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I. Introduction

Several papers have recently dealt with techniques for prov-
ing area-time lower bounds for VLSI computation by ‘‘cross-
ing sequence” methods. Yao [Y1] talks about the minimum
information transfer being a lower bound on the number of
crossing sequences across some boundary on the chip. Lip-
ton and Sedgewick [LS] and Savage [S] talk about ‘‘fooling
sets,” which are particular sets of input assignments that can
be used to prove lower bounds on the minimum information
transfer needed. A number of natural questions are raised
by these definitions.

1. Is the fooling set approach the most powerful way to
get information-transfer-based lower bounds? We
shall show it is not, and offer a candidate for the ti-
tle “most powerful.” Of course, without a precise
definition of “information transfer argument,” there
could be other contenders.

2. Are the notions of the three papers cited equivalent?
We shall exhibit certain inequivalences among the
three notions, although open questions remain.
However, we can resolve an open question of Papa-
dimitriou and Sipser [PS] concerning the relationship
between nondeterministic and deterministic com-
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munication complexity.
II. Problems, Fooling Sets, and Adversary Arguments

A problem is a list X = x;, . . ., x, of boolean input vari-
ables and a list Y =y, ..., y, of boolean output vari-
ables, together with boolean formulas expressing the y’s in
terms of the x’s. Methods have been developed in the refer-
ences cited and elsewhere to prove that certain problems can
only be solved on an integrated circuit of area A and time T
if AT? is at least a certain function of n, usually Qn?).
Thompson [T), Vuillemin [V], and Kedem [K] present a se-
quence of advances in this direction, along with [LS] and
[Y1]. The basic idea is to identify a notion of “informa-
tion,”” which has the property that if a problem has informa-
tion content /, then there must be at least 2! distinct crossing
sequences at some boundary within the chip, and therefore,
the time multiplied by the length of the shorter side of the
chip is at least /, from which AT? = I? follows. The typical
proof can be viewed as an adversary argument with the out-
line of Fig. 1.

Step (1) models the idea that inputs and outputs occur at
fixed locations on the chip, and we can select a boundary
across the shorter dimension of the chip. Since we are prov-
ing a lower bound, the adversary is the chip designer, who
gets to say on which side of a boundary the ports go. The
“constraints’’ mentioned in (1) are typically that no more
than 2/3 of the inputs, no more than 2/3 of the outputs, or
no more than 2/3 of the total go on one side of the boun-
dary. Our ability to constrain the adversary this way comes
from the fact that we can select the boundary after the chip
is designed. To argue that a boundary that divides the in-
puts into roughly equal-sized parts can be found, we first
rule out the possibility that very many inputs occur at one
point (if they did, then T would have to be large), and then



Adversary Lower Bound Prover

(l) Pick partition of X and

Y subject to some constraints.
(¢3) Select fooling set of

2! input assignments.

(3)  Select two members of fooling

set to have the same crossing

sequence.
4) Win by showing that from

the fact the two inputs
have the same crossing
sequence, there must be
some other input on which
the chip makes the wrong
output.

Fig. 2. Boundary selected in a chip.

Fig. 1. Standard adversary argument.

select a straight line with a.single jog if necessary, as in Fig.

differ on some bit of Y. A right-going fooling set can be
defined analogously, with left and right interchanged.

For problem P and partition of its inputs and outputs 1,
define I,5(P, ) to be the logarithm, base 2, of the size of

2.

In step (2), we evidently have to select the input assign-
ments so that if any two yield the same crossing sequence,
then the input assignment we get by combining the portion
of one to the left of the boundary with the portion of the
other to the right will produce an erroneous output. This
idea can be formalized as follows.

Let P = (X, Y) be a problem, and suppose the input set X
is partitioned into X, and Xg, while the output set is parti-
tioned into Y, and Yz. An input assignment o is a mapping
from X to {0, 1}. We use o, and ax for a restricted to X;
and Xz, respectively, and we use o fg for the input assign-
ment that agrees with o on X, and with B on Xg. A set
A={ay ..., o} of input assignments is said to be a
two-way fooling set for this partition if for any a and § in A,
one of the following four conditions holds.

