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Abstrast. For swit bing functions f let C(P) be the combinational complexity of fi We prove that 
for every e there are arbitrarily complex functions p: (0, I}” --, (0, 1)” such that C(f x f’s 

(I+ 4CCf) arbitrarily complex functions f: (0,l)” + (0, 1) such that C( v o(f x f)) s 

(1 f E)C@. aese results and the techniques developed to obtain them are used to show that 
Ashenhurst decomposition of switching functions does not always yield optimal circuits, and to 
prove a new result concerning the gap between circuit size and monotone circuit size. 

. ntro~ 

Let f be a switc nction and C(f) the size of the smallest circuit with 24nput 
l-output gates realizes f” Define (f x g)(n, y) = (f(x), g(y)) and define 
(fog)(~) = f(g(x)).’ Let v: (0, l}*+{O, 1) denote the logical OR. 

In this paper we deal with the following question: Cdfxf) and 

C( vo(f X f)) behave in terms of C(f)? Intuition st for the first 
problem C(f x f; = 2Ccf) for any f9 because two eva of f on disjoint sets of 

o with each other’“. 
n is wrong and that for certain functions 

conjectures are far from reality. 0ur main results are: For any E > 

+{O, 1)” such that C 

ere are arbitrarily 



384 W, J. PAUL 

We diescribe a well known heuristic approach for circuit design: a function 
f : @, 1)” +B (0, I} has simple disjoint decomposition if there are functions 
h :, {O, 11,’ + (0, I} and g : (0, f}n-s+* + {0,1} such that f(x, y) = g@(x), y). Such a 
decompcsition of f suggests realizations of f which make use of this decompositio 
in an obvious way. We show that these realizations are not always optimal, hereby 
settling a conjecture stated in [3, p. 430). However we can prove optimality of such 
realizations under the severe restrictions that C(h) = s - 1 and f depends on all its 
arguments. 

Finally we turn to monotone circuits; these are circuits in which all gates are 
AND-g;ltes or OR-gates. For a monotone function f denote by MC(J) the size of 
the smallest monotone circuit which realizes f. Using a result due to Fischer 
which etstablishes MCCf X g) = MCcf) + MC(g) for all monotone f and g: we exhibit 
a sequence of monotone functions fn : (0, 1)” + (0, 1)” such that for almost all 
n : MC(&) B const. pt2/log3’2 n, but C(&) G O(n log’ n).‘* 3 

2. Preliminaries 

We introduce 
paper. 

some notations and defin Itions which we will use throughout this 

= (1 ” , d) . . . 1 , No = N u (0). 

[.vn : n] = (m, m + 1,. . ., n}. 

If C is a finite alphabet, then C * is the set of finite words over C. For IV E C * let 
1 w 1 denote the Iength of w a wi the ith symbol of W. 

F’or finite sets, ./I and n E A n is the n-fold Cartesian product of A. For 
w E (0, I)“, wi dP2notes the ith component of w. 

Any function f : (0,l)" + (0,l)” is called a switchg function. 
We use the special symbols A , v, - , Q, = for the functions logical AND, logical 

OR, negation, -I- mod 2, equivalence. 
‘For functions f : (0, I}" + (0, 1)" and g : (0, 1)” --, (0, l}p, g 0 f : (0.1)" + (0, l}p is 

the usual composition of functions. For functions f : (0, 1)” + (0, 1)” and 
g : (0,l)" -3 (0, I}? f X g : (0, l)n+p * (0, l)m+4 is defined by 

(f x g)(al, . . .) a,, h, . . c9 bp))i = I cft al ,..-,&))i if 1 G i G m, 

w 1, ’ l ‘9 bp ))i-m 
if m < i 32 m -?- 4, 

A switching circuit is a finite directed acyclic gr 
A, r, L Each node in G has indegree 0 or 2. N 
a 

l nodes with outdegree . . . . 
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A : {nodes of G)+ 0 = {h 1 h : (0, l)*+ (0, 1)) labels the nodes of G with 
operations. 

r, I : {nodes of G)=+ {nodes of G} U (0) ;re mappings such that 
(i) for each input node Xi : r(Xj) = 2(X,) = 0, 

(ii) if node c has indegree 2 and c1 and c2 are the parents of cl th?n 

c j U l(c) = {cl, 4. 
Hf G has it input node Q then with each node c in G one associates in a natural 

way a function rest(c) : (0, I)” -+ (0, 1) by defining fo 

I 
ai if c is the input node xi, 

x-es&)(a) = 
A(c)(res&(c))(e), res&(c))(a)) if indegree = 2. 

