertex has at least two edges incident to it

and G is connected.”

Since: C=( UCON(X%) ) = O(N,?) the upper bound of (C1) follows.

c2)
Let:
ke B
g2(X%XP) = ,/‘\‘ ( TP (XS A TP1GRT) ) A DCON(XP)
where:
X = Ty E ) E i) E (1n)]
X = e E (-1 B {4140 E ()

and DCON(XDP) is defined analogously to UCON (X9) for directed graphs.
g2 (XP) may be used in the same manner as g, (XY) in (C1) since:

"A directed n-vertex graph, G(XD), containing exactly n edges, has a
directed hamiltonian circuit if and only if each vertex is incident to at least

one incoming edge, and at least one outgoing edge and G is connected.”

c3)

Let:

gs(XP) = 1/_\1 (TP ) A TEHOERT))
with Xgut-i Xir! a5 in (CR).
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Similarly, from the graph-theoretic interpretation of Fermanent, g4(XP)
may be used as a substituting function.

]

The following result establishes that all the slice functions "within a con-
stant distance"” of these canonical slices also have polynomial network com-
plexity.

Theorem 7.1)

Let f € M, such that ¢-sl(f) exists and is the k-slice, fi. It C™(f;) = O(n")

for some constant v, then:
vez=0: C/f,.) = 0(nre)

Proof ( By Induction on ¢)

Basec =0

By the assumption that C=(f, ) = O(n").

Inductive Step
Assume Lhe theorem holds for all values less than c.

fkic(xn) = (f(xn) N ’Izlfu(xﬂ)) v Tl‘ic +1 (Xn)

As before, we may substlitute for f on the right-hand side, any function g which

agrees with f when exaclly k +c¢ inpuls are 1.

Let h X, -{0,1]" be delined by:
{2y 2.0y ) iz =1
Rz o) =
{0.0.0,..0,0] ifz; =0
Then:

flcﬂ: (Xn) = ((‘\?] fkﬂc—)(h\‘(xn)))/‘ TEN(XH)) v 7?#061(Xﬂ)

That is: f(X,) =1 when exactly £+¢ inputs are true il and only if for some
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k+c —1 size subscl of the true inpuls, f is 1 when exaclly these & +c—1 inputs
are true. This follows from the fact Lhat all prime implicants, p of f have
lvar (p)| = k and from the definition of prime implicant.

However:

hi(X,) = Iz A Zivei@iog A 200000 A T Ty A T

which can be computed using n—1 monotone gates. By the Inductive

Hypothesis:
Cm(fkﬂ:—l(hx(xn))) = O(nr+c ‘1)
Thus:
Cm(fk1c(xﬂ)) = O(n‘rﬂ:)
121
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7.3) Central Slice Functions

Definition 7.3)

Let f € M, . The central slice of f (Cen(f)) is the slice function:

Cen(f) = (f A Tlase)) Vv Thasein
In this section it is proved that:
Cen ((n/2)—cligue (XF)) is NP~complete
and
Cen (DHC (XDP)) is NP-complete

The proof methods are similar, but differ in the details of the construc-
tions used. Both results rely heavily on the structure of the underlying predi-
cates, and are derived by a padding argument. i.e If f, is the (n/R2)-clique or
DHC function then for all valid k, the k-slice of f, is a subfunction of Cen (f,,)
where 7 =5 for (n/2)-cliques and =7 for DHC. Using Fact(6.1)(i) this yields a
reduction from f, to Cen(f,). Figure(7.1) informally illustrates the construc-

tion used for (n/2)-clique.
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w,

2n

V(G) = [vy.vnd  V(GT) = fwp g}

Figure 7.1

Given G(XP), we extend it by adding 4n new vertices, to yield a graph H with
the property that H contains a (5n)/R2-clique if and only if G(XY) contains an
(n/2)-clique. The number of additional edges in H must be chosen in such a
way that Cen (((5n)/ 2)—cligue) is the k-slice of (n/2)-clique. Both the proofs

are constructive in the sense that it is demonstrated how Hcan be built.
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7.3.1) (n/ 2)~-cliques

Below, we shall assume, wlog, that n is even.

Lemma 7.2)

Let G*(YY) be & 4n-vertex graph with vertices fw,,... w1}, satisfying:

P1) The vertices {wy,..wy, | forma 2n-clique in G°.

PR2) G° contains a additional edpges not contained in this cligue.

