
Chapter 9
Monotone Circuits

We now consider monotone circuits, that is, circuits with fanin-2 AND and OR
gates. As monotone formulas, such circuits can only compute monotone boolean
functions. Recall that a boolean function f is monotone if f .x/ � f .y/ as long as
xi � yi for all i . The difference from formulas is that now the fan-outs of gates may
be arbitrary, not just 1. That is, a result computed at some gate can be used many
times with no need to recompute it again and again. This additional feature makes
the lower bounds problem more difficult.

Until 1985, the largest known lower bound on the size of such circuits for
an explicit boolean function of n variables was only 4n (Tiekenheinrich 1984).
A breakthrough was achieved in 1985 when two mathematicians from Lomonosov
University in Moscow—Andreev (1985) and Razborov (1985a)—almost simultane-
ously proved super-polynomial lower bounds for monotone circuits.

In this chapter we present Razborov’s method of approximations as well as
another, simpler argument yielding exponential lower bounds even for circuits with
monotone real-valued functions as gates.

As in the entire book, here our focus is on proving lower bounds. A compre-
hensive exposition of known upper bounds for monotone circuits and monotone
switching networks can be found in a survey by Korshunov (2003).

9.1 Large Cliques are Hard to Detect

We will first demonstrate Razborov’s method of approximations for the case of
monotone circuits computing the clique function. Later, in Sect. 9.10, we describe
his method in its full generality, and apply it to the perfect matching function.

The clique function fn D CLIQUE.n; k/ has
�

n
2

�
variables xij , one for each

potential edge in a graph on n vertices Œn� D f1; : : : ; ng; the function outputs 1 iff
the associated graph contains a clique (complete subgraph) on some k vertices. The
clique function is monotone because setting more edges to 1 can only increase the
size of the largest clique.

S. Jukna, Boolean Function Complexity, Algorithms and Combinatorics 27,
DOI 10.1007/978-3-642-24508-4 9, © Springer-Verlag Berlin Heidelberg 2012

245

246 9 Monotone Circuits

Theorem 9.1. (Razborov 1985a; Alon and Boppana 1987) For 3 � k � n1=4, the
monotone circuit complexity of CLIQUE.n; k/ is n˝.

p
k/.

We will analyze the behavior of circuits for fn on two types of input graphs:

• Positive graphs are k-cliques, that is, graphs consisting of a clique on some k

vertices and n � k isolated vertices; we have
�

n
k

�
such graphs and they all must

be accepted by fn.
• Negative graphs are .k � 1/-cocliques formed by assigning each vertex a color

from the set f1; 2; : : : ; k � 1g, and putting edges between those pairs of vertices
with different colors; we have .k � 1/n such graphs and they must be rejected
by fn. (Different colorings can lead to the same graph, but we will consider them
as different for counting purposes.)

The main goal of Razborov’s method is to show that, if a circuit is “too small”,
then it must make a lot of errors, that is, must either reject most of positive graphs
or accept most of negative graphs. Circuits can be amorphous, so analyzing their
behavior directly is difficult. Instead, every monotone circuit will be approximated
by another monotone circuit of a very special type—namely, a short DNF that is
tailor-made to represent collections of cliques.

Now we define these DNFs, our so-called “approximators”. For a subset X of
vertices, the clique indicator of X is the monotone boolean function dXe of

�
n
2

�

variables such that dXe.E/ D 1 if and only if the graph E contains a clique on the
vertices X . Note that dXe is just a monomial

dXe D
^

i;j 2X Ii<j

xij

depending on only
�jX j

2

�
variables.

An .m; l/-approximator is an OR of at most m clique indicators, whose
underlying vertex-sets each have cardinality at most l :

A D
r_

tD1

dXte D
r_

tD1

^

i¤j 2Xt

xij .r � m; jXt j � l/ :

Here l � 2 and m � 2 are parameters depending only on values of k and n; the
values of these parameters will be fixed later.

The main combinatorial tool used in the proof of Theorem 9.1 is the well-known
Sunflower Lemma discovered by Erdős and Rado (1960). A sunflower with p petals
and a core T is a collection of sets S1; : : : ; Sp such that Si \ Sj D E for all i ¤ j .
In other words, each element belongs either to none, or to exactly one, or to all of
the Si (Fig. 9.1). Note that a family of pairwise disjoint sets is a sunflower (with an
empty core).

Jukna
Cross-Out

Jukna
Replacement Text
E

9.1 Large Cliques are Hard to Detect 247

E

Fig. 9.1 A sunflower with
eight petals

Sunflower Lemma. Let F be family of non-empty sets each of size at most l . If
jF j > lŠ.p � 1/l then F contains a sunflower with p petals.

In particular, every graph with at least 2.p � 1/2 C 1 edges must have p vertex-
disjoint edges of a star with p edges.

Proof. We proceed by induction on l . For l D 1, we have more than p � 1 points
(disjoint 1-element sets), so any p of them form a sunflower with p petals (and
an empty core). Now let l � 2, and take a maximal family S D fS1; : : : ; St g of
pairwise disjoint members of F .

If t � p, these sets form a sunflower with t � p petals (and empty core), and we
are done.

Assume that t � p � 1, and let S D S1 [� � � [St . Then jS j � l.p � 1/. By
the maximality of S, the set S intersects every member of F . By the pigeonhole
principle, some point x 2 S must be contained in at least

jF j
jS j >

lŠ.p � 1/l

l.p � 1/
D .l � 1/Š.p � 1/l�1

members of F . Let us delete x from these sets and consider the family

Fx WD fF n fxg W F 2 F ; x 2 F g :

By the induction hypothesis, this family contains a sunflower with p petals. Adding
x to the members of this sunflower, we get the desired sunflower in the original
family F . ut

9.1.1 Construction of the Approximated Circuit

Given a monotone circuit F for the clique function fn, we will construct the
approximator for F in a “bottom-up” manner, starting from the input variables.
An input variable is of the form xij , where i and j are different vertices; it is
equivalent to the clique indicator dfi; j ge D xij .

Suppose at some internal node of the circuit, say at an OR gate, the two subcir-
cuits feeding into this gate already have their .m; l/-approximators A D Wr

iD1dXi e
and B D Ws

iD1dYie, where r and s are at most m. We could approximate this OR

248 9 Monotone Circuits

gate by just A _ B , but this could potentially give us a .2m; l/-approximator, while
we want to stay at .m; l/.

At this place the Sunflower Lemma comes to our rescue. To apply the Sunflower
Lemma to the present situation, consider the family

F D fX1; : : : ; Xr; Y1; : : : ; Ysg

and set
m WD lŠ.p � 1/l :

If r C s > m then some p of the sets in F form a sunflower. We then replace these
p sets by their core; this operation is called a plucking. Repeatedly perform such
pluckings until no more are possible. The entire procedure is called the plucking
procedure. Since the number of vertex sets decreases with each plucking, after at
most jF j D r C s � 2m pluckings we will obtain an .m; l/-approximator for our
OR gate, which we denote by A t B .

If the gate was an AND gate (not an OR gate) then forming the AND of the
two approximators A D Wr

iD1dXi e and B D Ws
iD1dYie yields the expressionWr

iD1

Ws
j D1.dXie ^ dYie/. Two reasons why this expression itself might not be an

.m; l/-approximator are that the terms dXi e ^ dYi e might not be clique indicators
and that there can be as many as m2 terms.

To overcome these difficulties, apply the following three steps:

1. Replace the term dXie ^ dYie by the clique indicator dXi [Yie;
2. Erase those clique indicators dXi [Yie for which jXi [Yj j � l C 1;
3. Apply the plucking procedure (described above for OR gates) to the remaining

clique indicators; there will be at most m2 pluckings.

These three steps guarantee that an .m; l/-approximator is formed; we denote it
by A u B . (Note an “asymmetry” in the argument: AND gates need more work to
approximate than OR gates.)

9.1.2 Bounding Errors of Approximation

Now fix a monotone circuit F computing fn D CLIQUE.n; k/, and let F 0 be the
approximated circuit, that is, an .m; l/-approximator of the last gate of F . We will
show that

1. Every approximator (including F 0) must make a lot of errors, that is, disagree
with fn on many negative and positive graphs.

2. If size.F / is small, then F 0 cannot make too many errors.

This will already imply that size.F / must be large.

Lemma 9.2. Every approximator either rejects all graphs or wrongly accepts at
least a fraction 1 � l2=.k � 1/ of all .k � 1/n negative graphs.

Jukna
Cross-Out

Jukna
Replacement Text
Y_j

9.1 Large Cliques are Hard to Detect 249

Proof. Let A D Wr
iD1dXi e an .m; l/-approximator, and assume that A accepts at

least one graph. Then A � dX1e. A negative graph is rejected by the clique indicator
dX1e iff its associated coloring assigns some two vertices of X1 the same color. We
have

�jX1j
2

�
pairs of vertices in X1, and for each such pair at most .k�1/n�1 colorings

assign the same color. Thus, at most
�jX1j

2

�
.k�1/n�1 � �

l
2

�
.k�1/n�1 negative graphs

can be rejected by dX1e, and hence, by the approximator A. ut
Thus, every approximator (including F 0) must make a lot of errors. We are now
going to show that, if size.F / is small, then the number of errors cannot be large,
implying that size.F / must be large.

Lemma 9.3. The number of positive graphs wrongly rejected by F 0 is at most
size.F / � m2

�
n�l�1
k�l�1

�
.

Proof. We shall consider the errors introduced by the approximator of a single gate,
and then apply the union bound to get the claimed upper bound on the total number
of errors.

If g is an OR gate and A; B are the approximators of subcircuits feeding into this
gate, then our construction of the approximator A t B for g involves taking an OR
A _ B (which does not introduce any errors) and then repeatedly plucking until we
get down our number of clique indicators. Each plucking replaces a clique indicator
dXie by some dXe with X � Xi which can accept only more graphs. Hence, on
positive graphs, A t B produces no errors at all.

Now suppose that g is an AND gate. The first step in the transformation from
A^B to AuB is to replace dXie^dYj e by dXi [Yj e. These two functions behave
identically on positive graphs (cliques). The second step is to erase those clique
indicators dXi [Yj e for which jXi [Yj j � l C 1. For each such clique indicator, at
most N WD �

n�l�1
k�l�1

�
of the positive graphs are lost. Since there are at most m2 such

clique indicators, at most m2N positive graphs are lost in the second step. The third
and final step, applying the plucking procedure, only enlarges the class of accepted
graphs, as noted in the previous paragraph. Summing up the three steps, at most
m2N positive graphs can be lost by approximating one AND gate. Since we have at
most size.F / such gates, the lemma is proved. ut
Lemma 9.4. The number of negative graphs wrongly accepted by F 0 is at most
size.F / � m2l2p.k � 1/n�p.

Proof. Again, we shall analyze the errors introduced at each gate.
If g is an OR gate and A; B are the approximators of subcircuits feeding into

this gate, then our construction of the approximator A t B for g involves taking an
OR A _ B (which does not introduce any errors) and then performing at most 2m

pluckings until we get down our number of clique indicators.
Each plucking will be shown to accept only a few additional negative graphs.

Color the vertices randomly, with all .k � 1/n possible colorings equally likely, and
let G be the associated negative graph. Let Z1; : : : ; Zp be the petals of a sunflower
with core Z. What is the probability that dZe accepts G, but none of the functions

250 9 Monotone Circuits

dZ1e; : : : ; dZpe accept G? This event occurs iff the vertices of Z are assigned
distinct colors (called a proper coloring, or PC), but every petal Zi has two vertices
colored the same. We have

ProbŒZ is PC and Z1; : : : ; Zp are not PC�

� ProbŒZ1; : : : ; Zp are not PCjZ is PC�

D
pY

iD1

ProbŒZi is not PCjZ is PC�

�
pY

iD1

ProbŒZi is not PC�

�

l

2

!p

� .k � 1/�p � l2p.k � 1/�p :

The first inequality holds by the definition of the conditional probability. The second
line holds because the sets Zi nZ are disjoint and hence the events are independent.
The third line holds because the event “Zi is not a clique” is less likely to happen
given the fact that Z � Zi is a clique. The fourth line holds because Zi is not
properly colored iff two vertices of Zi get the same color.

Thus to the class of wrongly accepted negative graphs each plucking adds at most
l2p.k � 1/n�p new graphs. There are at most 2m pluckings, so the total number of
negative graphs wrongly accepted when approximating the gate OR g is at most
2ml2p.k � 1/n�p.