A function f : (0,’ I* -+ {O, 1)” is co.Ynputed by the circuit G if in the circuit G there 

are m outpllrt nodes c~,...,c,,, such that for all a E (0, 1 I”, f (a ) = 
(res&)(a), . . .) resG(cm)(a))* 

Define C(G), the complexity of the circuit G as the number of nodes with 
indegree 2 (number of gates) in G, and define C(f), the (combinationtil) complexity 
of the Function fi by C(f) = min{C(G)I G computes f). A circuit G i,; an optimal 
circuit for f if G computes f and C(G) = Ccf). 

Some facts about optimal circuits which we often use implicitly tire stated in: 

Lemma 1. (a) If G es an optimal circuit, c is a node in G with indegree 2 and e is not 
an output node, men A(c) depends properly on both arguments. 

(b) For each f : (0,1)” * (0, 1)” there is an optimal circuit G for f with at most m 
output nodes. 

3. A technical 

In this section xe show how to save gates by simultaneously evaluating the samI: 
function g on inany disjoint sets of v,ariables instead of makin:? many copies of a 
circuit for g. 

For g : (0,l) +{01 1)” and k E define 

8% $7, g” = g x gk-‘. 

ei 
construct a Turing 



386 W. J. PAUL 

mines the result of g on these inputs by table look up, then “unsorts” the results 
and prints them out Applying to machine the Fischer-Pippenger Conversion of 
Turing machines to circuits, yields the desired circuit. T emma 2 itself, 
however, is somewhat lengthy because we have to ta care of some tech 

details. 
e first describe a result from [4,7] which we use later, Let be a deterministic 

multitape Turing machine with input alphabet = output alphabet = 2. Let fh( 
function computed by i.e. fM : .X * =+ 2 @, .f’M(w) = the output produced b 
input w. 

Let D G 2 n for some n. We say M is lengrrh respecting on D if for all w, w’ E D, 

If(w)1 = IfW!* 
For w E C *, i E [l : 1 f @)I] let t(w, i) be the time at which M prints out (f(w))i 

when M was started with w. We say M is unifufm on i2 if for all w, w’E D, 
t(w, i) = t(w’, i) for all i for which the equation is defined. 

Let u- = flog (cardinality of X)1 t and let $ : C ‘2 (0,l)” be an encoding of 2. 
Extend $ : Z*+(O, 1)’ by defining Jl(w, . . . w,) = a(~,). . +(w,). 

ppenger)? For each Turing muchine M there is a constant &,, 
the following holds l If for any D c C “, M is length respecting 

and uniform on D and if for all w E D, M halts after at most T(D) steps, then one 
can construct from a circuit with PM T(D)@ T(D) gates, which on input 
w E $(D) computes e&(w)). 

Define int : (0, I)* -+ 

int(b) = the integer whose binary representation is b, 

bin(b) = binary representation of b. 

We design a Turing machine , which given a description of g : (0, 1)” --)r (0, 1) and 
k arguments (i.e. bin>ary n-tuples) computes g at these arguments. T 

on inpu,ts of the form 

aa,#... a2em1 # # bt # . . . # bk, (3 1) . 

, I), Ai E (0, I)“, the Turing machine prints out 

int(bl) l - l 4 ini<bk) l 

I 
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(r 
= Lb 1,. . .y bk 1, 

computes the list 

L1 = [(bl, bin(l)), . . ., (bk, bin(k))]. 

(2) Using merge sort (for de ils see, e.g., [l, pp. 66, CT]), M sorts the list L, 
g to the size of t hers int(bi ). SO rt produces the list 

(3) 

(4) 

(5) 

L2 = [(bi,, bin(Q), . . ., (6,*, bin(h)):, 

where int(b,) G int(bi, +,) for all j E [ 1 : k - 11. 
1 

Ijcanning a0 # . . . # 4t2n-1 once, 

LJ = t(aint(bi,), bin(&)), . . ., (Qinr(bik), bin(h)]. 