P3) G° does not contain any ((5n)/ 2)-clique

It His the (5n)-verlex graph formed from GXY) and G* (YY) by adding the

edpes:
(v ) vy €V(G)visj=<in
Then:
((5n)/2)~clique (H) <=> (n/2)—-cligue (G)
Proof

<= From the construction of H

=> Since G*(YY) does not contain any ((5n)/ 2)—cligue any ((5n)/ 2)—cligue in

¥ must contain at least one vertex from V(G) and hence at most 2n vertices

from G°.

)
From Lemrna(7.2) it follows that (n/2)—clique is

((5n )/ 2)—cligue .

Lemma 7.3)
Let M be an n-vertex graph (n = 2rm) such that:
H1) Hcontains an m-clique.

H2) Ndoesnol contain an (m+1)-clique

a subfunction

of

- B4 -

H3) v H* such thal (H1) and (H2) hold for H*:

[B(H) ] =[BT
Then:

(ED| = [E(G)] —m

where K, is the complete graph on n vertices.

Proot

Let V(X,) = {w,...w, |. Let Hbe the graph formed by rernoving the m edges:

CJ g, )3

=1

from J,. Certainly 1l contains an m-clique, e.g the vertices {w,,..w,]. But H

cannot contain any (m+1)-clique as any subset [w,l,..ww,-

m+1

| of V(H) must con-

tain two vertices uy and w; such that i +j =n+1 and these are nol connecled

by an edge in 1. Therefore:

[EAD| = |E(K)] ~m )

Theorem 7.2

Let:

Foreachl! € L

Cw(l-slice ( (n/2)~cligue )) = 0(C®(Cen(((6n)/R)-cligue )))

Proof
For the purpose of brevity, let:

e ,(n) =nn-1)/2

and

I =e,(n)/2-k

We show Lthat the I-slice of (n/2)-clique is a subfunction of Cen ((5n)/ 2)-clique.
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Let G°(YY) and H be the 4n and 5n vertex graphs described in the state-
ment of Lemma(7.2). «, the number of additional edges in G* must be chosen so

that.

| E(H)-E(G) | = e,(5n)/2 —e,(n)/2+k (1)

i.e so that the “threshold terms" are correctly set. Now:

| E(B)-E(G) |

| E(G*) | + |{ Edges betueen Gand G* }|
= e, (Bn) + o + 2n? (R)
Solving (1) and (R), for «, yields:

a = 2n?+k

Now:

—Ieu(n)/zj < k < {eu(n)/z—eu(n/z)]
Thus:

[(fn+1)n/4] < o = {nn?/B]
Let G* be the 4n-vertex graph constructed in Lemma(7.3). If § is the set of
edges in G* which are not contained in the (2n)-clique {w,;,...wz,] then, from

Lemma(7.3):

n

]ﬂl lE(Kh;)'_zn'eu(zn)

6n? — 3n

"

Since |B| > 2n? + k v valid k o may be fixed by removing edges from g to yield

the required slice function ( the I-slice ).
]

Corollary 7.1

3 constant g such that C=(Cen((n/R2)-cligue)) = O(n?)
if and only if

3 constant T such that C((n/2)-cligue)) = O(n")
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Proof

<= By definition of the central slice function

=> Suppose C®(Cen {(n/2)~cligue)) = O(n?). From Theorem(7.2) we can con-
struct a polynomial size monotone network S;, for each k-slice of (n/2)-

clique. From Fact(6.1), (i):
eu(n)
C((n/R)-cligue) < » Cm(S,) + O(n)
k=ey(n/2)

< O(nT™) for some constant T

a

Corollary 7.2)

Cen ((n/R)-cligue ) is NP-complete.

Proof

Certainly Cen ((n/2)—cligue) € NP. Theorem(7.2) and Corollary(7.1) yield a
polynomial sized reduction from (n/R2)-clique to Cen((5n/R)-cligue), since
the graphs H and G* used in the proof of Theorem(7.2) are both easily construc-

tible.

oo
An alternative proof of Corollary(7.2) is yielded by the following result,
which also produces a more efficient construction of (n/2)-clique than is

implied by Fact(6.1). We shall assume, for convenience, that n is a multiple of 4.

Lemma 7.4)

Let YU be the set of boolean variables encoding the edges of a 5n vertex

undirected graph H(YY).

(n/2)—cligue (XP) is a projection of Cen ((5n)/2—cligue (Y7))
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Proof

The construction is similar to that of Theorem(7.2). Given an n-vertex
undirected graph G, a dn-vertex undirected graph His built with Lthe following
properties:
1) HMcontains a (6n)/2-clique if and only if G contains an (n/2)-clique.
) |BAD| = e, (5n)/2

Heconsists of 3 graphs, connceted as in Figure(7.2).