1. o.Bg disagrees with o on some bit of ¥;.
2. ayBg disagrees with 3 on some bit of Y.
3. Brog disagrees with o on some bit of Yg.

4.  Brog disagrees with B on some bit of Y.

The argument in each case is the same. In (1), for exam-
ple, we claim that if « and B have the same crossing se-
quence, then the left side of the chip will give the same
response to a and aPg, and therefore, all bits of ¥, will as-
sume the same value. At least one of those bits is incorrect
for one of a or a;Br.

Let us define I,z5(P, ), where o is a partition of the in-
puts and outputs for problem P, to be the logarithm, base 2,
of the size of the largest two-way fooling set for w. We use
Lrs(P) for the minimum over all “legal” partitions w, of
Les(P, w). While the definition of “legal” could vary, here
we take it to mean that neither X; nor Xy are larger than 2/3
the size of X. We also drop the problem name P when it is
obvious, and speak of I,rs, the two-way fooling set informa-
tion.

Another kind of fooling set plays an important role in the
theory. A left-going fooling set is a pair (A, Bg), where Bg
is an assignment to the right side inputs Xz, and
A={ay, ..., o} is a list of assignments to X;, such
that for all i # j, the input assignments o, Bz and o Pg
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the largest list A in a left-going or right-going fooling set for
P and w. Let I,r5(P), or just Iizg, be the minimum over all
legal partitions 1, of I,rs(P, 7); we call this value the one-
way fooling set information for P.

The following relationships are easy to prove.

Theorem 1. [g(P, w) =< Iyps(P, ) and g5 = Ipg. O

It might therefore appear that there is no point in consid-
ering I;rs. However, the following theorem shows that they
do play a role, when we consider probabilistic algorithms (in
the sense that there are random number generators on the
chip, and the output is correct with probability greater than
1/2 on any run).

Theorem 2. If problem P is solved by a probabilistic chip of
area A and time T, then AT? = QU r5(P)?).

Proof. The proof is a generalization of the proof in [LS]
that probabilism is no help in transmitting strings. O
Theorem 3. There problem P for
Iips(P) < Iops(P).

Proof. Let P be any hard predicate, such as one of those
proved in [LS]. Iigs(P) = 1, because a one-way fooling set
cannot exceed size 2 if there is only one output bit. D

is a which

HI. Better Adversary Arguments

We now take up the question of what is the most powerful
way to prove lower bounds on AT?. One direction in which
we could improve the fooling set arguments has already been
considered by Yao [Y1, Y2]. There, lower bounds on the
number of required crossing sequences are obtained by argu-
ing about the number of bits that must be exchanged by two
sides of a chip. We shall consider this approach in Sections
IV and V, but we do not regard Yao’s methods as compar-
able to fooling set arguments because Yao’s definition is sig-
nificantly less constructive (of a lower bound proof) than
fooling set arguments. :

More importantly, there is a strategic issue that none of
the references cited addresses. The standard fooling set or
information-theoretic argument gives away too much to the
adversary. In particular, what is really going on is that the
adversary designs the whole chip, after which the lower



bound prover is privileged to focus on any boundary that he
chooses. The prover must respond to any design, but not to
every possible legal partition; perhaps there is some other
partition on the same chip that yields a better lower bound.
Figure 3 summarizes what we believe is a more powerful
form of adversary argument for VLSI lower bounds.

The Linear Argument

One simple way to implement the idea of Fig. 3 is to realize
that the points of the chip can be ordered, column by
column (assuming the chip is wider than high), with columns
taken from the left, and each column taken from top to bot-
tom. Associated with each point is a set of input and output
bits that are read or written at that point.

We can therefore represent the layout of the chip by a list
of sets of input and output bits. We assume that no one set

Adversary J Lower Bound Prover
¢)) Pick design of the chip. !