Next consider the case when g is an AND gate. In the transformation from A^B

to AuB , the first step introduces no new violations, since dXie^dYj e � dXi [Yj e.
Only the third step, the plucking procedure, introduces new violations. This step was
analyzed above; the only difference is that there can be m2 pluckings instead of just
2m. This settles the case of AND gates, thus completing the proof. ut
Proof of Theorem 9.1. Set l D bp

k � 1=2c and p D �.
p

k log n/; recall that m D
lŠ.p � 1/l � .pl/l . Let F be a monotone circuit that computes CLIQUE.n; k/. By
Lemma 9.2, the approximator F 0 of F is either identically 0 or outputs 1 on at least
a .1 � l2=.k � 1// � 1

2
fraction of all .k � 1/n negative graphs. If the former case

holds, then apply Lemma 9.3 to obtain

size.F / � m2 �

n � l � 1

k � l � 1

!

�

n

k

!

:

Since
�

n
k

�
=
�

n�x
k�x

� � .n=k/x , simple calculation show that in this case size.F / is

n˝.
p

k/. If the later case holds then apply Lemma 9.4 to obtain

9.2 Very Large Cliques are Easy to Detect 251

size.F / � m2 � 2�p � .k � 1/n � 1

2
.k � 1/n :

Since 2p D n˝.
p

k/, in this case we again have that size.F / is n˝.
p

k/. ut
Remark 9.5. Recently, Rossman (2010) gave lower bounds for the Clique function
that apply to finding small cliques in random graphs. Let G.n; p/ denote a random
graph on n vertices in which each edge appears at random and independently with
probability p. Let k be a fixed natural number. It is well known that p WD n�2=.k�1/

is a threshold for appearance of k-cliques. Rossman showed that, for every constant
k, no monotone circuit of size smaller than O.nk=4/ can correctly compute (with
high probability) the Clique function on G.n; p/ and on G.n; 2p/ simultaneously.

9.2 Very Large Cliques are Easy to Detect

By Theorem 9.1, we known that there exists a constant c > 0 such that every
monotone circuit computing the clique function CLIQUE.n; k/ requires at least
nc

p
k gates. Moreover, it can be shown (see Theorem 9.19 below) that already

for k D 3 at least ˝.n3= log4 n/ gates are necessary. In fact, Alon and Boppana
(1987) showed that Razborov’s lower bound can be improved to ˝..n= log2 n/k/

for any constant k � 3, and for growing k we need at least 2˝.
p

k/ gates, as long as
k � .n= log n/2=3=4. Thus, small cliques are hard to detect.

By a simple padding argument, this implies that even detecting cliques of size
n�k requires a super-polynomial number of gates, as long as k � n=2 grows faster
than log3 n.

Proposition 9.6. For k � n=2, every monotone circuit for CLIQUE.n; n � k/

requires 2˝.k1=3/ gates.

Proof. Fix the integer m with m � s D k where s D b.m= log m/2=3=4c; hence
s D ˝.k2=3/. Then CLIQUE.m; s/ is a sub-function of (that is, can be obtained by
setting to 1 some variables in) CLIQUE.n; n � k/: just consider only the n-vertex
graphs containing a fixed clique on n � m vertices connected to all the remaining
vertices (the rest may be arbitrary). On the other hand, according to the lower bound
of Alon and Boppana (mentioned above) the function CLIQUE.m; s/, and hence,
also the function CLIQUE.n; n � k/ requires monotone circuits of size exponential
in ˝.

p
s/ D ˝.k1=3/. ut

But what is the complexity of CLIQUE.n; n � k/ when k is very small,
say, constant—can this function then be computed by a monotone circuit using
substantially fewer than nk gates? Somewhat surprisingly, for every(!) constant
k, the CLIQUE.n; n � k/ function can be computed by a monotone circuit of
size O.n2 log n/. Moreover, the number of gates is polynomial, as long as k D
O.
p

log n/. Recall that CLIQUE.n; k/ requires ˝.nk= log2k n/ for every constant

252 9 Monotone Circuits

k, and that already for k D !.log3 n/, any monotone circuit for CLIQUE.n; n � k/

requires a super-polynomial number of gates.

Theorem 9.7. (Andreev and Jukna 2008) For every constant k, the function
CLIQUE.n; n � k/ can be computed by a monotone DeMorgan formula containing
at most O.n2 log n/ gates. The number of gates remains polynomial in n as long as
k D O.

p
log n/.

In this section we will prove Theorem 9.7. To do this, we need some preparations.
First, instead of constructing a small formula for the Clique function, it will be
convenient to construct a small formula for the dual function. Recall that the dual
of a boolean function f .x1; : : : ; xn/ is the boolean function f �.x1; : : : ; xn/ D
:f .:x1; : : : ; :xn/. If f is monotone, then its dual f � is also monotone. For
example,

.x _ y/� D :.:x _ :y/ D x ^ y I

.x ^ y/� D :.:x ^ :y/ D x _ y :

In particular, the dual of CLIQUE.n; n�k/ accepts a given graph G on n vertices
iff G has no independent set with n�k vertices, which is equivalent to �.G/ � kC1,
where �.G/ ist the vertex-cover number of G. Recall that a vertex cover in a graph
G is a set of its vertices containing at least one endpoint of each edge; �.G/ is the
minimum size of such a set. Hence, the dual of CLIQUE.n; n � k/ is a monotone
boolean function VC.n; k/ of

�
n
2

�
boolean variables representing the edges of an

undirected graph G on n vertices, whose value is 1 iff G does not have a vertex-
cover of cardinality k.

We will construct a monotone formula for VC.n; k/. Replacing OR gates
by AND gates (and vice versa) in this formula yields a monotone formula
for CLIQUE.n; n � k/, thus proving Theorem 9.7.

9.2.1 Properties of �-Critical Graphs

A graph is �-critical if removing any of its edges reduces the vertex-cover number.
We will need some properties of such graphs.

Theorem 9.8. (Hajnal 1965) In a �-critical graph without isolated vertices every
independent set S has at least jS j neighbors.

Proof. Let G D .V; E/ be a �-critical graph without isolated vertices. Then G is also
˛-critical in that removing of any its edge increases its independence number ˛.G/,
that is, the maximum size of an independent set in G. An independent set T is
maximal if jT j D ˛.G/.

Let us first show that every vertex belongs to at least one maximal independent
set but not to all such sets. For this, take a vertex x and an edge e D fx; yg. Remove

9.2 Very Large Cliques are Easy to Detect 253

e from G. Since G is ˛-critical, the resulting graph has an independent set T of
size ˛.G/ C 1. Since T was not independent in G, x; y 2 T . Then T n fxg is an
independent set in G of size jT n fxgj D ˛.G/, that is, is a maximal independent
set avoiding the vertex x, and T n fyg is a maximal independent set containing x.

Hence, if X is an arbitrary independent set in G, then the intersection of X with
all maximal independent sets in G is empty. It remains therefore to show that, if Y is
an arbitrary independent set, and S is an intersection of Y with an arbitrary number
of maximal independent sets, then

jN.Y /j � jN.S/j � jY j � jS j;

where N.Y / is the set of all neighbors of Y , that is, the set of all vertices adjacent to
at least one vertex in Y . Since an intersection of independent sets is an independent
set, it is enough to prove the claim for the case when T is a maximal independent
set and S D Y \ T . Since clearly N.S/ � N.Y / � T , we have

jN.Y /j � jN.S/j � jN.Y / \ T j
D jT j � jS j � jT n .Y n N.Y //j
D ˛.G/ � jS j C jY j � j.T [Y / n N.Y /j
� jY j � jS j;

where the last inequality holds because the set .T [Y / � N.Y / is independent. ut
In our construction of a small circuit for the Vertex Cover function, the following

consequence of this theorem will be important.

Corollary 9.9. Every �-critical graph G has at most 2�.G/ non-isolated vertices.

Proof. Let G D .V; E/ be an arbitrary �-critical graph, and let U � V be the set
of non-isolated vertices of G. The induced subgraph G0 D .U; E/ has no isolated
vertices and is still �-critical with �.G0/ D �.G/. Let S � U be an arbitrary vertex-
cover of G0 with jS j D �.G/. The complement T D U � S is an independent
set. By Hajnal’s theorem, the set T must have at least jT j neighbors. Since all these
neighbors must lie in S , the desired upper bound jU j D jS j C jT j � 2jS j � 2�.G/

on the total number of non-isolated vertices of G follows. ut
Finally, we will need a fact stating that �-critical graphs cannot have too many

edges. We will derive this fact from the following more general result.

Theorem 9.10. (Bollobás 1965) Let A1; : : : ; Am and B1,: : :, Bm be two sequences
of sets such that Ai \ Bj D ; if and only if i D j . Then

mX

iD1

jAi j C jBi j

jAi j

!�1

� 1 : (9.1)

254 9 Monotone Circuits

Proof. Let X be the union of all sets Ai [Bi . If A and B are disjoint subsets of X

then we say that a permutation .x1; x2; : : : ; xn/ of X separates the pair .A; B/ if no
element of B precedes an element of A, that is, if xk 2 A and xl 2 B imply k < l .

Each of the nŠ permutations can separate at most one of the pairs .Ai ; Bi /,
i D 1; : : : ; m. Indeed, suppose that .x1; x2; : : : ; xn/ separates two pairs .Ai ; Bi /

and .Aj ; Bj / with i ¤ j , and assume that maxfk j xk 2 Ai g � maxfk j xk 2 Aj g.
Since the permutation separates the pair .Aj ; Bj /,

minfl j xl 2 Bj g > maxfk j xk 2 Aj g � maxfk j xk 2 Ai g

which implies that Ai \ Bj D ;, contradicting the assumption.
We now estimate the number of permutations separating one fixed pair. If jAjDa

and jBj D b and A and B are disjoint then the pair .A; B/ is separated by exactly

n

a C b

!

aŠbŠ.n � a � b/Š D nŠ

a C b

a

!�1

permutations. Here
�

n
aCb

�
counts the number of choices for the positions of A[B in

the permutation; having chosen these positions, A has to occupy the first a places,
giving aŠ choices for the order of A, and bŠ choices for the order of B; the remaining
elements can be chosen in .n � a � b/Š ways.

Since no permutation can separate two different pairs .Ai ; Bi /, summing up over
all m pairs we get all permutations at most once

mX

iD1

nŠ

ai C bi

ai

!�1

� nŠ

and the desired bound (9.1) follows. ut
Theorem 9.11. (Erdős–Hajnal–Moon 1964) Every �-critical graph H has at most�

�.H/C1
2

�
edges.

Proof. Let H be a �-critical graph with �.H/ D t , and let E D fe1; : : : ; emg be the
edges of H . Since H is critical, E nfeig has a .t �1/-element vertex-cover Si . Then
ei \ Si D ; while ej \ Si ¤ ;, if j ¤ i . We can therefore apply Theorem 9.10 and
obtain that m � �

2C.t�1/
2

� D �
tC1

2

�
, as desired. ut

Proof of Theorem 9.7

We consider graphs on vertex-set Œn� D f1; : : : ; ng. We have a set X of
�

n

2

�
boolean

variables xe corresponding to edges. Each graph G D .Œn�; E/ is specified by setting
the values 0 and 1 to these variables: E D fe j xe D 1g. The function VC.n; k/

accepts G iff �.G/ � k C 1.

9.2 Very Large Cliques are Easy to Detect 255

Let Crit.n; k/ denote the set of all �-critical graphs on Œn� D f1; : : : ; ng with
�.H/ D k C 1. Observe that graphs in Crit.n; k/ are exactly the minterms of
VC.n; k/, that is, the smallest with respect to the number of edges graphs accepted
by VC.n; k/.

Given a family F of functions f W Œn� ! Œr�, let ˚F .X/ be the OR over all
graphs H 2 Crit.r; k/ and all functions f 2 F of the following monotone formulas

Kf;H .X/ D
^

fa;bg2E.H/

_

e2f �1.a/�f �1.b/

xe:

The formula ˚F accepts a given graph G D .Œn�; E/ iff there exists a graph H 2
Crit.r; k/ and a function f 2 F such that for each edge fa; bg of H there is at least
one edge in G between f �1.a/ and f �1.b/.

A family F of functions f W Œn� ! Œr� is s-perfect if for every subset S � Œn� of
size jS j D s there is an f 2 F such that jf .S/j D jS j. That is, for every s-element
subset of Œn� at least one function in F is one-to-one when restricted to this subset.
Such families are also known in the literature as .n; r; s/-perfect hash families.

Lemma 9.12. If F is an .n; r; s/-perfect hash family with s D 2.k C 1/ and r � s,
then the formula ˚F computes VC.n; k/.

Proof. Since the formula is monotone, it is enough to show that:

(a) �.G/ � k C 1 for every graph G accepted by ˚F , and
(b) ˚F accepts all graphs from Crit.n; k/.