The graph G has vertex sel fu,..u, ) and is the complement of G with
respect Lo K. (ie the graph such that (i) € L(GY <=> (i ;) & B(G))

G° has vertex sel fw,,..wg, |, the vertices {w,....wp, | forming a 2n-clique
In addition G° contains (Yn®+n)/4 edges which are not part of this clique and
G* does not contain a (5n)/2-clique. Finally there arc edges:

(g ,15) v 1=1i=<Pn , 1<j<n

The existence of Hfor all pertinent n may be verified from Lemma(7.3).
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Yy

Figure 7.2

By observing that the graph G is disconnected from G and using the proof

of Lemma(7.2) it is easy to see that H contains a (5n )/ 2-clique if and only if G

contains an (n/2)-clique. 1 contains |e, (5n)/ 2| edges since:

B = [BG)] + [E(G)] + |E(G")] + 2n?
e (n) +ey(Bn) + (Tn?+n)/ 4 + 2n?

e, (6n)/2

t

Now consider Cen((5n)/2-cligue (YV)). To compute (n/2)-clique (XY
proceed by constructing the graph H and compute Cen(E(H)). Since
(B =e,(Bn)/R:

Cen ((5n/2)—cligue (YU)) <=> (5n/2)-cligue (YY)
<=» (n/2)-cligue (XY) (]
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7.3.2) Directed Hamiltonian Circuit

Lemma 7.5)
Let G* be a Bn-vertex directed graph with vertices {w,,...wg, ], satisfying:
Ql) v 1<isn-11<j<6n

(ww ) § E(G”) : (way )¢ EG)

Q2) There is a directed hamiltonian path connecting the vertices {w, ... wg,}

which commences in w, and terminates in wg,, .
Q3) G’ contains a edges other than those in the hamiltonian path.
If H(X£,) is the (7n)-vertex graph formed from G(XP) and G* by adding the
edges:
E1) (waw) vy € V(G)
ER) () vy, €TF(y) 1sisn-—1
(Wen Un,) ¥ U, € T{uy)
Then:
DHC(H(X$,)) <=> DHC(G(XD))
Proof
Letieg(n) = n(n~1),1 = e4(n)/R2 —k andlet:

TH(w) = fy € V(G) | (v.2) € E(G) )
<= By construction of H(X},)
=> Consider any directed hamiltonian circuit in H(X#,). From the construc-
tion, all the edges (v;, ) must be in this circuit and for each 1 <i<n-1
some edge (w ay € I'*(y;)) must be in the circuit. For the vertices
{w, ... wg, § there must be a segment of the circuit which corresponds to a

hamiltonian path through {w,,...wg,} in G*, which path begins in w, and
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ends in wg,. Finally there must be an edge (wg, Up, € IM(v,)). It is easy to
see that replacing each pair of edges:
(vi.ul‘»),(w‘-,vij) by (vi,v,-_j) € BE(G) foreach 1<i=n-1

(vn .'UJn).('Uan A'unj) by (’U" -'Unj) € E(G)

yields a directed hamiltonian cycle in G(XP).

=
Theorem 7.3
Let:
L={nn+l,..n(n-1)]
Then:
vilel
Cm( l-slice (DHC(XP))) = 0(C=( Cen (DHC(XH )
Proof

Let H and G° be the graphs constructed in the statement of Lemma(7.5).

This lemma establishes that DHC(XD) is a subfunction of DHC(X4,)

As before «, the number of extra edges in G°, must be chosen to set the

"threshold terms"” correctly. i.e So that:

|E(H)-E(G)| = e(Tn)/2—-e(n)/2+k

Now from the construction of H(X%,):

|E(H)-E(G)]| = 6n +a+ 3 |I"(w)]
v € V(G)

]

6n + a + |B(G)|
Solving (for a) yields:

a = 24n? -9n +k — |E(G)|

By observing that:
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—(n?-n)/2 < k = (n¥-3n)/2
0= |B(G) = nt-n
It follows that:
0 < a = ][2 ‘5112—]0.571]
|
If 8 is again the set of possible extra edg‘es (which in this case must con-

nect only vertices (uy,1;) where both i and j satisfyn <ij < 6n), then:

B | = ey4(Bbn+1) —b6n

= pbn?
> rmuximum value of o

The theorem follows.
]
Corollary 7.3
Co(Cen (DHC (X)) = One) <=> C(DHCXP)) = O(n¥) q.r constants

Proof

<= By definition of the central slice function.