Again using merge sort, M sorts the list LJ according to the size of the ii. 
So M produces 

LO k [(a int(bl), bin(l)), . . l 9 (a int(bk)y bin& ))I- 

Scanning Lg once, M prints out 

Lg= a 0 t(bt) l l l a int(bk) l 

Time analysis : Each of the parts (1) and (5) takes time O(n 0 k). Each of part (2) 
ich use merge sort of a list of k elements involve k log k comparisons, 
rison involving n steps on M. It turns out that merge sort can be 

implementeti on M using time O(nk log k). Part (3) takes time at most 0(2” + kn). 
Now one can modify slightly such that for some constants kl, kr, k3 and for all 

n and k, part (1) takes actly kl l n l k steps, each of part (2) and (4) take exactly 
time k2nk log k and part (3) takes exactly time k3(2” + knl. 

Thus if part (5) is programmed in the most straightforward wa)’ and if for 

n, we -define D, k he set of all inputs of the forrr. (3.1), then for each n 
an e mtldified machine ting and unifcrm on 
is a constant k, such that for all n and halts after at most 

0, k) = k4 lIWtX(2” -f- (3 2) . 
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= phmax((2” -F &n)log(2” + lefl), 

ow observet:hat in max{ . . ., . . . } for k < 2W the 
estimated from above by BY Pf k 2 2n/n4 

ated by 4rok log’ k. nce for all n a 

C(&,,) 6 p~n~x{n2~, nk log’ k}, where p& = 

y trivial coding a networks the circuit 
circuit Gk;, such as 2” + kn inputs and kn outputs, anal on input 
al.. . QX~K-~ b 1 . IB I, &k, a& E {(I, I}, bi E (0, I)“, G kk produces the output ai,,(,,,, . . . dinl(bk)m 

oreover C(G :J s a ai(n2n, nk log’ k}. Setting the first 2” inputs of Gk,c to the 
description of al functio : (0, I)” --) (0, 1)" - more precisely, setti ai = g (bin(i)) 
for all i E [0 : 2” -- l] - does not increase the cost and yields the d red circuit for 

gk* 
n exactly the same way one proves 

* I;liheve is a constant y such that for all k, n E 

C(g ” ) S y max{ I2 22n, nk log’ k ). 

e state some: facts which we will use later: 

such that for ail n > and all but a vanis ing fraction of 
n --) (0,l) the following holds: C 

& that for all n > IV and all but a van ing fraction e 
s f : (0, 1)” -+ (0, 1) the following holds: C(f) Z= 2”/3. 

roven by the well-known Shannon counting argument [M] (see 

tie ere is 
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given ally n > 
re is an m E [n *‘@*): n] an 

mat (4.3) aad (4.4) hold. 

{vo(g xg)),so 

qf) = C(g) 2 2”‘” 3 2”“(=+2)‘, 
(4 5) . 

C(vo(fx f))=C(vo(g xg))qa+E) (g)=(H-EjC(f). (4 6) . 

Thus Theorem P llolds with d = c . (c - 

Lemma 4 is proven by contradiction. 

(c - 2)log(l+ E) 3 3; 

N = max{N, N2, I++&, NJ, 

ma 3 is correct. 

g:{0,1}“-*{0,1) s ch that C(g) 2 2”/3n), 

N2 = mine F9, 1 2n1’(c-1)/3n NC-1) 3 2n1”), (4 81 . 

N,= c - 2)*n ’ -‘log* n }, 

= -;WBjz, I ,*3n - rllrlr~8c , I& L 2 3arn2” + 3ncs-*)), a as in 

(4.9). Let n 3 N and assume that for all m E [n : PC-*] and all g : (0, 1)” + (0,l) 
such that C(g,ka 2”‘” t e following holds: 

4{0,1} such that 

C(g) $2 2”/3n. 
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C(G(i))s C(g)H”Bn 

ence the assumption (4.9) applies to G(i) for alI! i E [O : (c - 2)log n]. 
Thus’ using (4.lb) and (4.11) this implies by induction on i that 

. C(G(I))* (1+ &)‘2”/3n 

and in particular for i = (c - 2)log 12, 

C( v*c-20 gnC-2) a n(c-WWl+r). 2n/sn 

a n22”/3 by (4.7). 

ut applying Lemma 2 with & = P2 yields 

C(gRce2) S 0f max{ pt2%, (e - 2)2:a ‘-‘log2 n } 

= an2” by (4.8). 