To show (a), suppose that ˚F accepts some graph G. Then this graph must be
accepted by some sub-formula Kf;H with f 2 F and H 2 Crit.r; k/. That is, for
every edge fa; bg in H there must be an edge in G joining some vertex i 2 f �1.a/

with some vertex j 2 f �1.b/. Hence, if a set S covers the edge fi; j g, that is, if
S \ fi; j g ¤ ;, then the set f .S/ must cover the edge fa; bg. This means that, for
any vertex-cover S in G, the set f .S/ is a vertex-cover in H . Taking a minimal
vertex-cover S in G we obtain �.G/ D jS j � jf .S/j � �.H/ D k C 1.

To show (b), take an arbitrary graph G D .Œn�; E/ in Crit.n; k/, and let U be the
set of its non-isolated vertices. By Corollary 9.9, jU j � 2�.G/ D 2.k C 1/ � s.
By the definition of F , some function f W Œn� ! Œr� must be one-to-one on U .
For i; j 2 U join a D f .i/ and b D f .j / by an edge iff fi; j g 2 E . Since G 2
Crit.n; k/ and f is one-to-one on all non-isolated vertices of G, the resulting graph
H belongs to Crit.r; k/. Moreover, for every edge fa; bg of H , the pair e D fi; j g
with f .i/ D a and f .j / D b is an edge of G, implying that xe D 1. This means
that the sub-formula Kf;H of ˚F , and hence, the formula ˚F itself must accept G.ut

Let us now estimate the number of gates in the formula ˚F . Using a simple
counting argument, Mehlhorn and Schmidt (1982) shows that .n; r; s/-perfect hash
families F of size jF j � ses2=r log n exist for all 2 � s � r � n. In our case we
can take r D s D 2.k C 1/. Hence, jF j D O.log n/ for every constant k.

256 9 Monotone Circuits

If we allow unbounded fanin, then each sub-formula Kf;H contributes just one
AND gate. Hence, ˚F has at most jCrit.r; k/j C jF j unbounded-fanin AND gates.
The fanin of each AND gate is actually bounded by the number of edges in the
corresponding graph H 2 Crit.r; k/ which, by Theorem 9.11, does not exceed l WD�

kC2
2

� D O.1/. Hence, jCrit.r; k/j does not exceed
�

r2

l

� D O.1/. Thus, for every
constant k, we have only O.jF j/ D O.log n/ fanin-2 AND gates in ˚F . Each of
these gates takes at most O.n2/ fanin-2 OR gates as inputs. Thus, the total size of our
formula ˚F is O.n2 log n/, as desired. For growing k, the upper bound has the form
O.kC k2

n2 log n/ for a constant C , which is polynomial as long as k D O.
p

log n/.
We thus constructed a monotone formula ˚F for the vertex cover function

VC.n; k/. Since this function is the dual function of the clique function
CLIQUE.n; n � k/, we can just replace OR gates by AND gates (and vice versa) in
this formula to obtain a monotone formula for CLIQUE.n; n � k/. This completes
the proof of Theorem 9.7. ut
Remark 9.13. Observe that the formula ˚F for VC.n; k/ is multilinear, that is,
inputs to each its AND gate are computed from disjoint sets of variables. On the
other hand, Krieger (2007) shows that every monotone multilinear circuit for the
dual function CLIQUE.n; n � k/ requires at least

�
n

k

�
gates. This gives an example

of a boolean function, whose dual requires much larger multilinear circuits than the
function itself.

Remark 9.14. Using explicit perfect hash families we can obtain explicit circuits.
For fixed values of r and s, infinite classes of .n; r; s/-perfect hash families F of
size jF j D O.log n/ were constructed by Wang and Xang (2001) using algebraic
curves over finite fields. With this construction Theorem 9.7 gives explicit monotone
formulas.

The construction in Wang and Xang (2001) is almost optimal: the family has only
a logarithmic in n number of functions. The construction is somewhat involved. On
the other hand, perfect hash families of poly-logarithmic size can be constructed
very easily.

Let s � 1 be a fixed integer and r D 2s. Let M D fma;ig be an n� b matrix with
b D dlog ne columns whose rows are distinct 0-1 vectors of length b. Let h1; : : : ; hb

be the family of functions hi W Œn� ! f0; 1g determined by the columns of M ; hence,
hi .a/ D ma;i . Let also g W f0; 1gs ! Œr� be defined by g.x/ D Ps

iD1 xi 2
i�1.

By Bondy’s theorem (Bondy 1972), the projections of any set of s C 1 distinct
binary vectors on some set of s coordinates must all be distinct. Hence, for any set
a1; : : : ; asC1 of sC1 rows there exist s columns hi1 ; : : : ; his such that all sC1 vectors
.hi1.aj /; : : : ; his .aj //, j D 1; : : : ; sC1 are distinct. Therefore, the function f .x/ D
g.hi1.x/; : : : ; his .x// takes different values on all s C 1 points a1; : : : ; asC1. Thus,
taking the superposition of g with

�
b
s

� � logs n s-tuples of functions h1; : : : ; hb , we
obtain a family F of jF j � logs n functions f W Œn� ! Œr� which is .s C 1/-perfect.

9.3 The Monotone Switching Lemma 257

9.3 The Monotone Switching Lemma

In Razborov’s method of approximations one only uses DNFs to approximate gates.
In this way, OR gates can be easily approximated: an OR of DNFs is a DNF, and
we only need to keep its small enough. The case of AND gates is, however, more
complicated. So, a natural idea to try to approximate by both DNFs and CNFs.
When appropriately realized, this idea leads to a general, and relatively simple
lower-bounds criterion for monotone circuits. Due to the symmetry between DNFs
and CNFs, this criterion is often much easier to apply and yields exponential lower
bounds for many functions, including the clique function.

Still, there are functions—like the perfect matching function—for which the criterion seems
to fail. This is why we will discuss Razborov’s method later in Sect. 9.10 in full detail: unlike
the general criterion, which we are going to present now, Razborov’s method is much more
subtle, tailor made for the specific function one deals with and can be applied in situations
where the general criterion fails to produce strong lower bounds. Yet another reason to include
Razborov’s proof for the perfect matching function is that this function belongs to P, and the
proof was never treated in a book.

Our goal is to show that, if a monotone boolean function can be computed by a
small monotone circuit, then it can be approximated by small monotone CNFs and
DNFs. Thus, in order to prove that a function requires large circuits it is enough to
show that it does not have a small CNF/DNF approximation. The proof of this will
be based on the “monotone switching lemma” allowing us to switch between CNFs
and DNFs, and vice versa.

By a monotone k-CNF (conjunctive normal form) we will mean an And of an
arbitrary number of monotone clauses, each being an Or of at most k variables.
Dually, a monotone k-DNF is an Or of an arbitrary number of monomials, each
being an And of at most k variables. In an exact k-CNF all clauses must have
exactly k distinct variables; exact k-DNFs are defined similarly. For two boolean
functions f and g of the same set of variables, we write f � g if f .x/ � g.x/

for all input vectors x. For a CNF/DNF C we will denote by jC j the number of
clauses/monomials in it.

The following lemma was first proved in Jukna (1999) in terms of so-called
“finite limits”, a notion suggested by Sipser (1985); we will also use this notion
later (in Sect. 11.3) to prove lower bounds for depth-3 circuits. In terms of DNFs
and CNFs the lemma was then proved by Berg and Ulfberg (1999). Later, a similar
lemma was used by Harnik and Raz (2000) to improve the numerically strongest
known lower bound 2˝.n1=3= log n/ of Andreev (1987b) to 2˝..n= log n/1=3/. The idea of
the lemma itself was also implicit in the work of Haken (1995).

Lemma 9.15. (Monotone Switching Lemma) For every .s � 1/-CNF fcnf there is
an .r � 1/-DNF fdnf and an exact r-DNF D such that

fdnf � fcnf � fdnf _ D and jDj � .s � 1/r : (9.2)

258 9 Monotone Circuits

Fig. 9.2 Two DNF-trees of the same 3-CNF fcnf D .x1 _ x2 _ x3/ ^ .x1 _ x2 _ x4/ ^ .x1 _ x4/.
The second tree is obtained by parsing the clauses of fcnf in the reverse order

Dually, for every .r � 1/-DNF fdnf there is an .s � 1/-CNF fcnf and an exact s-CNF
C such that

fcnf ^ C � fdnf � fcnf and jC j � .r � 1/s : (9.3)

Proof. We prove the first claim (the second is dual). Let fcnf D q1 ^ � � � ^ ql be an
.s � 1/-CNF; hence, each clause qi has jqi j � s � 1 variables. It will be convenient
to identify clauses and monomials with the sets of indices of their variables. We say
that a monomial p pierces a clause qi if p \ qi ¤ ;.

We associate with fcnf the following “transversal” tree T of fan-out at most s � 1

(see Fig. 9.2).
The first node of T corresponds to the first clause q1, and the outgoing jq1j edges

are labeled by the variables from q1. Suppose we have reached a node v, and let p

be the monomial consisting of the labels of edges from the root to v. If p pierces
all the clauses of fcnf, then v is a leaf. Otherwise, let qi be the first clause such that
p \ qi D ;. Then the node v has jqi j outgoing edges labeled by the variables in qi .

Note that the resulting tree T depends on what ordering of clauses of fcnf we fix,
that is, in which order we parse the clauses (see Fig. 9.2). Still, for any such tree we
have that, for every assignment x 2 f0; 1gn, fcnf.x/ D 1 if and only if x is consistent
with at least one path from the root to a leaf of T . This holds because fcnf.x/ D 1

iff the set Sx D fi j xi D 1g intersects all clauses q1; : : : ; ql .
Some paths in T may be longer than r � 1. So, we now cut off these long paths.

Namely, let fdnf be the OR of all paths of length at most r � 1 ending in leafs, and
D be the OR of all paths of length exactly r . Observe that for every assignment
x 2 f0; 1gn:

• fdnf.x/ D 1 implies fcnf.x/ D 1, and
• fcnf.x/ D 1 implies fdnf.x/ D 1 or D.x/ D 1.

Thus, fdnf � fcnf � fdnf _ D. Finally, we also have that jDj � .s � 1/r , because
every node of T has fan-out at most s � 1. ut

Most important in the Switching Lemma is that the exact DNFs and CNFs
correcting possible errors contain only .s�1/r monomials instead of all

�
n
r

�
possible

monomials, and only .r � 1/s clauses instead of all
�

n
s

�
possible clauses.

9.4 The Lower-Bounds Criterion 259

9.4 The Lower-Bounds Criterion

We now give a general lower-bounds criterion for monotone circuits.

Definition 9.16. Let f be a monotone boolean function of n variables. We say that
f is t-simple if for every pair of integers 2 � r; s � n there exists an exact s-CNF
C , an exact r-DNF D, and a subset I � Œn� of size jI j � s � 1 such that

(a) jC j � t � .r � 1/s and jDj � t � .s � 1/r , and
(b) Either C � f or f � D _Wi2I xi (or both) hold.

Theorem 9.17. If a monotone boolean function can be computed by a monotone
circuit of size t , then f is t-simple.

Proof. Let F.x1; : : : ; xn/ be a monotone boolean function, and suppose that F can
be computed by a monotone circuit of size t . Our goal is to show that the function
F is t-simple. To do this, fix an arbitrary pair of integer parameters 2 � s; r � n.

Let f D g � h be a gate in our circuit. That is, f is a function computed at
some node of the circuit, and g and h are functions computed at its inputs. By an
approximator of this gate we will mean a pair .fcnf; fdnf/, where fcnf is an .s � 1/-
CNF (a left approximator of f) and fdnf is an .r � 1/-DNF (a right approximator of
f) such that fdnf � fcnf.

We say that such an approximator fcnf; fdnf of f introduces a new error on input
x 2 f0; 1gn if the approximators of g and of h did not make an error on x, but
the approximator of f does. That is, gcnf.x/ D gdnf.x/ D g.x/ and hcnf.x/ D
hdnf.x/ D h.x/, but either fcnf.x/ ¤ f .x/ or fdnf.x/ ¤ f .x/.

We define approximators inductively as follows.

Case 1: f is an input variable, say, f D xi . In this case we take fcnf D fdnf WD xi .
It is clear that this approximator introduces no errors.

Case 2: f is an And gate, f D g ^ h. In this case we take fcnf WD gcnf ^ hcnf as
the left approximator of f ; hence, fcnf introduces no new errors. To define the right
approximator of f we use Lemma 9.15 to convert fcnf into an .r � 1/-DNF fdnf;
hence, fdnf � fcnf. Let Ef be the set of inputs on which fdnf introduces a new error,
that is,

Ef WD fx j f .x/ D fcnf.x/ D 1 but fdnf.x/ D 0g :

By Lemma 9.15, all these errors can be “corrected” by adding a relatively small
exact r-DNF: there is an exact r-DNF D such that jDj � .s � 1/r and D.x/ D 1

for all x 2 Ef .