1
v

1) Llet S, S, S be distinct monotone nelworks compuling
Cen (DHC (XA)).
2)  Use the network S, to compule the k-slice of DHC(XP) for & k-edge graph.
3) Cornpule for each k {wheren <k <=n?-n)
gx = RES(S,) ~ E{4™(XD)
4)  Then:
pHC(RP) = "4 g, (XD
X =10
The total nurmber of gates used is clearly polynomial inn

1

Corollary 7.4)

Cen (DHC(XD)) is NP-complele.

Proof

Agpin Cen (DHC(XP)) € NP. Theorem(7.3) and Corollary(7.3) give a polyno-

mial sized reduction from DHC(XP) to Cen (DAC (XF,)).

Both the results below are derivable from similar constructions.

Theorem 7.4)

Cen {(Permanent ( X)) is NP-hard,

Cen (UHC(XY)) is NP-complete
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7.4) SATISFIABILITY

Definition 7.4)

Let P=C, A Cy A ..AC, be an m clause conjunctive normal form where
each clause ( is a disjunction of some subset of the literals:

Z={21,22,.20, "2 10 720 )

P is satisfiable if 3 7 € {0,1}" such that p/EF1=ml=m= 4

In this section we consider the NP-complete problem, SATISFIABILITY (SAT)
o! determining whether a given conjunctive normal form, as above, is satisfi-
able. Results similar to Lemma(7.1) and Theorem(7.2) etc are proved for this

predicate.

The definition below illustrates how SAT may be encoded as a monotone

boolean function with 2nm inputs.

Definition 7.5) (From Valiant [50])

Let:

xnm = iI 110-9%nm -yllv"-nynm;
be a set of 2nm boolean variables. X,,,, defines an m clause CNF formula P(X,,,)

over the set of literals Z as follows:

P(xnm) = clACZA...ACm
v =1
-z is a literal in G <=> yy =1

z is a literal in (G <=> zx
Thus:
1 if P(X,) is satisfiable

SAT (Xom) =
0 otherwise
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Lemma 7.6)

c-sl(SAT(X,,,)) exists and is the m-slice

Proof

Let p be a monom over X,,, such that |var (p)| < m. Consider the CNF, P,
that arises by setting the variables of var (p) to 1 and the remaining variables of
X.m to 0. Then:

P =Cin.nC,

Since |var(p)| < m, there must exist some clause C; of P which contains

no literals, and so C; = 0 (cf Theorem(5.2)). Thus P is not satisfiable and p can-

not be an implicant of SAT(X,,,). Therefore:

v p € PI(SAT(X,,,)) |var(p)|=m
Now consider any implicant p of SAT(X,,,) having |var (p)! > m. It will be

shown that there exists a proper subset of var {p) which is also an implicant of
SAT (X, ). establishing that all prime implicants have size m. Again, let P be the
CNF defined by setting the variables of p equal to 1 and the remaining variables
of X, to 0. The clauses of P may be partitioned into 2 sets:

Triv(P) = {G | G = z v ~z v ..} forsome 1<j<n

NTriv(P) = {{Cy....Cp} = Triv(P)}
wlog assume that NTriv(P) = {C,C,....Cy} where g <m.

Consider any assignment 7 to Z which satisfies P (one must exist since pis
an implicant of SAT(X,,)). Let {w,;,...w;}. be the set of literals such that
satisfies clause C; under . If u(w;) is the corresponding element of X,,,,,, then
clearly:

M = {p(w)...p(w,) | Cvar(p)
If Triv(P) # {] proceed as follows to extend M to a set of size m.

For each clause C; = (z v ~% v ..) in Triv(P), if z, = 1 under 7 then add

zi; to M otherwise add y; to M.
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Clearly M is still a subset of var (p) and |4/ | = m bul:

Lo~ ANy < SAT(X,
Vooyeeu™V o

itfollows that:v p € PILSAT(X,, ) |var (p)| = m.

)

Ty € M

121
Lemma 7.3)

Let N = 2nm

Co(c-SL(SAT (X)) = O(NlegN)
Proof
c-sLSAT(Xum ) = (SAT) A T ) v TN,

As before, a substituting function g(X,,,) is defined, which agrees with

SAT (X, ) when exactly m inputs are true. Let:

m n

9 06m) = A (TFAE) v ~ V(TP () A T (Y4))
where:
YCo = Ty B Vi Y )
XY‘\ = Ix()n“'-:rimf
YZ = Wi Yind

The correctness of this substitution follows from the fact that:

YA CNF, P, with m clauses and exactly n literals is satisfiable if and only if

each clause of P contains at least one literal, and should z; be a clause of

P then -z is not a clause of P

That is P is satisfiable if and only if 2 is a (non-zero) monom.