Thus 

CO ,=-20 g”‘-‘) 6 an2” + ncm2 

c pz 22n/3 by (4.8). 

This contradiction proves Lemma 4 and the theorem. 

For all d > 0 %here are arbittarily complex functions f : (0,l)” + (0,l) 
such that Ci v 0 (f x f)) s “-C(f) - d. 

3 there is d E N such that for almost all n E there is 

C(f) 2 2”““, (4.12) 

C(fxf)ql+E)C(f). (4.13) 

d of (4.11) one 
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inary n X ?r matrices we 
log n. Choose D such that C(fD) 2 n2/7 log pt‘ Assuming Cor 

t C@$% iC(fD)- id. 

ut for (column) vectors xi E (0, l)“, fk(.~ I9.. ., 
of D with the matrix (xl.. . x,). Using Strassen’s 
[15] and fast integer multMi 
Boolean matrix product can 

tion [13], Fischer an 
done with cost 

0(,2-er j, a contcalrrction. 

oolean 5natrix product 
rix multiplication algorithm 
yer [6] have sh~swn that the 

oglog n iogloglog n) S 

efinition (see [21). f : (0,l)” --, (0, 1) has simple disjoint decom~&~ion if there is 

h : (0,l)” + (0, l), 2 5: s s n - 1, g : {0,1)n-s+t-3 (0,l) and a permutation 

1 n . . . ( ) . . 
I] . . . 1, 

such that 

f(a) =’ g(h (%, l - 9 ai, )9 ai,,,, l l l , ai,) for all a E (0, 1)". 

If f has simple disjoint decomposition, this decomposition suggests in a natural 
way a realization of f in the form of Fig. 1, where g and i)l are realized optimally. 
We say that such a realization makes use of a decomposition of fi 



532 W. 3. PAUL 

3. A realization of a switchi g function f which makes use of a decowzposi- 

tio,n of f is not necessarily optimai?. 

I, For aIll f : (0, 1)" + (0, 1), v 0 (f x f) can be deco in an obvious way. 

realiz$ations of .f, which make use of a decomposition o ays optimal, then 
C(v qlf x f)) a- 2Ccf). But this contradicts Theorem 1. Cl 

,As pointed out by an unknown referee, 
Let f : (a, 1)” -* (0, I) be such that C(f 

F : (0, 1)2m+1-* (0, l}, 

an also be proven directly, 

0% y, z) = zf (x) v Zf (y ) for z E (0, 1}, x, y E (0, 1)". 

aiking use of the obvious decompositi n of F one gets a realization with cost at 
ut F can be realized as 

F(x, y, z) = f (zxl v Zyl, l l l , zxn v fyi,), 

hence C(F) s C(j) + 3n. 
AJthough Theorem 3 shows that realizatioris which ma.ke use of a decomposition 

are not optimal isr the general case, we can show the optimality of such realizations 
for a very restricted class of functions. 

If f : (0, 1)" + (0,l) has simple disjoint decomposition f(x) = 
i,+l) . . ., XI,), C(h) = s - 1 and f depends on all its arguments, thest 

C(f) = C(g) + s A 1, i.e. there is an optimal realization off, which makes use of this 
decomposition, 

Clearly C(f) 6 C(g) + s - 1. It remains to show C@) 3 C(g) + s - 1. To prove this 
e first show 

--) (0, I} has sim.pc’e disjoint decomposition f(x) = 
is, . . ., xi,) and f depends on a01 Ets arguments, then C(f) 2 C(g) + 1. 

plicity of notation we assume ij = j for j E [l : n]. 
les x and a E ( 

x if a-l, 
x4 = 

if Q ‘= 0. 
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ange the labels A (c) of all 

se 2: (i) Set the input x2 to the constant b. 
input x1 to xt ’ by negating it if Q =Z c = 0. 
depends on x 2, the input node x2 has a successor node C in 

nsformation (i) makes one input of C constant, hence C can be eliminated. 
Matson (ii) does n ange the cost of t 

ted by ‘. Then in Case 1, 

405 x3, l l l 9 

In Case 2, 
q(y, x3,. l .9 xn) = p(y”“=, 6, x3,. . .,x,) 

'9 b),x3,..., xm) 

= g(((y”-“)” A bb)c, x3,. . .,x,) 

= g(y,x3,. l -9 XR). 

ence in both case:s q = g and 

C(g)cC(G’)N(G)-l=<:(f)-1. 