Case 3: f is an Or gate, f D g _ h. This case is dual to Case 2. We take fdnf WD
gdnf _ hdnf as the right approximator of f ; hence, fdnf introduces no new errors. To
define the left approximator of f we use Lemma 9.15 to convert fdnf into an .s �1/-
CNF fcnf; hence, fdnf � fcnf. Let Ef be the set of inputs on which fcnf introduces a
new error, that is,

Ef WD fx j f .x/ D fdnf.x/ D 0 but fcnf.x/ D 1g :

260 9 Monotone Circuits

By Lemma 9.15, all these errors can be “corrected” by adding a relatively small
exact s-CNF: there is an exact s-CNF C such that jC j � .r � 1/s and C.x/ D 0 for
all x 2 Ef .

Proceeding in this way we will reach the last gate of our circuit computing the
given function F . Let .Fcnf; Fdnf/ be its approximator, and let E be the set of all
inputs x 2 f0; 1gn on which F differs from at least one of the functions Fcnf or Fdnf.
Since at input gates (= variables) no error was made, for every such input x 2 E ,
the corresponding error must be introduced at some intermediate gate. That is, for
every x 2 E there is a gate f such that x 2 Ef (approximator of f introduces an
error on x for the first time). But we have shown that, for each gate, all these errors
can be corrected by adding an exact s-CNF of size at most .r � 1/s or an exact r-
DNF of size at most .s � 1/r . Since we have only t gates, all such errors x 2 E can
be corrected by adding an exact s-CNF C of size at most t � .r � 1/s and an exact
r-DNF D of size at most t � .s � 1/r , that is, for all inputs x 2 f0; 1gn, we have

C.x/ ^ Fcnf.x/ � F.x/ � Fdnf.x/ _ D.x/ ;

where Fdnf � Fcnf. This already implies that the function F is t-simple. Indeed, if
the CNF Fcnf is empty (that is, if Fcnf 	 1) then C � F , and we are done. Otherwise,
Fcnf must contain some clause q of length at most s � 1, say, q D W

i2I xi for some
I � Œn� of size jI j � s � 1. Since clearly Fcnf � q, the condition Fdnf � Fcnf

implies F � Fdnf _ D � Fcnf _ D � q _ D, as desired. This completes the proof
of Theorem 9.17. ut

In applications, boolean functions f are usually defined as set-theoretic predi-
cates. In this case we say that f accepts a set S � f1; : : : ; ng and write f .S/ D 1

if and only if f accepts its incidence vector. Let S D f1; : : : ; ng n S denote the
complement of S . We say that a set S is a

• Positive input for f if f .S/ D 1;
• Negative input for f if f .S/ D 0.

Put differently, a positive (negative) input is a set of variables which, if assigned
the value 1 (0), forces the function to take the value 1 (0) regardless of the values
assigned to the remaining variables. The minimal (under set inclusion) positive
inputs for f are called minterms of f . Similarly, the maximal negative inputs for f

are called maxterms of f .
Note that one and the same set S can be both a positive and a negative input! For

example, if f .x1; x2; x3/ outputs 1 iff x1 C x2 C x3 � 2, then S D f1; 2g is both
positive and negative input for f , because f .1; 1; x3/ D 1 and f .0; 0; x3/ D 0.

To re-formulate the definition of t-simplicity (Definition 9.16) in terms of
positive/negative inputs, note that if C is a CNF, then C � f means that every
negative input of f must contain at least one clause of C (looked at as set of indices
of its variables). Similarly, f � D _Wi2I xi means that every positive input must
either intersect the set I or contain at least one monomial of D. Thus, if F1 (F0) is a
family of positive (negative) inputs of f , and #k.F/ denotes the maximum number

9.5 Explicit Lower Bounds 261

of members of F containing a fixed k-element set, then Theorem 9.17 gives the
following more explicit lower bound.

Theorem 9.18. For every integers 2 � r; s � n, every monotone circuit computing
f must have size at least the minimum of

jF1j � .s � 1/ � #1.F1/

.s � 1/r � #r .F1/
and

jF0j
.r � 1/s � #s.F0/

:

That is, a monotone boolean function requires large monotone circuits if its positive
as well as negative inputs are “scattered” well enough.

9.5 Explicit Lower Bounds

In order to show that a given boolean function cannot be computed by a monotone
circuit of size at most t , it is enough, by Theorem 9.17, to show that the function
is not t-simple for at least one(!) choice of parameters s and r . In this section we
demonstrate how this can be used to derive strong lower bounds for concrete boolean
functions.

9.5.1 Detecting Triangles

We begin with the simplest example, yielding a polynomial lower bound. We will
also present more “respectable” applications leading to exponential lower bounds,
but this special case already demonstrates the common way of reasoning fairly well.

Let us consider a monotone boolean function �n, whose input is an undirected
graph on n vertices, represented by v D �

n
2

�
variables, one for each possible edge.

The value of the function is 1 if and only if the graph contains a triangle (three
incident vertices). Clearly, there is a monotone circuit of size O.n3/ computing this
function: just test whether any of

�
n
3

�
triangles is present in the graph. Thus, the

following theorem is tight, up to a poly-logarithmic factor.

Theorem 9.19. Any monotone circuit, detecting whether a given n-vertex graph is
triangle-free, must have ˝.n3= log4 n/ gates.

Proof. Let t be the minimal number for which �n is t-simple. By Theorem 9.17, it is
enough to show that t D ˝.n3= log4 n/. For this proof, we take s WD b5 log2 nc and
r WD 2. According to the definition of t-simplicity, we have only two possibilities.

Case 1: Every positive input for �n either intersects a fixed set I of s edges, or
contains at least one of L � tsr D ts2 2-element sets of edges R1; : : : ; RL.

As positive inputs for �n we take all triangles, that is, graphs on n vertices with
exactly one triangle; we have

�
n
3

�
such graphs. At most s.n � 2/ of them will have

262 9 Monotone Circuits

an edge in I . Each of the remaining triangles must contain one of ts2 given pairs of
edges Ri . Since two edges can lie in at most one triangle, we conclude that, in this
case,

t �
�

n
3

�� s.n � 2/

s2
D ˝.n3= log4 n/ :

Case 2: Every negative input for �n contains at least one of t.r � 1/s D t sets of
edges S1; : : : ; St , each of size jSi j D s.

In this case we consider the graphs E D E1 [E2 consisting of two disjoint
non-empty cliques E1 and E2 (we consider graphs as sets of their edges). Each such
graph E is a negative input for �n, because its complement is a bipartite graph,
and hence, has no triangles. The number of such graphs is a half of the number
2n of all binary strings of length n excluding the all-0 and all1 strings. Hence, we
have 2n�1 � 1 such graphs, and each of them must contain at least one of the sets
S1; : : : ; St . Every of these sets of edges Si is incident to at least

p
2s vertices, and

if E
 Si then all these vertices must belong to one of the cliques E1 or E2. Thus,
at most 2n�p

2s � 1 of our negative inputs E can contain one fixed set Si , implying
that, in this case,

t � 2n�1 � 1

2n�p
2s � 1

� 2
p

2s�1 � 23 log n � n3 :

Thus, in both cases, t D ˝.n3= log4 n/, and we are done. ut

9.5.2 Graphs of Polynomials

Our next example is the following monotone boolean function introduced by
Andreev (1985). Let q � 2 be a prime power, and set d WD b.q= ln q/1=2=2c.
Consider boolean q � q matrices A D .ai;j /. Given such a matrix A, we are
interested in whether it contains a graph of a polynomial h W GF.q/ ! GF.q/,
that is, whether ai;h.i/ D 1 for all rows i 2 GF.q/.

Let fn be a monotone boolean function of n D q2 variables such that fn.A/ D 1

iff A contains a graph of at least one polynomial over GF.q/ of degree at most d �1.
That is,

fn.X/ D
_

h

^

i2GF.q/

xi;h.i/ ;

where h ranges over all polynomials over GF.q/ of degree at most d � 1. Since we
have at most qd such polynomials, the function fn can be computed by a monotone
boolean circuit of size at most qdC1, which is at most nO.d/ D 2O.n1=4

p
ln n/. We will

now show that this trivial upper bound is almost optimal.

Theorem 9.20. Any monotone circuit computing the function fn has size at least
2˝.n1=4

p
ln n/.

9.6 Circuits with Real-Valued Gates 263

Proof. Take a minimal t for which the function fn is t-simple. Since n D q2 and
(by our choice) d D �.n1=4

p
ln n/, it is enough by Theorem 9.17 to show that

t � q˝.d/. For this proof, we take s WD bd ln qc and r WD d , and consider input
matrices as bipartite q � q graphs. In the proof we will use the well-known fact
that no two distinct polynomials of degree at most d � 1 can coincide on d points.
According to the definition of t-simplicity, we have only two possibilities.

Case 1: Every positive input for fn either intersects a fixed set I of at most s edges,
or contains at least one of L � tsr r-element sets of edges R1; : : : ; RL.

Graphs of polynomials of degree at most d � 1 are positive inputs for fn. Each
set of l (1 � l � d) edges is contained in either 0 or precisely qd�l of such graphs.
Hence, at most sqd�1 of these graphs can contain an edge in I , and at most qd�r of
them can contain any of the given graphs Ri . Therefore, in this case we have

t � qd � sqd�1

sr � qd�r
D
�q

s

�˝.r/ D q˝.d/ :

Case 2: Every negative input for fn contains at least one of K � t rs s-element sets
of edges S1; : : : ; SK .

Let E be a random bipartite graph, with each edge appearing in E independently
with probability � WD .2d ln q/=q. Since there are only qd polynomials of degree
at most d � 1, the probability that the complement of E will contain the graph of at
least one of them does not exceed qd .1 � �/q � q�d , by our choice of � . Hence,
with probability at least 1 � q�d , the graph E is a negative input for f . On the
other hand, each of the sets Si is contained in E with probability � jSi j D �s . Thus,
in this case,

t � 1 � q�d

rs�s
D
� q

2d 2 ln q

�˝.s/ D 2˝.s/ D q˝.d/ ;

where the third inequality holds for all d � .q= ln q/1=2=2.
We have proved that the function f can be t-simple only if t � q˝.d/. By

Theorem 9.17, this function cannot be computed by monotone circuits of size
smaller than q˝.d/. ut

9.6 Circuits with Real-Valued Gates

We now consider monotone circuits where, besides boolean AND and OR gates,
one may use arbitrary monotone real-valued functions ' W R2 ! R as gates. Such
a function ' is monotone if '.x1; x2/ � '.y1; y2/ whenever x1 � y1 and x2 � y2.
The corresponding circuits are called monotone real circuit.

First lower bounds for monotone circuits with real-valued gates were proved
by Pudlák et al. (1997), via an extension of Razborov’s argument, and by

Jukna
Cross-Out

264 9 Monotone Circuits

Haken and Cook (1999), via an extension of the “bottleneck counting” argument
of Haken (1995).

As in boolean circuits, inputs for such circuits are also binary strings x 2 f0; 1gn;
the output must also be a binary bit 0 or 1. But at each intermediate gate any
monotone function f W f0; 1gn ! R may be computed. Hence, unlike in boolean
case, here we have uncountable number of possible gates ' W R2 ! R, and one may
expect that at least some monotone boolean functions can be computed much more
efficiently by such circuits. Exercise 9.6 shows that this intuition is correct: so-called
“slice functions” can be computed by a very small monotone circuit with real-valued
gates, but easy counting shows that most slice functions cannot be computed by
boolean circuits of polynomial size, even if NOT gates are allowed! Thus, monotone
real circuits may be even exponentially more powerful than circuits over f^; _; :g.

It is therefore somewhat surprising that the (simple) criterion for boolean circuits
(Theorem 9.17) remains true also for circuits with real-valued gates. The only
difference from the boolean case is that now in the definition of t-simplicity we
take slightly larger CNFs and DNFs, which does not greatly change the asymptotic
values of the resulting lower bounds.

We say that a monotone boolean function f is weakly t-simple if the conditions
in Definition 9.16 hold with (a) replaced by

(a0) jC j � t � .2r/sC1 and jDj � t � .2s/rC1

That is, the only difference from the definition of t-simplicity is a slightly larger
upper bound on the number of clauses in C and monomials in D.

Theorem 9.21. (Criterion for Real Circuits) Let f be a monotone boolean func-
tion. If f can be computed by a monotone real circuit of size t then f is weakly
t-simple.

Proof. The theorem was first proved in (Jukna 1999) using finite limits. A much
simpler proof, which we present below, is due to Avi Wigderson. The argument is
similar to that in the boolean case (Theorem 9.21). We only have to show how to
construct the approximators for real-valued gates. The idea is to consider thresholds
of real gates and approximate the thresholded values. For a real-valued function
f W f0; 1gn ! R and a real number a, let f .a/ denote the boolean function that
outputs 1 if f .x/ � a, and outputs 0 otherwise.