Note that in contrast to the previous examples g{X,,.) Is non-monotone,
however since a slice functlon 1s being computed, the translation of Fact(6.2)

may be applied giving the clairned monotone network complexity.

O
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The central slice of SAT(X,,.) is also NP-complete, as demonstrated by:

Theorerm 7.5)
Let L={m m+1,.. . 2nm}.

vlel
Co{l-stice (SAT (X, ))) = O(C™(Cen (SAT (Xynam))))

Proof
Let I =nm -k . For this construction given a m-clause CNF, P over Z, a new
4rn-clause CNF', @ over Z | Uis built, where Uis & set of 4m new literals and:
Pis satisfiable <=> Qs satisfiable
Let P° be the 3m-clause CNF over Udelined as follows:
P1) v clauses G of P* ) is a literal in €
P2) P* contains aliterals in addition to the 1, literals.
Qis the CNF P A P°.
We claim that:

Pis satisfiable <=> s satisfiable

=> By the constructlion, since u, = 1 satisties P°

<= 1f @ is satisfied by some assignment, m, then every clause of @ is satisfied
by m. Hence P is satisfiable, since the variables of P are disjoint from those
of P°.
Again o is chosen to project from Cen (SAT(Xy,4,,)) onto l=slice (SAT(X,,,.)).

i.e so that:

nm —k = 12nm - 3m -«

"

hus:

a = llnm —-38m + k



Let B be the

|B| = 12nm - 3m.

Since

It follows that:
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set of unused literals available over every clause,

-nm < k < nm -m

10nm—-3m < o < 12nm —4m < |B|

Thus l-slice (SAT (X, )) is a subfunction of Cen (SAT(Xsnsm)) and the theorem

follows.
a

Corollary 7.5)

Cen (SAT (X, )) is NP—complete
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Chapter 8

Monotone Boolean Functions With Equal Combinational And Monotone

Network Complexity

8.1) Introduction

The results of Berkowitz and their subsequent development by Wegener
[56]. leave open the possibility that a monotone function f with large monotone
complexity, may have an efficient realisation by a combinational network, i.e. if
J has large monotone complexity this may not imply that some slice of f is
hard. The construction of "pseudo-complements"” in Chapter(6), giving transfor-
mations between combinational and monotone networks for arbitrary monotone

functions, appears to do little to remove this difficulty.

In this chapter we define a natural series of classes @y ), of monotone
boolean functions-and show that for the "hardest”" members of each class there
is no asymptotic gap between the combinational and monotone complexity
measures. For the special case 7 = 2, we obtain the stronger result that for all

members of the class no such gap exists.

The remainder of this chapter is organised as follows: In Section(B.2) some
preliminary results are stated. In Section(B.3) the classes @ ;) are defined and
the results stated above proved. In Section(B.4) we consider the extension of our
results to multiple output functions and to a wider class of monotone boolean

functions.
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8.2) Preliminary Results

Fact 8.1)  (fmprovement of Herkowilz [297)

Let k& be constant

CTE G =] 0T (K~ ]) = O(m)
o

Fact 8.2) (Shunnon [45), sce Paterson [35))1

Let H C M, . Then for almost all h € H:

oy = 0 |tea (M)
W”"“me%umﬁ

]

Y iy result is more usuelly stated in terms of e B or =N . It nuy be casily verified that the for-
muletion ebove follows from the proof in [35].
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8.3) Main Resull
Definition 8.1)
letr € N:
Qury = 15 €My |'v pEPIY), var(p)] =n—r}
Lemma B.1)
For almost all f € Qp ry:

nl’
rlogn

cr) =N

Proof
The nurnber of distinet monoms of size n—r over X, = {z,,....z, ] is 0 (n"),
since 7 is fixed. Thus:

| Q{n,r) | = 2007

and the Lernma follows frorm Fact(B8.2). 0
Theorem B.1)
Let f € Q) for some fixed 7.
C) = On™Y) <=> C%() = O(n™)

Proof

Trivial.

N
i

=> Let T be an optimal combinational network computing f. Convert Tto an

A, - -nelwork Ty with negation restricted to the network inputs. Then:
i 14 p

C(Ty) = O(n"™)

Observe that:

SRl AT = (I AnTla)v I}



Now proceed as follows:

S1) Compute (f A TR, ) Vv T% 4, by a {A,v, ~]-network, T,.
C(T)) = C(To) + O(n) = O(n")

S2) Construct a monotone network S;, computing the n-output function:
R X =tz ) TP (K )

C™(S) = O(n)
From Fact(B.1)

S8) Dualise S so that it computes:

RS K=tz ) TR (X {20 §)
S4) Combine the networks S; and T, by replacing each input ~z; of T, by the

output TRZH(X, —{z; }) of Sy. From Fact(8.2), this new monotone network S,
computes:

(f N~ Tr’:—-r ) b Tgﬂw—l
and C=(S)) = O(n™1).