The theorem is now proven by induction on s. For s = 2 the theor 
from Lemma 5. Suppose the theorem is proven for s - I. 
depends on all its variables and C(h) = s - 1, the graph of 
tr is a tree. There are at least two input nodes (leaves) xi, xi and a nod 
that xi and Xj are the parents of c. Let h” = A(c), i.e. ” is the function computed by 
the node (gate) c. 

For ease of nctation let i = 1, j = 2. Transform G into a circuit 
and xz and 

f( ’ c,x 3q. . ., xn) = ‘(c, x3, . . ., a), Xs+l, . . ., x, 

lies 

ence 
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For a, b E (0, I.}” define a s b if for 
f : (0, 1)" +;{(I, 1)” is monotone if a 6 b implies f(a)s f 

11 ii E [I : a], cxi s 6i. 

A switching circuit is monotone if all nodes with indegree 2 are labelled with %” 
or 9”. 

The monotone functions are exactly the functions computable by monotone 
circuits. For monotone f define the monotone complexity off f : MC(f) = 
min(C(GQl G computes ‘f and G is monotone}. 

The following theorem is due to Fischer [S]: 

For any mono,tone f : (0, 1)" + (0,l)” an8 monotone g : 10, l}p + (0, l)q 

MC(f x g) = MC(f) + 

To prove Theorem 5 we use: 

ct 3 (IvIehhrorn and Galil[9]). Let G be a monotone circuit which computes a set of 
l-osrtput functions F = {f,, . . ., fk }. Let c be any gate in G and let to, t,, . . ., tn be the 

Zicants of resG(c). If to is not part’ of any prime imp*‘xuat of any fiuzction in 
F, then c may bc replaced by a node d with rest(d) = t4 v . . . v tm and the new circuit 
stilr! computes the same set of functions F. 

Let Cr be a monotone circuit for f x g with input nodes 
z . . l y JCn, . . ., ym Hnd output nodes ul,. . ., u,,,+~- We say a gate c is shared 

between f and g if there is a xi and yj such that there is a path from xi to c and a 
path from yj to c. To prove Theorem 5 it sufices to show that no optimal monotone 
circuit 43 for f X g contains a shared gate. 

Suppose G contains one or more shared gates. Then thc,se is at least one shared 
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Cyst? 2: e label of /: is v, reso(c) can e replaced by 1. This is proven as in 
ase 1, but one uses instead of al8 of this fact. 0 

n j/(7 log n ) gates. 

ost all n and all but a vanishing fraction of the binary 
holds : If G is a monotone ciruit, which performs the 

rbitrary (n X n)-matrix, then G has at least 

Corollary 2. U 

It has been shown that any monotone circuit, which computes the 
product elf two arbitrary matrices requires (n3) gates 19, 10, 121, but these proofs 
are more involved. 

ere is a sequence of montone functions fn : 4&l)” ---, (0, 1)” an 

(6.1) for almost all n, C(fn) 3 k l n*/(log n)“z, 
(6.2) Ccfn ) 6 0( n log* n ) for all n. 

To prove Theore+- 6 we prove 

There i:: a sequence of monotone functions g,,, : {C, l}” + (0, l)“, no = 2y, 
and a constant k’ such that 

(6.3) MC(g, ) 3 k’m */(log nQ3” for all large enough m, 
(6.4) C(g,) s O(m log* m) for all m. 

is implies Theorem 6 in much the same way as Lemma 4 implies Theorem 1. 

roof 0 . there are at least’ 2y(yT:) different monotone 

functions h : i0, ?I>’ -{O, l)y. It can easily be seen that 2 2y/y because 

XLI(y)‘2y and (yy2)a(r) for all iE[l:yj. 

y a counting argu 

is 0 ed by i in a 

hat laai cd 8 s fro 

9 b” 0 = a!& - b)!b!. 
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MC(g j 2 m 9 

p * 

log bn (log m)ln 
= m2/(log m )3D. 

On the other hand, applying emma 3 with 

C(g) 6 y max{ log2 pn, m log2jm /log m )) 

e get 

= am log2 4%. 

his proves Lemma 6 and the f:heorem. 0 
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