(2a) Pick a partition of input
and output bits that can be
drawn with a boundary of
limited length on the chip.

(2b) Select a fooling set of 2
input assignments for this
partition.

3) Same as Fig. 1.

C)) Same as Fig. 1.

Fig. 3. More powerful adversary argument.

sense of [Y1] that must flow across the boundary, divided by
the length (in units of V/A) of the boundary B, where A is

contains more than 1/3 of the input bits, or else we must use
another argument to get a lower bound on time alone, as for
the previous methods. An example of such a list is
{xi,x, o h{x, xs b {xa b, {yi b {22030, 33 1

The legal moves for the prover in step (2a) of Fig. 3 are
selections of a cut in the list; e.g., he might choose to put

the area of the chip.

The relationship between I rs and Iy is open, although un-
doubtedly the inequality is proper. However, we can make
the following observation about the boundaries used in
proofs involving [.

Theorem 5. Iy(P) is not diminished if we restrict ourselves

the cut between the first and second sets above, so
X[_={X1,X5}, XR ={x2’x3’x4’x6}’ YL ={}’2}; and
Yz = {y1, y3}. Each such cut in the list corresponds to a
boundary in the chip with one jog, across the shorter dimen-
sion, as in Fig. 2; the reason is that we may view the list as
representing the column-by-column ordering discussed
above.

Let us define I;rg(P) to be the minimum, over all linear
orderings, of the logarithm of the maximum possible fooling
set size for any partition of that ordering. Then:

Theorem 4. There are problems P for which Irg(P) is
strictly less than I, z5(P).

Proof. Let P, and P, be two instances, each with n in-
puts, of some problem such as cyclic shift for which
Iops = Yn) [V]. Consider the problem P that is the union
of P, and P,. I,rs(P) = 0, because of the partition where
all the bits of P, are on the left and all those of P, are on
the right.

However, we can use the linear information argument to
show an (n) lower bound. Given any linear ordering, ig-
nore the bits from P,, and select a cut that divides the input
bits of P, with at least n/6 on either side, which we may do
because (2nr)/3 is an upper bound on the number of input
bits of P in any set of the list. The lower bound argument
then proceeds as for P;. O

The Ultimate Argument

In what appears to be the most general use of the argument
of Fig. 3, we require the adversary to lay out the entire
chip. We, in step (2a), pick an arbitrary boundary of length
! to divide the chip into “left”’ and “right” halves, which
may not even be connected “halves.”

The information [y(P) for a given problem P is the
minimum over all layouts of the maximum over all boun-
daries B, of the minimum amount of information in the
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to boundaries that divide the chip into two connected re-
gions. O

IV. Information-Theoretic Arguments

As mentioned, Yao [Y1] has considered the number of bits
that must flow across boundaries as a lower bound on the
number of crossing sequences required. Since [Y1] dealt
only with single-bit outputs, we must make some changes in
detail, but not in spirit, to his definitions.

We say problem P has one-way information [\(P) if that is
a lower bound over all “legal” partitions on the minimum
number of bits we must transmit from one side to the other,
so that the second side will know the correct value for each
output bit, regardless of the side on which the bit appears.
As before, we take “legal” to mean at least one third of the
input bits are on either side, but other definitions of “legal”
might be considered.

We say P has two-way information I,(P) if that is a lower
bound over all “legal’ partitions on the minimum number of
bits that must be transmitted in either direction, so that each
side knows the value of each output bit on that side. Note
that the sequence of bit transmissions can include transmis-
sion in both directions, and can be adaptive, depending on
the bits sent previously.

Similarly, we can define I;(P) to be the analog of I;rs, but
with general information arguments permitted, rather than
being restricted to a fooling set argument. The following is
obvious. :

Theorem 6. Ip(P) < I(P), [Ips(P) = 1,(P), and
Iips(P) = Ii(P). D
It is expected that the inequalities are proper. For the

one-way case, at least, we have.
Theorem 7. The ratio I,(P)/l,rs(P) can be as high as {(n).