It remains to construct S computing f from S;, using O( »n"~! ) monotone gates.

That this may be done follows from the result below:

Claim B.1)

Let 5; be an optimal monotone network computing:

(FATRoV) Tipeg l=gs<r
Then:

(5 ) = 0(n™")
Proof

By Inductionon g.
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Base g=1

Follows from Steps (S1)-(S4) above.

Inductive Step

We shall assume the claim holds for all values < ¢ < 7 and prove that it

holds for g. Thus let 5;_, be an optimal network computing:

(f n 7'1';'—1 v ) m—‘ro-q—l

We may express the function computed by S;-, as:

(fATRs) vPivpeV..Vvp
where forallp;:p; s f A TR = f
letx (pi) = vizeX, |p 7]
We claim that:

vm ePIf), vp: m=x(p)
To see this observe that var (m) ¢ var (p;), thus 3 z € X, such that:

m <z < x(p)

S; is the network which computes:

((fATRZ) Y Tirig-) A A x(p1)

which evaluates to:

Il

(FARL)v A (peonx(pi))
= fATR LY Threg
To compute a single x( p; ) costs r—g +1 gates. To compute all the y( p; )
and their conjunction costs t (r—g+1) + t monotone gates. Bul r—g +1 is a con-

stant and:

sl

7+
r—qg+1
0( nr-l)

A

A

A
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since g = 2. Therefore: 8.4) Extensions to Theorem(8.1)

cos = C™(S,.,)+ 0 nrol
(5,) (5,-1) ( ) Definition 8.2)

and the cleim follows by the inductive hypothesis. 0

letr € N
By repeatedly applying the construction ot Claim(8.1) to 8, we obtain a net- |
work S, which cornputes: Qi = S da b LU T Q) !
(f A T‘n“r) v '[;u - f ‘ Lemma B.Z)

a LTS = v
and C™( S, ) o(n™ 1) For almost all = {fy...fm} € Q1

(m}
mn’” —mloc }
QT

c¥) = -
(¥) log (r/m"nmlogm)}

Corollary 8.1)

Let J € Qg for some fixed v, 1f C(f) = o (n" ") then: Proof

CUu) = o) Let aug ( F)(X,..Y) be the funclion:
]
‘?l Yo A LK)
Corolle B.2
i G Clearly: Cloug (F) ) < C(I") + O(m ) (%)
v [ € Quy CUJS) = 0(CU)) Let:
H=low(F) | ¥Fefiny}

Then:
- ] Q(_n.r) I1
R = { oy J
and Lemma(B8.2) follows from Fact(8.2) and (*). O

We sha!l assume below that m = 0(n®) for some constant c, allowing the

expression of Lemma(B8.2) Lo be simplified to:

G F) = I |emBe
(F) = {(r+c)logn
Theorem B8.2)

Let ¥ € Q[ ;y for some constant r and m = 8(n°). Then if

Cu( ) =w(nrret )
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C(F) = Q(C2(F)) But then: C™(h A TP) = w(n?%")-1) and from Theorem(B.1):
Proof C(hATPF) = Q(C(h ATT))
and (1) yields:
Exactly as the construction of Theorem(8.1). [m]
C(h) = Q(C™h))
Definition B.3) as claimed. [m)
Lett €N
Corollary 8.3)
R = y U | A1 J)EM, | [i€QMmry} Let HE Ry ;. If C®(H) = o(n"*e 91 then:
ool
Ry = [thyohsd | hER] C(H) = Q(C™(H))
For h ER,:d(h):mrggr(}‘) |var (m)| Proof
For He R, ,: d(H) = ﬁlé{;‘ d(h) Combination of Theorem(8.2) and Theorem(8.3). ]

As before we shall assume s = @ (n°¢) for some fixed c.