Now let ' W R2 ! R be a gate at which the function f .x/ is computed, and let
g.x/ and h.x/ be functions g; h W f0; 1gn ! R computed at the inputs of this gate.
A simple (but crucial) observation is that then

'
�
g.x/; h.x/

� � a ” 9b; c W g.x/ � b; h.x/ � c and '.b; c/ � a :

The .)/ direction is trivial: just take b D g.x/ and c D h.x/. The other direction
(() follows from the monotonicity of ': '.g.x/; h.x// � '.b; c/ � a.

Together with the fact that f .a/.x/ D 1 iff '.g.x/; h.x// � a, this allows us to
express each threshold function f .a/ of a gate f D '.g; h/ from the thresholds of
its input gates as:

9.6 Circuits with Real-Valued Gates 265

f .a/ D
_

'.b;c/�a

.g.b/ ^ h.c// (9.4)

as well as
f .a/ D

^

'.b;c/<a

.g.b/ _ h.c// : (9.5)

It is convenient to think these expressions as an infinite AND and an infinite OR,
respectively. However, since the number of settings x 2 f0; 1gn for input variables
is finite, the real gates take only finite number of possible values, and we therefore
only need finite expressions.

Fix a pair 1 � s; r < n of integer parameters. As before, every threshold f .a/

is approximated by two functions: an s-CNF f
.a/

cnf (left approximator) and an r-

DNF f
.a/

dnf (right approximator). The approximators for the thresholds of the input
variables are 0, 1, or the variable itself, depending on the value of the threshold; they
can always be represented by at most one literal and thus never fail.

Now let f D '.g; h/ be an intermediate gate with two input gates g and h, and
suppose that, for all (finitely many!) reals b; c, the left and right approximators for
threshold functions g.b/ and h.c/ of its input gates are already constructed.

To construct the left approximator f
.a/

cnf of f .a/ from the approximators of its two
input gates g and h, we first consider the representation

f .a/ D
_

'.b;c/�a

.g
.b/

dnf ^ h
.c/

dnf/ :

Since the monomials in the r-DNFs g
.b/

dnf and h
.c/

dnf have length at most r , all the

subexpressions g
.b/

dnf ^ h
.c/

dnf can be turned into a single 2r-DNF Da such that

Da.x/ D 1 iff f .a/.x/ D 1 iff f .x/ � a : (9.6)

After that we use the same procedure as before (that is, Lemma 9.15) to convert this
DNF into an s-CNF f

.a/

cnf . This can be done for each (of the finitely many) threshold
values a, and we only need to ensure that the number of errors introduced when
approximating the whole gate f does not depend on this number of thresholds.

When forming the s-CNF f
.a/

cnf , we introduce errors as we throw away clauses
that become longer than s. We want to count the number of inputs x 2 f0; 1gn such
that f .a/.x/ D 0 while f

.a/
cnf .x/ D 1 for some a, that is, the union over a of the

errors introduced in a gate by f
.a/

cnf . To do this, let us list in the increasing order
a1 < a2 < : : : < aN all the N � 2n possible values f .x/ the gate f can output
when the input vector x ranges over f0; 1gn. Hence,

D WD Da1 _ Da2 _ � � � _ DaN

266 9 Monotone Circuits

is a 2r-DNF, and this DNF makes no error on x, that is, D.x/ D f .x/. By (9.6),
we have that

Da1 � Da2 � � � � � DaN :

That is, every monomial of DaiC1
contains at least one monomial of Dai . Hence, if

t.D/ denotes the family of all transversals of D, that is, the family of all subsets of
variables, each of which intersects all the monomials of D, then

t.Da1 / � t.Da2 / � � � � � t.DaN / ;

implying that t.D/ D t.DaN /. This means that all the clauses (D transversals),
which we throw away (because they are longer than s) when forming an s-CNF
fcnf from the DNF D, are precisely those clauses, which we would throw away
when converting the 2r-DNF DaN into an s-CNF. Thus, by Lemma 9.15, all the
errors that may appear during the construction of the left approximator fcnf, can be
corrected by an exact .s C1/-CNF C of size jC j � .2r/sC1. That is, for every input
x such that f .x/ D 0 but fcnf.x/ D 1, we have that C.x/ D 0.

A dual argument can be used to bound the number of errors introduced when
constructing the right approximator fdnf. Note that we cannot use the DNF (9.6)
for this purpose since D is a 2r-DNF, not an r-DNF. But we can argue as above
by using the expression (9.5) instead of (9.4). Then all the introduced errors can be
corrected by an exact .r C 1/-DNF D of size jDj � .2s/rC1. The rest of the proof
is the same as that of Theorem 9.17. ut

Since the definitions of t-simple functions and of weakly t-simple function are
almost the same, Theorem 9.21 allows us to extend lower bounds for the monotone
boolean circuits (we proved above) to the monotone real circuits. For example, the
same argument as in the proof of Theorem 9.20 yields

Theorem 9.22. Any monotone real circuit computing the polynomial function fn

has size at least 2˝.n1=4
p

ln n/.

Lower bounds for monotone real circuits have found intriguing applications in
proof complexity. In particular, Pudlák et al. (1997) used such bounds to prove the
first exponential lower bound on the length of so-called “cutting plane proofs”, a
proof system for solving integer programming problems. We will describe this result
in Chap. 19.

The extension of the lower-bounds criterion from monotone boolean circuits
to monotone real circuits shows the power of the criterion. On the other hand,
monotonicity is crucial here.

Proposition 9.23. Any boolean function of n variables can be computed using n�1

real monotone fanin-2 gates and one non-monotone unary gate.

Proof. For an input vector x 2 f0; 1gn, let bin.x/ D Pn
iD1 xi 2

i�1 be the number
whose binary code is x. It is easy to see that bin.x/ can be computed by a circuit
C.x/ using n � 1 real fanin-2 gates of the form g.u; v/ D u C 2v. This can be done
via the recurrence:

9.7 Criterion for Graph Properties 267

bin.x/ D x1 C 2 � bin.x0/ D g.x1; bin.x0// ;

where x0 D .x2; : : : ; xn/. These gates are monotone.
Now, every boolean function f defines the unique set of numbers

Lf D fbin.x/ j f .x/ D 1g :

Hence, in order to compute f , it is enough to attach the (non-monotone) output gate
testing whether C.x/ 2 Lf . ut

9.7 Criterion for Graph Properties

Fix a set V of jV j D n vertices, and let
�

n
2

�
be the set of all potential edges e D fu; vg

with u ¤ v 2 V on these vertices. Assign a boolean variable xe to each potential
edge e. Then every 0-1 vector x of length

�
n
2

�
defines the graph Sx D fe j xe D 1g;

we consider graphs as sets S � �
n

2

�
of their edges. Thus, every boolean function f

of
�

n
2

�
variables defines some property of n-vertex graphs.

An example of a graph property is the clique function fn D CLIQUE.n; k/

we have considered in Sects. 7.5 and 9.1. If applied directly, the symmetric lower-
bounds criterion (Theorem 9.18) cannot yield strong lower bounds for this function.
In this case, we can take as positive inputs of fn the family F of all

�
n
k

�
cliques on

k vertices. But then we would only have that #r .F/ � �n�p
r

k�p
r

�
because some sets S

of jS j D r edges may touch at most
p

r vertices, with the worst case of S being a
clique. Hence, the fraction

jF j
sr � #r .F/

�
�

n
k

�

sr
�n�p

r

k�p
r

� � n
p

r

sr
D
� n

s
p

r

�p
r

in this case is too small: we cannot take s and r large enough. The reason for this
failure is that, so far, we only used a trivial measure of “length” for clauses and
monomials–the total number of variables in them. But in the case of graph prop-
erties, variables xe correspond to edges. Thus, clauses and monomials correspond
in this case to graphs (sets of edges). Say a clause c D W

e2S xe corresponds to
the graph S . We therefore have more flexibility to define an appropriate notion of
“length” of a monomial than just as the number of variables in it. We can, say, define
the “length” of a graph S as the number v.S/ of vertices touched by (incident with)
the edges in S , or as the number �.S/ of connected components in S , or somehow
else. It makes therefore sense to extend the lower-bounds criterion for the case of
different length measures. We will now show that this can be done quite easily.

By a legal length measure we will mean any non-negative measure �.S/ of
graphs satisfying the following conditions for some non-negative constants c; d :

268 9 Monotone Circuits

�.S/ � �.S [feg/ � �.S/ C c and jS j � �.S/d :

Parameter c tells us how much the measure of a graph can increase when one edge
is added, and d tells us how much smaller can the measure of a graph be when
compared to the total number of edges in it. For simplicity of exposition, we will
only consider length measures with c D d D 2. For arbitrary c and d the arguments
are the same, although the bounds we get are slightly worse.

Note that the length measure �.S/ D jS j (the total number of edges) we have
considered in the previous sections has all these properties. The measure �.S/ D
the number of vertices touched by the edges in S also has these properties. If we
could use �.S/ instead of jS j, then only at most

�
n�r
k�r

�
of k-cliques would contain a

fixed graph S with �.S/ D r , and the fraction

jF j
sr � #r .F/

�
�

n
k

�

sr
�

n�r
k�r

� �
�n

s

�r

would then already be large enough. We have therefore only to show that our lower
bounds criteria can be extended to the case of arbitrary legal length measures.

Now, when some length measure of graphs is fixed, we can define the notions of
k-CNF and of exact k-CNF in a similar way. By a k-CNF relative to � we will now
mean a monotone CNF each whose clause has �-length at most k. In an exact k-
CNF relative to � we require that all clauses have �-length at least k; and similarly
for DNFs.

It is not difficult to verify that the Monotone Switching Lemma remains true for
any pair of length measures for clauses and for monomials. The only difference is
that now we have slightly worse upper bounds on jDj and jC j, namely jDj � s4r

and jC j � r4s .

Proof. Argue as in the proof of Lemma 9.15. Regardless of which length measure
for clauses we use, each clause of length s will have at most s2 variables. Construct
the “transversal tree” T in the same manner. Having a length measure � for
monomials, we now define DNFs fdnf and D in the same way with the words
“monomial of length” replaced by “monomial of �-length”. Namely, the DNF fdnf

now consists of all paths of �-length smaller than r , and the DNF D consists of all
paths whose �-length reached the threshold r for the first time, that is, D consists
of all paths p such that �.p/ � r but �.p0/ < r , where p0 is the path p without its
last edge. Since adding one edge can only increase the measure by an additive factor
2, every monomial in D has length (not just �-length) at most 2r . Since every node
of T has fan-out at most s2, this gives the desired upper bound jDj � .s2/2r D s4r

on the total number of monomials in D. ut
Thus, in the case of graph properties f we have a more flexible lower-bounds

criterion allowing us to choose different length measures for positive inputs (graphs
accepted by f) and negative inputs (graphs whose complements are rejected by f).
Let 	 be some length measure for negative inputs, and � be some length measure
for positive inputs.

9.8 Clique-Like Problems 269

Definition 9.24. (Approximators) By an .r; s/-approximator of f of size t we will
mean a triple .R;S; I / where 1

• I is a graph of 	-length � s;
• R is a family of jRj � t.2s/4r graphs of �-length � r , and
• S is a family of jSj � t.2r/4s graphs of 	-length � s

such that at least one of the following two conditions holds:

1. Every positive input of f either intersects the graph I or contains at least one of
the graphs in R.

2. Every negative input of f contains at least one of the graphs in S.

Theorem 9.25. If a monotone boolean function can be computed by a monotone
real circuit of size t , then it has an .r; s/-approximator of size t for any 1 � r; s �
n � 1 and for every pair of length measures.

The proof of this theorem is the same as that of Theorem 9.21: just use the
modified version of the Monotone Switching Lemma. We leave a detailed proof
as an exercise.

9.8 Clique-Like Problems

We consider graphs on a fixed set V of jV j D n vertices. We have m D �
n

2

�
boolean

variables, one for each potential edge. Then each boolean function f W f0; 1gm !
f0; 1g describes some graph property. A prominent NP-complete graph property
is a monotone boolean function CLIQUE.n; k/ which accepts a given graph on n

vertices iff it contains a k-clique, that is, a subgraph on k vertices whose all vertices
are pairwise adjacent. Instead of proving a lower bound on this function we will do
this for a much larger class of “clique-like” functions.

An a-coclique is formed by assigning each vertex a color from the set
f1; 2; : : : ; ag, and putting edges between those pairs of vertices with different
colors. Note that no such graph can have an .a C 1/-clique.