Proof. As in Theorem 3, let P be any hard predicate.
Then Iypg = 1, butl; = I, = n). O



Nondeterministic Complexity

The notion of computation on a chip has been extended na-
turally to nondeterministic computation of predicates [LS,

MS, PS]. If L is a language, we may define Iy(L) to be the

such techniques. For simplicity we will restrict our discus-
sion to the case that both sides of the partition output the
same function; the results can be extended to the general
case where we have different left and right outputs.

Fooling sets is one convenient lower bound technique. It

minimum over all legal partitions of the number of bits that

rests on the following two properties of crossing sequences.

must cross the boundary in a nondeterministic computation
accepting L, and we may define /5., x(L) to be the same for
the complement of L.

Papadimitriou and Sipser showed that the language L =

(1) If two input assignments a = a,ag and B = B,Bg have
the same crossing sequence, then also the input assignments
o, Br and Broar must have the same crossing sequence with
them, and (2) the output on the left (respectively right) side

“graph given by its adjacency matrix has a triangle” has
Iy = Ly = §4(n), but I,y=0(log n). They asked whether
there is a language with I, = (n), but I,y and I,y both
O(log n). The question is important because it exposes
something about the power of lower bound arguments, just
as the results in the present paper attempt to do. That is,

gisailoan auAccli s cavrratena msciries asido o case 1.

fooling set,
to nondeterministic computation as well as deterministic.
We can put a lower bound on the deterministic information
required for a predicate by arguing about either that prob-
lem or its complement, but if both the problem and its com-
plement have low nondeterministic complexity, other tech-
niques are needed.
Theorem 8. There is a  predicate
Inv(P) = Ipcen(P) = O(log n), but I, = n).
Proof (sketch). Let Q be the predicate ‘“has a triangle”

P with

from [PS]. Suppose we divide the nodes of a graph into two -

equal-sized sets V, and V,, and suppose that the input bits to
Q are ordered so that the edges between V, and V, follow

the other edges. Let m be the size of V, and Vz, n = (3.

Let P(abcd), where a and c¢ are strings of 2('5') bits

representing the edges within V, and within V,, and b and d
are strings of m” bits representing edges between V, and V,.
Note that these bits do not all represent one graph of 2m
nodes. Then the predicate P is

P(abcd) = Q(ab) and not Q(cb) and Q(cd) and not Q(ad)

For I,y choose a partition m that places a and d in one side
and b and ¢ in the other side. With this partition
Ly(P,m) = O(log n). For I,-y choose a partition o that
places a and b in one side, and ¢ and d in the other side;
I.o-N(P,o) = O(log n). It can be shown, however, that for
any "legal" partition T, either In(P,7) or I,-n(P,T) is
Q(n), and consequently I,(P) = (n). O

We note that the usual fooling set argument suffices to
prove that I(P) = (n) in Theorem 8. The proof does not
introduce a new technique but rather exposes a weakness of
the partition argument (here with respect to nondeterministic
computations) in a way similar to Theorem 4. So, for exam-
ple, if we let Iy, I; .-y be the analogs of Iy, I,-n With
the linear argument in place of the partition argument, then
the predicate P of Theorem 8 has
Iin(P) = Ipco-n(P) = )n).

V. Lower Bound Techniques for a Fixed Partition

Regardless of the type of the argument used to prove a
lower bound on AT? (partition, linear or the ultimate), we
need techniques for proving lower bounds on the informa-
tion transfer for a given partition (step 2 in Fig. 1, step 2b
in Fig. 3). In this section we will examine the power of
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depends only on the crossing sequence and the left (resp.
right) part of the input.