Theorem B.3)

If h € Ry such that:

C?(h) = w(nndh)-1)
Then: C(h) = Q(C=(h))

Prool

Let D(h) = z?Paﬁ)l(i)ivar(m)l Then:
m

_ D) .
h = ‘-=‘f<h) h oA TP 0

By definition of Ry, d(h) = n—k, for some k € N. Thus:

o)
C™(h) = i C*(h AT}
i=d(h)
<

(D(h)—d(h)+1) max C(h ATH)

"

o( max c=(h A TT))
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Chapter 9

Conclusions

In the examination of monolone boolean function complexity above, atten-
tien hias been focused on two methods central Lo most existing lower bound
proofs in this fleld. The ermphasis in the second part of this disserlation has been
placed on developing the work of Berkowitz [3] concerning the relation between
monotone and combinational network complexily via slice functions. Here we
consider the wider relevance of the resulls proved and propose some direclions
for further research.

Chapters(3) and (4) establish improved linear lower bounds on the mono-
tone network complexity of threshold functions. For the lower bound on 7%, the
basic inductive approach was supplemented with a wire counting argument. The
counting procedure does not adapt to combinational networks for several rea-
sons: the replacement rule of Lermma(3.1) does not hold for such networks and
so 1L is not possible to determine, as precisely, the structure of those oplimal
networks for which inductlive gale elimination fails. Secondly the analysis in the
wire counting argument relies heavily on monotonicity. A further, potential,
weakness in the proof technique is that presently it does nol extend to other
monotone functions. However this is also a problem with the methods of Paul
[38] and Blum [7] for unrestricled networks and in these cases the functions
considered are sliphtly artificial. There does appear Lo be some scope for shar-
pening Lthis argument in Lhe case of higher fixed threshold functions.

In contrast the lower bound construction for 77, in Chapter(4), could be
adapled Lo combinations! networks since the technique is entirely an induclive
one. Slockmeyer's approach for Congruence and other symmetric functions can

be interpreted s a simplified example of using reductlions in this way [46].
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The characterisation of all replacement rules applicable when computing
rmonotone boolean functions, unifies the results on replacement rules for partic-
ular functions proved by several authors. A problem arises in that for proving
the correctness of a specific rule, the representation in CNF and DNF is not the
most tractable, and an interesting development of this work, would be to obtain
similar characterisations in which the expressions resulting could be denoted in

terins of partial assignrments to f and g. For example, consider the functions:

lz,=0

zry) =

o A )

vy = AN v 71T

n
\/
i=1
n
/N
1=1

It may be easily verified that if f is a thresheld function, then 2'(f) = Z(f)
and UY(f) = UY).

Chapter(6) extended the results of Berkowitz in two ways: by showing that
the existence of pseudo-complements is a property of all monotone boolean
functions, although the construction of these does not, in general, permit an
efficient translation from combinational to monotone networks; and by proving
that slice function are a special case of the class of functions defined by dissect-
ing transforms, for which similar translational results are provable,

The final two chaplers answer some questions lefl open by Berkowitz and
Wegener [56]. We have considered three "core” monotone boolean NP-complete
problems: (n/2)-cliques, Hamiltonian circuit and Satisfiability. For each of
these the central slice function is proved NP-complele and thus is a strong can-
didate for a "hard"” slice function. The centrel slice function may possess the
same projective properties for non NP-camplete functions, however it seerns
unlikely that the more powerful result of Lernma(7.4), whereby the underlying
function f is & projection of Cen(f), holds in general. We conjecture the follow-

ing:
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Conjecture 9.1)
Let p(n) be any polynomial in n of degree at most 7, where 7 is fixed.

(n/ 2)—clique is not a monotone projection of Cen ({(p(n)/ 2—clique)
jw]

Conjecture 9.2)

Let p(n) be as above. Let ZCONV,,:{0,1}3" »{0,1} be the monotone function:

ZCONV, (T i Zpe1 Y0 Y —11Z 001 Zn—1) = A4 T, Y 2
T (zo n-1Y0i - Yn-1.20 1) i+j+k.—~_0(madn)‘y’ k

ZCONY, is not a projection of Cen(ZCONV, ).

O

The reasons for the first conjecture are based on the fact that the projec-
tion must arrange for ezactly half the inputs of the central slice instance to be
1, no matter how many edges are present in the graph G(XY). While it is straight-
forward to achieve this using a non-monotone projection (by including the com-
plement graph G) there does not appear to be any similar method using mono-
tone projections. We note that if Conjecture(9.1) is false then the question

P =? NP may be reformulated as:

P# NP if the (n/R)-clique predicate has superpolynomial monotone net-

work complexity.

The second conjecture is proposed since the structure of ZCONV;, appears
to prevent the techniques of Lemma(7.4) being applied.