Let 2 � a < b � m be integers. An .a; b/-clique function is a monotone boolean
function f such that, for every graph G on m vertices,

f .G/ D

8
ˆ̂<

ˆ̂
:

0 if G is an a-coclique;

1 if G is a b-clique;

any value otherwise.

Hence, CLIQUE.n; k/ is an .a; b/-clique function with a D k � 1 and b D k.

1We take .2r/4r instead of just r4s in order to cover also the real-valued case.

270 9 Monotone Circuits

Theorem 9.26. (Jukna 1999) Let 32 � a < b � n=32, and let f be an .a; b/-
clique function. Then the minimal number of gates in a monotone real circuit
computing f is exponential in minfa; n=bg1=4.

Proof. Let f be an .a; b/-clique function. We are going to apply the refined version
of the lower-bounds criterion (Theorem 9.21). To do this, we must first choose
appropriate length measure � for positive inputs an a length measure 	 for negative
inputs.

What to take as positive inputs and how to measure their length is clear. All
b-cliques are positive inputs for f . A natural measure for a clique S is to take

�.S/ WD the number of vertices touched by the edges in S :

It is clear that �.S/ is a legal length measure:

�.S [feg/ � �.S/ C �.feg/ D �.S/ C 2 and jS j �

�.S/

2

!

< �.S/2 :

Our choice of negative inputs is also clear: we take all complements of a-cocliques.
Each such complement Gh is defined by a coloring h of vertices in a colors: two
vertices u and v are adjacent in Gh iff h.u/ D h.v/. But what should we take as a
length measure 	.S/ of such graphs in this case?

Having a graph S of a given 	-measure 	.S/ D s, we want that as few as
possible a-colorings h can color the edges of S monochromatically, that is, color
both endpoints of each edge e 2 S by the same color. If S is a tree with s vertices,
then we could take the same measure 	.S/ D �.S/ D the number of vertices
touched by the edges in S . Now, Gh
 S implies that h must assign the same color
to all s D 	.S/ vertices of S , and we can have at most a � an�s D an�sC1 such
colorings. Thus, if S is a connected graph then we could take 	.S/ be the maximum
number of edges in its spanning tree. For general (not necessarily connected) graphs
we can do the same, and consider the measure:

	.S/ = maximum number of edges in a forest F � S .

Since every tree with m edges has mC1 vertices, 	.S/ is just the number of vertices
minus the number of connected components in S . But is 	 a legal length measure?
The first condition 	.S/ � 	.S [feg/ � 	.S/ C c clearly holds with c D 1.
But does the second condition jS j � 	.S/2 hold? To show that it does, let m be
the number of vertices touched by edges in S , and suppose that S consists of k

connected components, the i -th of which has mi vertices. We may assume that mi �
2 for all i . Then .mi � 1/2 � �

mi

2

�
holds for all i , and we obtain that

	.S/2 D
h kX

iD1

.mi � 1/
i2 �

kX

iD1

.mi � 1/2 �
kX

iD1

mi

2

!

� jS j :

9.8 Clique-Like Problems 271

Thus, both measures �.S/ and 	.S/ are legal length measures. By Theorem 9.25
it remains to choose parameters r; s and to show that our function f can have an
.r; s/-approximator of size t only if t is large enough. For this purpose, we set (with
foresight):

r WD b.a=32/1=4c and s WD b.n=32b/1=4c :

According to Definition 9.24 we have only two possibilities, depending on what of
the two of its items holds.

Case 1: (Positive inputs) There exist a set I of jI j � s2 edges and a family
Q1; : : : ; QL of L � t.2s/4r r-cliques such that every b-clique must either intersect
the set I or contain at least one of the cliques Qi .

At least
�

n
b

� � s2
�

n�2
b�2

� � 1
2

�
n
b

�
of b-cliques must avoid a fixed set I of jI j � s2

edges. Each of these b-cliques must contain at least one of r-cliques Qi . Since only�
n�r
b�r

�
of b-cliques can contain one clique Qi , and we only have L � t.2s/4r of the

Qi , in this case we have the lower bound

t �
1
2

�
n
b

�

.2s/4r
�

n�r
b�r

� D
� n

16s4b

�˝.r/ D 2˝.a1=4/ :

Case 2: (Negative inputs) Recall that negative inputs are graphs Gh corresponding
to colorings h of vertices in a colors; two vertices u and v are adjacent in Gh iff
h.u/ D h.v/. Recall also that 	.S/ is the maximum number jF j of edges in a
spanning forest F � S . Thus, in the second case of Definition 9.24 there must be
a family F of jF j � t.2r/4s forests with jF j � s edges in each F 2 F such that
every graph Gh contains at least one of these forests. That is, for every coloring h,
there must be at least one forest F 2 F such that h.u/ D h.v/ for all edges of F .

Fix one forest F 2 F , and let T1; : : : ; Td be all its connected components (trees).
All vertices in each of these trees must receive the same color. Since each tree Ti has
jTi j C 1 vertices, the total number of vertices in the forest F is m D Pd

iD1.jTi j C
1/ D jF j C d � s C d . There are ad ways for the coloring h to color the trees
Ti , and at most an�m � an�.sCd/ ways to color the remaining n � m vertices.
Thus, the number of graphs Gh containing one fixed forest F 2 F does not exceed
ad an�.sCd/ D an�s . Since we only have jF j � t.2r/4s forests in F , in this case we
have the lower bound

t � an

.2r/4san�s
D
� a

16r4

�s D 2.n=b/1=4

: ut

As mentioned above, the class of clique-like functions includes some NP-
complete problems, like CLIQUE.n; k/. But the class of .a; b/-clique functions is
much larger—so large that it also includes some graph properties computable by
non-monotone circuits of polynomial size!

A graph function is a function ' assigning each graph G a real number '.G/.
Such a function ' is clique-like if

!.G/ � '.G/ �
.G/ ;

272 9 Monotone Circuits

where !.G/ is the clique number, that is, the maximum number of vertices in a
complete subgraph of G, and
.G/ is the chromatic number, that is, the smallest
number of colors which is enough to color the vertices of G so that no adjacent
vertices receive the same color.

Although we always have that !.G/ �
.G/, the gap between these two
quantities can be quite large: results of Erdős (1967) imply that the maximum
of
.G/=!.G/ over all n-vertex graphs G has the order �.n= log2 n/. So, at
least potentially, the class of clique-like functions is large enough. And indeed,
Tardos (1987) observed that this class includes not only NP-complete problems (like
the clique function) but also some problems from P.

Lemma 9.27. (Tardos 1987) There exists an explicit monotone clique-like graph
function ' which is computable in polynomial time.

Proof. In his seminal paper on Shannon-capacity of graphs Lovász (1979a) intro-
duced the capacity #.G/. The function ' 0.G/ WD #.G/, where G denotes the
complement of G, is a monotone clique-like function. Grötschel et al. (1981) gave
a polynomial time approximation algorithm for # . That is, given a graph G and
a rational number � > 0 the algorithm computes, in polynomial time, a function
g.G; �/ such that

#.G/ � g.G; �/ � #.G/ C � :

Now, for any 0 < � < 1=2 the function bg.G; �/c is a polynomial time computable
clique-like function. This function might not be monotone. Let us therefore consider
the monotone function

'.G/ D bg.G; n�2/ C e.G/ � n�2c ;

where n is the number of vertices and e.G/ the number of edges in G. This is the
desired monotone clique-like function computable in polynomial time. ut

Fix k to be the square root of the number n of vertices, and let f� denote the
monotone boolean function of

�
n
2

�
boolean variables encoding the edges of a graph

on n vertices, whose values are defined by

f�.G/ D 1 iff '.G/ � k :

Observe that f�.G/ D 1 if !.G/ � k, and f�.G/ D 0 if
.G/ � k � 1. Thus, f� is
a .k � 1; k/-clique function. Theorem 9.26 and Lemma 9.27 immediately yield the
following tradeoff between monotone real and non-monotone boolean circuits.

Theorem 9.28. For every clique-like graph function ', the boolean function f�

can be computed by a non-monotone boolean circuit of polynomial size, but any
monotone real circuit requires 2˝.n1=8/ gates.

Thus, there are explicit monotone boolean functions, whose boolean non-monotone
circuits are exponentially smaller than their monotone real circuits. We will use this

Jukna
Cross-Out

Jukna
Replacement Text
There are clique-like graph functions φ such that

9.9 What About Circuits with NOT Gates? 273

theorem later in Sect. 19.4 to prove exponential lower bounds for widely used proof
system—cutting plane proofs.

But what about the other direction: can every non-monotone boolean circuit
computing a monotone boolean function be transformed into a monotone real circuit
without an exponential blow-up in size? Using counting arguments one can give a
negative answer (see Exercises 9.4–9.6).

9.9 What About Circuits with NOT Gates?

As we mentioned at the very beginning, no non-linear lower bounds are known for
circuits using NOT gates. So, what is missing in the arguments we described in this
and the previous chapters?

A possible answer is that the arguments are just too general! In order to show
that no circuit with t gates can compute a given boolean function f , we have
to show that no such circuit C can separate the set f �1.0/ from f �1.1/, that is,
reject all vectors in f �1.0/ and accept all vectors in f �1.1/. Current arguments for
monotone circuits (and formulas) do much more: there are relatively small subsets
A � f �1.0/ and B � f �1.1/ (sets of particular negative and positive inputs) such
that every monotone circuit separating A from B must be large.

To be more specific, let A be the set of all complete .k � 1/-partite graphs on n

vertices, and B be the set of all k-cliques. Hence, for any k-clique function f , mem-
bers of A are negative inputs and members of B are positive inputs for f . We have
shown that any monotone circuit separating A from B must have exponential size.

On the other hand, A can be separated from B by a small circuit if we allow
just one NOT gate be used at the top of the circuit! Indeed, each graph in A has at
least K D ˝.n/ edges, whereas each graph in B (a k-clique) has only

�
k
2

�
edges,

which is smaller than K for k D o.
p

n/. Hence, if g D :T hK is the negation of
the threshold-K function, then g.a/ D 0 for all a 2 A, and g.b/ D 1 for all b 2 B .
Since threshold functions have small monotone circuits (at most quadratic in the
number of input variables), the resulting circuit is also small, separates A from B ,
and has only one NOT gate.

That is, it is not hard to separate the pair A; B by a monotone circuit—it is only
hard to do this separation in the “right” direction: reject all a 2 A, and accept all
b 2 B . This motivates the following definition.

Let f be a monotone boolean function. Say that a pair A; B with A � f �1.0/

and B � f �1.1/ is r-hard if every monotone circuit separating a 2�r fraction of A

from a 2�r fraction of B (either in a “right” or in a “wrong” direction) must have
super-polynomial size.

Exercise 9.7 shows that any r-hard pair A; B requires a super-polynomial number
of gates in any circuit that separates A from B and uses up to r NOT gates. In the
next chapter we will show that r D dlog.n C 1/e is a critical number of allowed
NOT gates: having an r-hard pair for such an r would imply a super-polynomial
lower bound for general non-monotone circuits! The best result known today is that

Jukna
Cross-Out

Jukna
Replacement Text
can every monotone real circuit be simulated by a non-monotone boolean circuit

274 9 Monotone Circuits

the clique function produces an r-hard pair for r about log log n; this was shown by
Amano and Maruoka (2005).

Research Problem 9.29. Exhibit an explicit pair A; B of disjoint subsets of
f0; 1gn which is r-hard for r � log log n.

9.10 Razborov’s Method of Approximations

To describe the Method of Approximations in its full generality, it will again be
convenient to look at boolean functions f W f0; 1gX ! f0; 1g as computing set-
theoretic predicates f W 2X ! f0; 1g. In this way we get a 1-to-1 correspondence
between boolean functions f and families A.f / D fS � X j f .S/ D 1g of subsets
of X with the properties A.f _ g/ D A.f / [A.g/ and A.f ^ g/ D A.f / \ A.g/.
If f is monotone, then A.f / is monotone with respect to set inclusion: if E 2 A.f /

and E � F then F 2 A.f /.
Every family F � 2X can be extended to a monotone family pFq defined by

pFq WD
[

F 2F
pF q ; where pF q WD fE � X j F � Eg :

In particular, if F D ; is the empty set, then pF q D 2X , whereas pFq D ;
(empty family), if F D ;. The reason to consider monotone families is that
we only consider monotone boolean functions f , and for them we have that
pA.f /q D A.f /.

Thus, each monotone circuit for a monotone boolean function f starts with the
basic monotone families A.x1/; : : : ; A.xn/; A.1/ D 2X ; A.0/ D ; corresponding to
input variables and the two constant functions, applies set-theoretic union .[/ and
intersection .\/ operations to them, and finally produces the family A.f /. The idea
is now to approximate the operations [and \ by some other set-theoretic operations
t and u. This leads to the following definition.