In {Y2) we see proposed another technique which rests
also on the same properties. Let f be the function which is
computed on both sides. Consider a matrix M(f) whose
rows correspond to the possible left input assignments, the
columns correspond to the possible right input assignments,
and whose (a,B) entry is f(aB). A rectangle is the cross
product AXB of a set A of left input assignments with a set
B of right input assignments. Fix a protocol that computes
the function f on both sides. From property (1) of crossing
sequences, the set of inputs which have the same crossing se-
quence is a rectangle.

A rectangle is said to be monochromatic if f has the same
value for every input in the rectangle. From property (2),
the rectangle that corresponds to each crossing sequence is
monochromatic. (This need not be the case if the two sides
output different functions; in that case, in a rectangle that
corresponds to a crossing sequence, the left output is con-
stant across each row and the right output is constant across
each column.) Each pair (a,B) of left and right input assign-
ments has exactly one crossing sequence. Therefore, the
monochromatic rectangles that correspond to the crossing se-
quences are disjoint and cover the matrix M(f).

Define the tiling complexity of f, I7(f), to be the logarithm
of the minimum number of disjoint monochromatic rectan-
gles that cover the matrix of f. Then, I, = Iy [Y2]. Yao
showed also a bound in the opposite direction: I, = O(2 Tn);
we will prove later that there is no exponential gap between
12 and 17'.

From the definition of a fooling set, it follows that no two
elements of a fooling set belong to the same monochromatic
rectangle. Therefore, It = I,r5. As Lipton and Sedgewick
observed in [LS], the fooling set technique applies also to
nondeterministic protocols computing the function f. A non-
deterministic protocol is one in which the two sides can take
guesses in the course of the computation. It computes a
function f on both sides if for every pair (a,B) of left and
right input assignments, (i) there is a sequence of guesses
for which both sides output f(aB)" and (ii) all sequences of
guesses that lead to the production of outputs give the
correct outputs. (It is not necessary to have outputs for every
sequence of guesses.) We let Iy(f) denote the minimum
communication complexity of a nondeterministic protocol

+ One may give a slightly different definition of a nondeterministic
protocol which does not require the two sides to output the value of
the function for the same sequence of guesses. It is not hard to see
that this definition can decrease the communication complexity by at
most a factor of 2. However, as is customary, we will ignore con-
stant factors.



computing f on both sides. Note the difference between a

{(A,NA,)xB, |v=A,XB, € V}, and the stage finishes.

nondeterministic protocol accepting a language L and one
computing the characteristic function f of L: In the case of
an accepting protocol an output has to be produced only if

Clearly, A,NA, # J iff v is adjacent to u in G,. Thus, the
size of the new set V is at most 3/4 of the old size. If the
left side does not find an appropriate rectangle u, then the

the input is in the language, whereas in the case of a proto-

right side looks for a rectangle w = A, XB,, in V with B€B,,

col computing f an output has to be produced for every in-

and deggr(w) = 3|Vl/4. If it finds such a w it sends it to the

put. In terms of the communication complexity, we have
In(f) = max{Iw(L), I5,-n(L)}. Every sequence of guesses
in a nondeterministic protocol leads to a crossing sequence.

left side; otherwise it communicates that there is no such w.
In the first case the left side acts symmetrically. That is, ei-
ther a€A, in which case the protocol finishes, or a€A, in

As in the deterministic case, the set of inputs which have the

whish case the stage finishes with the sets A, B, V updated.

same crossing sequence and which output the value of f on
this crossing sequence form a monochromatic rectangle.
Therefore, a nondeterministic protocol determines also a set
of monochromatic 1cctangles which cover the matrix of f;

In the second case, when the right side does not find an
appropriate w, we claim that both sides have enough infor-
mation to determine the value of f, and thus, the protocol
finishes. Both sides know that every rectangle u containing

the rectangles need not be disjoint however. Since no two

o has deg;(u) > 3]V[/4, and every rectangle w containing

elements of a fooling set belong to the same monochromatic
rectangle, Imn(f) = Lrs(f).