However the property of Lemma(7.4) does hold for some computationally
interesting multiple-output functions, using the following extended definition of

"projection”.
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Definition 9.1)
Let F={f1,..f;m} € Mnm and G = {g,.....9¢} € Mp q wherep =n and g =2m
Fis a projection of G if and only if:

3 0:Y-{X,,~z;...., ~Z,,0,1}
and a one-one mapping T:{1,....g}={1,...m] such that:

v 1<i<m f‘(X,.) = 97(¢)( U(Y))

Lemma 9.1)

Let BMPy:{0,1)3¥*5§0,1}" denote the NXxNxN matrix product functions of

Lemma(5.1).
BMPy is a projection of Cen (BMPay)
Proof (Outline)

Let 4 and B be any two NxN boolean matrices. Define A* and B" to be the

(RN)X(2N) boolean matrices:

e[t ) =27

Since for all input assignments to 4 and B, the total number of inputs set

e hf ~(113A>]

Let A,, Az, ..., An be m MXN boolean matrices. In [55] Wegener introduced

to 1 is 4N? and since:

the lemma follows. a

the monotone functions Direct Matrix Product ((mMN)~DHMP) as a generalisa-

tion of boolean matrix multiplication.

(mMN)—DMP:{0,1}™ N 50, 1}¥™

where each output yn n, .a, (1 = hy < M) is defined as:

1 2 m
Yhihehm ls\l/s y Thil A Thal A e ATRL)
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where =}, is the (7.k) entry of the matrix 4;. (Thus the output Un,..n,, 1S Lruedf
and only if all the rows referenced have a commion 1.)
VWepener defined instances of this set of functions having monotone network

complexity 6(n®/logn) where n = H™ miN

Lermma 9.2)
(mMN)Y=DUP s & projection of Cen (((m +1)M(2N))=DMP)
Proo! (Dutline)

Let A be the Mx(2N) matrix:

A= (A -A)

and let A5, be the MX(2N) matrix (1 0) L may be verified that:

(R ANY-DHP(Ay. Ay = (1) (2NY=DHP (4] Ani)

We observe that good upper bounds on Cen (BMPy) also provide good upper
bounds on the combinational complexity of Boolean Matrix Product. Chapler(8)
resolved some questions, on the existence of complexity paps, for a cerlain class
of functions. To conclude we present sorne open problems arising frorn the work

above.

Open Probleras

P1) The wire counting argument employed in Chapter(3), assumes that optimal
netwerks of & particular type exist which compute T4, However, it is not
clear whether this assumption is valid. Thus:
Does any (optimal) monolene network exist which computes T4 AND is such

that every network input enters exactly 2 v-gates?

Anegative answer to this question would yield a 3n lower bound.
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P2) To what extent can the lower bounds of Theorem(4.3) be improved by intro-
ducing wire counting arguments similar to that of Chapter(3)?

P3) The functions 2(f) and U(f) of Chapter(d) are inverse. One can thus parti-
tion M, into a set of "cyeles” of monolone functions, QCI,,..,CA‘I;, where each
cycle, C;, consists of a set of functions Ul,,,,,fg‘{ wilh the property that:

2f) = z(f((in) mod B+ 1 )
Little is known about the eycles C;. Three basic questions are;

Q1) How do the values of «,, the number of cycles present, relate ten?

(2) What is the maximal value of #,?

Q3) Givenf and g in M, when do f and g belong to the same cycle class?

P4) Prove or disprove Conjectures(9.1) and (9.2) above.

P5) ls ZCONY, a projection of:

ZCONVy A Ty (K) A Tipe(Y) A T3y () v TRy (K) v TR730 (Y) v 10,20 (7)
i.e The "natural” central dissecting transform of order 8.

P6) Consider the following 2n-input n output function:

LCON(IO---‘rIn—l-UO-”wyn—l) = lLCo,...‘LC,,_d

where:

Lo =V I (K=l ) A TR (Y ={y8)
i+7 =k (modn)

It is easy Lo see that, by applying the results of Chapter(B):
C™( LCON(X%,.Y)) = O( C(LCON(X,.Y)))
Now consider an optimal {A, v, ~{-network computing Circulant Convolution, 1n
which nepation is restricted to the inputs. If the replacements
0= TRINO6, —1x ) for each x, and the corresponding replacements for each vy,

are made, then Lhe resulting network computes LCON (X,.Y). Thus:

CRLOON (%, Y)) = O(C(CONV(X,Y)))
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Where CONV is the n-output circulant convolution function.
The following open problem is therefore of interest:
Is C®(LCON (X, .Y)) = w(n)

A positive answer would establish a non-linear lower bound on the combina-

tional complexity of multiplication.

(]
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