A collection M � 2X of monotone families with two operations t (join) and u
(meet) is a legitimate lattice if it satisfies the following two conditions:

1. Families A.x1/; : : : ; A.xn/; A.1/; A.0/ belong to M.
2. M is a lattice with respect to set inclusion, that is, M; N � M tN and M uN �

M; N for all M; N 2 M.

Note that the second condition implies that

M [N � M t N and M u N � M \ N :

Thus, if we replace the gates [and \ in our circuit by the lattice operations t and
u, then some element M 2 M instead of the target family A.f / could be computed.
To capture the errors arising at each gate, define:

9.10 Razborov’s Method of Approximations 275

ı�.M; N / WD .M t N / n .M [N /;

ıC.M; N / WD .M \ N / n .M u N / :

Define the distance .f;M/ of a boolean function f from a lattice M as the smallest
number t for which there exist elements M; Mi ; Ni (1 � i � t) of the lattice M
such that

M n A.f / � ı�.M1; N1/ [� � � [ı�.Mt ; Nt / ;

A.f / n M � ıC.M1; N1/ [� � � [ıC.Mt ; Nt / :

The proof of the following theorem is by easy induction on the number of gates, and
we leave it as an exercise.

Theorem 9.30. For every legitimate lattice M, every monotone boolean circuit
computing f requires at least .f;M/ gates.

In order to apply this theorem for a given monotone boolean function f , we have
to define an appropriate legitimate lattice M and show that f has a large distance
from this lattice.

If we take M to be a trivial lattice consisting of all monotone families, then
.f;M/ D 0 for any monotone boolean function. So, in order to have a nontrivial
distance, one has to consider some nontrivial lattices. For this, we need to achieve
the following two goals:

1. Every family M 2 M must differ from A.f / in many members.
2. The “error-families” ı�.Mi ; Ni/ and ıC.Mi ; Ni/ must be relatively small.

Crucial here is the second goal. Razborov achieves this goal by ensuring that each
family in M has relatively few minimal (w.r.t. set-inclusion) members. This, in
turn, is achieved by introducing a clever “closure” operation, and by applying this
operation when the union of two families in M has too many minimal members.

9.10.1 Construction of Legitimate Lattices

Let r � 2 a fixed integer. Say that sets F1; : : : ; Fr imply a set F0, and write
F1; : : : ; Fr ` F0, if Fi \ Fj � F0 for all 1 � i < j � r . We write F ` F if there
exist not necessarily distinct members F1; : : : ; Fr of F such that F1; : : : ; Fr ` F .

A general construction of legitimate lattices is as follows.

1. Fix an appropriate “ambient” family P � 2X . In the case of the clique function a
natural choice is the family of all cliques on � s vertices, whereas in the case of
the perfect matching function such is the family of all matchings with � s edges;
s is a parameter.

2. Say that a family F � P is r-closed (or just closed) if F ` F and F 2 P
implies F 2 F .

3. Define M D fpAq j A � P and A is r-closedg.

276 9 Monotone Circuits

Since the intersection of closed families is also closed, there is the smallest closed
family containing A, which we will denote by A?.

Lemma 9.31. For every family P � 2X , M is a legitimate lattice with lattice
operations given by

pAq u pBq D pA \ Bq and pAq t pBq D p.A [B/?q :

Proof. First note that the condition (a) in the definition of a legitimate lattice is
fulfilled: we have A.xi / D pfxigq A.1/ D pPq and A.0/ D p;q.

Let A denote the set of all r-closed families A � P . As the partially ordered with
respect to the set-inclusion set, the set A is a lattice with inf.A1;A2/ D A1 \ A2

(intersection of two closed families is closed) and sup.A1;A2/ D .A1 [A2/
�. The

mapping pq W A ! M is a homomorphism of partially ordered under set-inclusion
sets. So, to finish the proof of the lemma, it is enough to show that this mapping is
in fact an isomorphism. That is, to show that pA1q � pA2q implies A1 � A2.

To show this, let pA1q � pA2q and E1 2 A1. Then E1 2 pA1q, and hence,
E1 2 pA2q. That is, there must exist a set E2 2 A2 such that E2 � E1. But then
E2; : : : ; E2 ` E1, implying that E1 2 A2, since A2 is r-closed. We have therefore
shown that pA1q � pA2q implies A1 � A2, as desired. ut

The main property of closed families is that they cannot have too many minimal
members with respect to set-inclusion.

A set family F is an antichain if for no distinct A; B in F do we have A B .
For a family F , let min.F/ denote the antichain consisting of all smallest members
of F with respect to set-inclusion.

Lemma 9.32. If F is r-closed and jF j � s for all F 2 F , then j min.F/j � sŠrs .

Proof. Assume that j min.F/j > sŠrs . Then the Sunflower Lemma (applied with
l D s and p D r C 1) gives us r C 1 sets F0; F1; : : : ; Fr in min.F/ forming a
sunflower. Since F is an antichain, the core E of this sunflower is a proper subset
of each of the Fi , and hence, also E F0. But Fi \ Fj D E for all 1 � i < j � r

implies that F1; : : : ; Fr ` E , and hence, E must be a member of F since F is
r-closed. This contradicts our assumption that F0 2 min.F/. ut

9.11 A Lower Bound for Perfect Matching

The perfect matching function is a monotone boolean function fm of m2 variables.
Inputs for this function are subsets E � Km;m of edges of a fixed complete bipartite
m � m graph Km;m, and fm.E/ D 1 iff E contains a perfect matching, that is, a set
of m vertex-disjoint edges. Taking a boolean variable xi;j for each edge of Km;m,
the function can be written as

9.11 A Lower Bound for Perfect Matching 277

fm D
_

�2Sm

m̂

iD1

xi;�.i/ ;

where Sm is the set of all mŠ permutations of 1; 2; : : : ; m. The function fm is
also known as a logical permanent of a boolean m � m matrix, the adjacency
matrix of E . Hopcroft and Karp (1973) showed that this sequence of functions
.fm j m D 1; 2; : : :/ can be computed by a deterministic Turing machine in time
O.m5=2/. Hence, fm can be computed by a non-monotone circuit using only O.m5/

gates. But what about monotone circuits for this function?
Using his Method of Approximations, Razborov (1985b) was able to prove a

super-polynomial lower bound m˝.log m/ also for this function. Fu (1998) showed
that, after an appropriate modification, Razborov’s proof works also for monotone
real circuits.

The lattice Mm with large distance .fm;Mm/ from fm will depend on two
parameters r and s which we will set later. Namely, let Mm be the lattice constructed
as above when starting with the ambient family P D Pers , where

Pers D fE � Km;m j E is a matching and jEj � sg

is the set of all matchings with up to s edges. That is, each element of M 2 Mm

is produced by taking an r-closed collection A � Pers of matchings, each with
�s edges, and including in Mm the monotone family M D pAq of all graphs
(not just matchings) containing at least one matching in A. In particular, minimal
(under inclusion) members of each M are matchings of size at most s, that is,
min.M / � Pers .

Our goal is to prove that, for appropriately chosen parameters r and s, we have
.fm;Mm/ D m˝.log m/.

It will be convenient to use probabilistic language. Let EC be a random graph
taking its values in the set of all mŠ perfect matchings with equal probability 1=mŠ.
It is clear that

ProbŒfm.EC/ D 1� D 1 :

Let h be a random two-coloring assigning each vertex of Km;m a value 0 or 1

independently with probability 1=2. This coloring defines a random graph E� D
f.u; v/ j h.u/ D h.v/g.

Lemma 9.33.

ProbŒfm.E�/ D 0� � 1 � 2p
m

:

Proof. Let U and V be the two parts of Km;m; hence, jU j D jV j D m. The graph
E� has a perfect matching iff

P
u2U h.u/ D P

v2V h.v/. Hence,

ProbŒfm.E�/ D 1� D Prob
hX

u2U

h.u/ D
X

v2V

h.v/
i

278 9 Monotone Circuits

D
mX

j D0

Prob
hX

u2U

h.u/ D j
i

� Prob
hX

v2V

h.v/ D j
i

� max
0�j �m

Prob
hX

v2V

h.v/ D j
i

�

m

m=2

!

� 2�m � 2p
m

: ut

In order to show that the distance .fm;Mm/ is large, it is enough to show that,
for every two members M1; M2 of the lattice Mm, the probabilities ProbŒEC 2
ıC.M1; M2/� and ProbŒE� 2 ı�.M1; M2/� are small.

9.11.1 Error-Probability on Accepted Inputs

The case of EC is relatively simple. Recall that EC is a random perfect matching.

Lemma 9.34. For any M1; M2 2 Mm we have that

ProbŒEC 2 ıC.M1; M2/� � .sŠrs/2 � .m � s � 1/

mŠ
:

Proof. Let M1 D pA1q and M2 D pA2q. Since for any family F and any two sets
A; B we have that pmin.F/q D pFq and pAq \ pBq D pA [Bq, the error-set

ıC.M1; M2/ D .M1 \ M2/ n .M1 u M2/ D .pA1q \ pA2q/ n .pA1 \ A2q/

is the union of sets pE1 [E2q n .pA1 \ A2q/ over all E1 2 min.A1/ and E2 2
min.A2/. Fix any two such sets E1 and E2, and let E D E1 [E2. Our goal is to
upper-bound the probability ProbŒEC 2 pEq� D ProbŒE � EC�. We have three
possibilities.

Case 1: E is not a matching. In this case ProbŒE � EC� D 0.

Case 2: E is a matching and jEj � s, that is, E 2 Pers . Since A1 is closed, E1 2 A1

and E 2 Pers implies that E D E1 [E2 2 A1. Similarly, E 2 A2. Hence E 2
A1 \ A2, implying that pE1 [E2q n .pA1 \ A2q/ D ;.

Case 3: E is a matching but jEj � s C 1. In this case

ProbŒE � EC� D .m � jEj/Š
mŠ

� .m � s � 1/Š

mŠ
:

Since, by Lemma 9.32, j min.A1/j � j min.A1/j � .sŠrs/2, we are done. ut

Jukna
Cross-Out

Jukna
Replacement Text
2

9.11 A Lower Bound for Perfect Matching 279

9.11.2 Error-Probability on Rejected Inputs

To upper bound the probability ProbŒE� 2 ı�.M1; M2/� requires more work. The
problem is that the events e1 2 E� and e2 2 E� for edges e1; e2 are not necessarily
independent. Still, the following lemma shows that the events are independent if the
edges come from a fixed forest. Recall that a forest is a graph without cycles.

Lemma 9.35. Let E D f.u1; v1/; : : : ; .up; vp/g � Km;m be a forest. Then the events
.ui ; vi / 2 E� are independent, and each happens with probability 1=2.

Proof. It is enough to show that, for any subset K � f1; : : : ; pg of indices, the event

.ui ; vi / 2 E� for all i 2 K , and .uj ; vj / 62 E� for all j 62 K

happens with probability 2�p. By the definition of E�, this event is equivalent to
the event that the values h.ui /; h.vi / satisfy the following system of linear equations
over GF.2/:

h.ui / C h.vi / D
K C 1 i D 1; : : : ; p ; (9.7)

where h.ui /; h.vi / are treated as variables, and
K is the characteristic function of
the set K . Since E is a forest, the left-hand side of this system is linearly independent
(see Exercise 9.8). Thus, the system has exactly 22m�p solutions, as desired. ut
Lemma 9.36. Let F � Pers be a set of jF j D r pairwise disjoint matchings. Then
there exits a subset F0 � F of jF0j � p

r=s matchings such that [F0 is a forest.

Proof. Choose F0 � F such that [F0 is a forest and jF0j is maximal. It is enough
to show that jF0j � p

r=s.
To show this, assume that jF0j <

p
r=s, and let E0 D [F0; hence, jE0j <

p
r .

Let U0 � U and V0 � V be the sets of vertices incident with at least one edge of E0.
Then jU0j <

p
r and jV0j <

p
r . Since F contains jF j D r > jU0 � V0j matchings,

at least one of these matchings E1 must have no edge in U0 � V0 (every edge can
belong to at most one matching in F , since these matchings are disjoint). Since E1

is a matching and E0 is a forest lying in U0 � V0, the graph E0 [E1 is a forest as
well. But E1 \ E0 D ; implies that E1 62 F0, a contradiction with the maximality
of jF0j. ut

Now we are able to upper-bound ProbŒE� 2 ı�.M1; M2/�. Note that the number
of matchings in Pers is

jPersj �
sX

iD0

m

i

!2

� i Š � ms

sX

iD0

m

i

!