How good a bound on I, is I;rs? F. Chung (private
communication) can show that in a random mXm Boolean

has degg(w) > 3[V[/4. Therefore, every rectangle covering
(a,B) has degree > 3|V)/4 in both graphs G;, Gg, and thus
has degree > |V|/2 in their intersection G = G,NGz. We
claim now that the value of f is the same in all rectangles

matrix the largest fooling set has size O(log m) and thus
I)rs = O(log log m); however, the largest monochromatic
rectangle has size O(m log m) which implies that at least
O(m/log m) monochromatic rectangles are needed to cover

with this property. Let x, y be two rectangles with degree
> |V)/2 in G. Then, there is a node z which is adjacent to
both x and y in G. But two rectangles are adjacent in G iff
they have a nonempty intersection. Since the rectangles are

the matrix and thus I,y = Q(log m). The gap between Iy
and I,y (in fact between /s and I,, I,) is never more than
exponential.

Theorem 9. Let nrow be the number of different rows of
the matrix M(f) and ncol the number of different columns.
Ips = log log max {nrow, ncol}. O

The quantities log nrow, log ncol are equal to the com-
plexity of one-way communication from the left to the right
side and from the right to the left respectively.[Y2]. Thus,
Iyrs = log I, = log I,. Nondeterministic complexity is never
that far however from deterministic complexity.

Theorem 10. I, = O(/3y).

Proof. An optimal nondeterministi¢c protocol determines a
covering of the matrix M(f) with a set V of monochromatic
rectangles (corresponding to its crossing sequences) with
Ly = log|V|. Form two graphs G,, Gz with the set V of
rectangles as nodes. There is an edge in G, (resp. Gg)
between two rectangles if they have a row (resp. column) in
common. Let deg (u), degg(u) be the degree of a node u in
Gy, resp. Gg.

Suppose that the left side receives an input a and the right
side an input B. The deterministic protocol works in stages.
In each stage we have sets A, B of left, right input assign-
ments such that the left side knows (from the communica-
tion that has already taken place) that § € B and the right
side knows that o € A. Initially, A and B are the sets of all
possible left and right input assignments. We have also a
covering of AXB with a set V of monochromatic rectangles
and the two corresponding graphs G, Gz known to both
sides.

A stage is carried out as follows. The left side looks for a
rectangle u = A,XB, in V such that a€A, and
deg, (1) < 3|V)/4. If it finds such a rectangle u, it sends u to
the right side; otherwise it communicates that there is no
such rectangle. In the first case the right side communicates
whether B€¢B,. If B€B,, then the protocol finishes: both
sides know that f(aB) is the (constant) value of f in the rec-
tangle u. If B€B,, then A is replaced by ANA,, B remains
the same, V is replaced by the set of nonempty rectangles in

137

monochromatic it follows that x, y and z have the same
value of f. ‘

Therefore, the protocol computes correctly f and finishes
in at most log|V|/log (4/3) stages with a total communication
of (roughly) I3y/log (4/3). With a slightly more careful pro-
tocol, the coefficient 1/log (4/3) can be replaced by 2. D
Corollary. I, = O(I}). O

The transitivity property used to infer the value of f in the
last step of the proof of Theorem 10 does not hold in the
case that the two sides output different functions. However,
the theorem can still be proved (proof omitted). Of course,
the same quadratic relationship holds also when the informa-
tion transfer is calculated with respect to the best partition as
in Section IV. Thus, for example, for any language L we
have, (L) = mﬂinlz(L,'rr)

= O( [min max{I(L,),l2c0-n(L,m™)}?) (compare  with

Theorem 8). The bound is tight up to a logarithmic factor:
Melhorn and Schmidt present in [MS] a Boolean function
with I, = n and I,y = O(Wlog n). The technique they use
to prove the bound on /I, for this function is based on the
rank in GF(2) of the matrix. The minimum size of a tiling
with disjoint monochromatic rectangles is bounded from
below by the rank of the matrix (in any field) [MS, O]. If
we let I be the logarithm of the rank (in some field) of the
matrix, then Iy = Iz. The rank technique can be used to
show bounds that do not apply to nondeterministic protocols.
In general however, an exponential gap between I, and I is
possible. .