� m2s :

Lemma 9.37. For any M1; M2 2 Mm we have that

ProbŒE� 2 ı�.M1; M2/� � .1 � 2�s/
p

r=s � m2s :

280 9 Monotone Circuits

Proof. Let M1 D pA1q, M2 D pA2q and A3 D A1 [A2. Then ı�.M1; M2/ D
pA?

3q n pA3q, where A?
3 is the closure of A3. Hence, there is a sequence of families

A3;A4; : : : ;Ap D A?
3 such that AiC1 D Ai [fEig with Ai ` Ei and Ei 62 Ai .

Hence, ı�.M1; M2/ is the union of all sets pEiq n pAi q, i D 3; : : : ; p � 1. Since
p � jPersj � m2s , it remains to show that A � Pers and A ` E0 implies that

ProbŒE� 2 pE0q n pAq� � .1 � 2�s/
p

r=s : (9.8)

To prove this, let E1; : : : ; Er be matchings in A such that E1; : : : ; Er ` E0. Hence,
the sets E�

i WD Ei n E0 must be disjoint. If at least one of these sets is empty,
then pE0q � pAq, and the inequality (9.8) trivially holds. Otherwise, we can use
Lemma 9.36 to choose a subset F0 � fE�

1 ; : : : ; E�
r g such that [F0 is a forest and

jF0j � p
r=s. Then

ProbŒE� 2 pE0q n pAq� � ProbŒE0 � E� and Ei 6� E� for all i D 1; : : : ; r �

� ProbŒE�
i 6� E� for all i D 1; : : : ; r �

� ProbŒE� 6� E� for all E� 2 F0 � :

By Lemma 9.35, all events E� 6� E� for E� 2 F0 are independent, and

ProbŒE� � E�� D 2�jE� j � 2�s :

Therefore,

ProbŒE� 6� E� for all E� 2 F0 � D
Y

E�2F0

ProbŒE� 6� E�� � .1 � 2�s/
p

r=s :

This finishes the proof of (9.8), and thus of the lemma. ut
Theorem 9.38. (Razborov 1985b) Every monotone circuit computing the perfect
matching function fm must have m˝.log m/ gates.

Proof. By Theorem 9.30, it is enough to show that .fm;Mm/ D m˝.log m/. For the
proof we assume that m is sufficiently large, and set the parameters r and s to

s WD b.log m/=8c and r WD bm1=4.log m/8c :

Let M; Mi ; Ni (1 � i � t) be elements of the lattice Mm such that

M n A.fm/ �
t[

iD1

ı�.Mi ; Ni /; (9.9)

A.fm/ n M �
t[

iD1

ıC.Mi ; Ni/ : (9.10)

9.11 A Lower Bound for Perfect Matching 281

We consider two cases; M D ; and M ¤ ;.

Case 1: M D ;. In this case, (9.10) implies that the entire set A.fm/ must lie
in the union of error-sets ıC.Mi ; Ni /, i D 1; : : : ; t . Since EC lies in A.fm/ with
probability 1, the sum of probabilities ProbŒEC 2 ıC.Mi ; Ni/� must be at least 1 as
well. Together with Lemma 9.34, this implies that (for sufficiently large m)

t � mŠ

.m � s � 1/Š.sŠrs/2
� .m=2/s � .sr/�2s

D
� m

2r2s2

�s

�
� 32m

m1=2.log m/18

�.log m/=8

D m˝.log m/ :

Case 2: M ¤ ;. By the construction of Mm, there exists a matching E 2 Pers for
which pEq � M . Together with (9.9), this implies that

pEq � A.fm/ [ı�.M1; N1/ [� � � [ı�.Mt ; Nt / :

We have

ProbŒE� 2 pEq� D 2�jEj � 2�s by Lemma 9.35

ProbŒE� 2 A.fm/� � 2m�1=2 by Lemma 9.33

ProbŒE� 2 ı�.Mi ; Ni/� � .1 � 2�s/
p

r=s � m2s by Lemma 9.37

This implies that

t � .2�s � 2m�1=2/.1 � 2�s/�p
r=sm�2s

� 1
8
m�1=8 � exp

�2�s
p

r

s

�
� m�2s

� 1
8
m

� 1
8

� 1
4

log m exp
�8m�1=8 � m1=8 � .log m/4

log m

�

D m˝.log3 m/ : ut

Research Problem 9.39. Can the lower bound m˝.log m/ for perfect matching be
improved to 2˝.m�/ for a constant � > 0?

282 9 Monotone Circuits

Exercises

9.1. A partial b–.n; k; �/ design is a family F of k-element subsets of f1; : : : ; ng
such that any b-element set is contained in at most � of its members. We can
associate with each such design F a monotone boolean function fF such that
fF .S/ D 1 if and only if S
 F for at least one F 2 F . Assume that ln jF j < k �1

and that each element belongs to at most N members of F . Use Theorem 9.17 to
show that for every integer a � 2, every monotone circuit computing fF has size at
least

L WD min
n1

2

� k

2b ln jF j
�a

;
jF j � a � N

� � ab

o
:

Hint: Take r D a, s D b and show that under this choice of parameters, the function fF can
be t -simple only if t � L. When doing this, note that the members of F are positive inputs for
fF . To handle the case of negative inputs, take a random subset T in which each element appears
independently with probability p D .1 C ln jF j/=k, and show that T is not a negative input for
fF with probability at most jF j.1 � p/k � e�1.

9.2. Derive Theorem 9.20 from the previous exercise.

Hint: Observe that the family of all qd graphs of polynomials of degree at most d � 1 over GF.q/

forms a partial b–.n; k; �/ design with parameters n D q2, k D q and � D qd�b .

9.3. Andreev (1987b) showed how, for any prime power q � 2 and d � q, to
construct an explicit family F of subsets of f1; : : : ; ng which, for every b � d C 1,
forms a partial b–.n; k; �/ design with parameters n D q3, k D q2, � D q2dC1�b

and jF j D q2dC1. Use Exercise 9.1 to show that the corresponding boolean function
fD requires monotone circuits of size exponential in ˝.n1=3�o.1//.

9.4. A boolean function f .x1; : : : ; xn/ is a k-slice function if f .x/ D 0 for all x

with jxj < k, and f .x/ D 1 for all x with jxj > k, where jxj D x1 C � � � C xn.
Show that some slice functions require DeMorgan circuits of size 2˝.n/.

Hint: Take k D n=2 and argue as in the proof of Theorem 1.14.

9.5. (Rosenbloom 1997) Given a vector x D .x1; : : : ; xn/ in f0; 1gn, associate with
it the following two integers hC.x/ WD jxj2n C b.x/ and h�.x/ WD jxj2n � b.x/,
where jxj D x1 C � � � C xn and b.x/ D Pn

iD1 xi 2
i�1. Prove that for any two vectors

x ¤ y,

1. if jxj < jyj, then hC.x/ < hC.y/ and h�.x/ < h�.y/;
2. if jxj D jyj, then hC.x/ � hC.y/ if and only if h�.x/ � h�.y/.

9.6. Let f .x1; : : : ; xn/ be a k-slice function, 0 � k � n. Use the previous exercise
to show that f can be computed by a circuit with O.n/ monotone real-valued
functions as gates.

Hint: As the last gate take a monotone function ' W R2 ! f0; 1g such that

'.h
C

.x/; h
�

.x// D f .x/

for all inputs x of weight jxj D k.

Exercises 283

9.7. Let f be a boolean function and suppose that it can be computed by a circuit
of size t with at most r negations. Show that for any A � f �1.0/ and B � f �1.1/,
there is a monotone boolean function g such that g can be computed by a monotone
circuit of size at most t and either g or its negation :g rejects a 2�r fraction of
inputs from A and accepts a 2�r fraction of inputs from B .

Hint: Argue by induction on r . If r � 1, then consider the first negation gate and the function g

which is computed at the gate immediately before this negation gate. Let � 2 f0; 1g be such that
g.a/ D � for at least one half of the inputs a 2 A. If also one half of the inputs b 2 B have
g.b/ D � ˚ 1, then either g or :g has the property stated in the lemma. If this is not the case, try
to apply the induction hypothesis.

9.8. Let G be a graph with n vertices and m edges, and let M be its m � n edge-
vertex adjacency 0-1 matrix. That is, there is a 1 in the i -th row and j -th column iff
the j -th vertex is an endpoint of the i -th edge. Show that the rows of M are linearly
independent over GF.2/ if and only if G is a forest.

Hint: In any non-empty forest there are at least two vertices of degree 1. If some subset of rows
sums up to zero, then the subgraph formed by the corresponding edges must have minimum degree
at least 2.

9.9. A set A � f0; 1gn of vectors is Downward Closed if x 2 A and y � x implies
y 2 A. Similarly, a set is Upward Closed if x 2 A and x � y implies y 2 A.
Note that, if a boolean function f W f0; 1gn ! f0; 1g is monotone, then f �1.0/ is
Downward Closed and f �1.1/ is Upward Closed. Prove the following result due to
Kleitman (1966): if A; B are Downward Closed subsets of f0; 1gn, then

jA \ Bj � jAj � jBj
2n

:

Hint: Apply induction on n, the case n D 0 being trivial. For a 2 f0; 1g, set ca D jAaj and
da D jBaj, where Aa D f.x1; : : : ; xn�1/ j .x1; : : : ; xn�1; a/ 2 Ag. Apply induction to show that
jA \ Bj � .c0d0 C c1d1/=2n�1 and use the equality c0d0 C c1d1 D .c0 C c1/.d0 C d1/ C .c0 �
c1/.d0 � d1/ together with A1 � A0 and B1 � B0.

9.10. Show that Kleitman’s theorem (Exercise 9.9) implies the following: Let A; B

be upward closed and C downward closed subsets of f0; 1gn. Then

jA \ Bj � jAj � jBj
2n

and jA \ C j � jAj � jC j
2n

:

Hint: For the first inequality, apply Kleitman’s theorem to the complements of A and B . For the
second inequality, take B WD f0; 1gn n C , and apply the first inequality to the pair A; B to get
jAj � jA \ C j D jA \ Bj � 2�njAj.2n � jC j/.
9.11. Let f W 2Œn� ! f0; 1g be a monotone boolean function, and let F be the
family of all subsets S � Œn� that are both positive and negative inputs of f , that is
f .S/ D 1 and f .S/ D 0. Show that jF j � jf �1.0/j � jf �1.1/j=2n.

9.12. (Flower Lemma, Håstad et al. 1995) A blocking set of a family F is a set
which intersects all the members of F ; the minimum number of elements in a

Jukna
Cross-Out

Jukna
Replacement Text
stated property.

284 9 Monotone Circuits

blocking set is the blocking number of F and is denoted by �.F/; if ; 2 F
then we set �.F/ D 0. A restriction of a family F onto a set Y is the family
FY WD fS n Y j S 2 F ; S
 Y g. A flower with k petals and a core Y is a family F
such that �.FY / � k. Note that every sunflower is a flower with the same number
of petals, but not every flower is a sunflower (give an example). Prove the following
“flower lemma”:

Let F be a family of sets each of cardinality s, and k � 1 and integer. If jF j >

.k � 1/s then F contains a flower with k petals.

Hint: Induction on s. If �.F/ � k then the family F itself is a flower with at least .k �1/s C1 � k

petals (and an empty core). Otherwise, some set of size k � 1 intersects all the members of F , and
hence, at least jF j=.k � 1/ of the members must contain some point x.

9.13. Let f be a monotone boolean function of n variables, and suppose that all its
maxterms have length at most t . Show that then for every s D 1; : : : ; n the function
f has at most t s minterms of length s.

Hint: Let F be the family of all minterms of f of length s. Every maxterm must intersect all the
minterms in F . Assume that jF j > ts and apply the Flower Lemma to get a contradiction with the
previous sentence.

9.14. Use Exercise 9.13 to give an alternate proof of the Monotone Switching
Lemma.

	Chapter 9: Monotone Circuits
	9.1 Large Cliques are Hard to Detect
	9.1.1 Construction of the Approximated Circuit
	9.1.2 Bounding Errors of Approximation

	9.2 Very Large Cliques are Easy to Detect
	9.2.1 Properties of -Critical Graphs

	9.3 The Monotone Switching Lemma
	9.4 The Lower-Bounds Criterion
	9.5 Explicit Lower Bounds
	9.5.1 Detecting Triangles
	9.5.2 Graphs of Polynomials

	9.6 Circuits with Real-Valued Gates
	9.7 Criterion for Graph Properties
	9.8 Clique-Like Problems
	9.9 What About Circuits with NOT Gates?
	9.10 Razborov's Method of Approximations
	9.10.1 Construction of Legitimate Lattices

	9.11 A Lower Bound for Perfect Matching
	9.11.1 Error-Probability on Accepted Inputs
	9.11.2 Error-Probability on Rejected Inputs

	Exercises