Theorem 11. There is a function f with Iz(f) = log n and
L) = Iw(f) = n.

Proof. For the rank in GF(2) take f to be the inner pro-
duct.mod 2 of two n-dimensional 0-1 vectors. The rank of
the matrix in GF(2) is n, and Iz = log n. It is not hard to
see that the largest monochromatic rectangle has size 2".
Since the matrix has size 2%", at least 2" monochromatic rec-
tangles are needed to cover it, and therefore I, = I,y = n.
For the rank in the ring of integers, take f to be the inner
product without the mod 2 reduction. O



such that the ratio Irs(P, W)/ sps(P, w) is Yn).
Proof. Consider the problem of determining of input bits

1
) Xt . . ., X, whether u, the numerical value of xy, . . ., X,
1’; is equal to or less than v, the numerical value of
I \ Xu241r « « - » Xp. Let m place xy, . .., x,2 on the left and
I, \\ the other bits on the right. Then
! \ {(0,,(1,2), ..., (2"=2,2"—1) } is a two-way fooling
! \ set for P and w, where (a, b) means the input assignment
Iy Iirs that assigns values to the inputs so that u=a and v=b>.
/ I Thus, Irs(P, w) = O(n).
However, it is easy to show that no 1.5-way fooling set
Ig Iy can have more than two members. Suppose (a, b), (c, d),
, and (e, ) were in one fooling set, and assume without loss
/ of generality that a < b and ¢ = d. Also, assume b < d
S and let the lone output bit appear on the right. If
I a = (a, b) and B = (c, d), then o Br = (a, d) agrees with
Iy.sps a on the left, because there are no output bits there, and
| agrees with 8 on the right because a = d. O
Iigs VII. Summary

Fig. 4. Diagram of inclusions.

We have seen thus three lower bound techniques: I5rs, Iy,
Iy with the last one always larger than the other two. The
first two are more constructive in general, in the sense than
one can exhibit a large fooling set or can use linear algebra
methods to prove that the rank in GF(2) (or another field) is
large; they may be in general, however, exponentially far
from I. The tiling method comes within a square root of I,
but is less constructive: exhibiting a tiling does not provide a
bound on Iy (a difficult minimization problem). Still, in
some cases, it might be possible (and easier) to argue about
Ir. (For example, what is a large fooling set for the func-
tion of Theorem 11?)

Open Problem. Find a "constructive” lower bound tech-
nique that comes always within a constant factor of I,.

VI. Asymmetric Fooling Set Rules

One might suppose that the definition of two-way fooling set
given in Section II was redundant, and that we could do with
only the first two clauses. Put another way, our definition
of 2FS implies that the adversary gives us a set { o, B } of
inputs, and we can derive a contradiction in any way we
can. Could we not allow the adversary to give us an or-
dered pair (a, B), and derive a contradiction involving
o Br, that is, using rule (1) or rule (2) in the definition of
2FS?

For want of a better term, let us define I, sp5(P, W) to be
the logarithm of the size of the largest set of input assign-
ments that for each pair satisfies clause (1) or clause (2) in
the definition of two-way fooling set. Let I, sps(P) be the
minimum over all “legal” w of I sgs(P, w).

Theorem 12. I,z5(P) < I 5p5(P) < Ip5(P), and at least the
first inequality is proper for some P.

Proof. The argument for Theorem 3 applies here too. D

At least for a fixed partition the second inequality is also
proper.

Theorem 13. There is a problem P and an input partition
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Figure 4 diagrams the relationships we have proved, along
with some other obvious relationships. Solid lines show
proper containment;. dashed lines show (possibly improper)
containment, although we have taken the liberty of assuniing
that a proof of proper containment for a fixed partition is
adequate justification to distinguish between two information
measures. [,y in the figure stands for the complexity of
nondeterministic protocols computing the function.
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