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Abstract. For swit hing functions f let C(f) be the combinational complexity of f. We prove that
for every £ >0 there are arbitrarily complex functions f: {0, 1}" — {0, 1}" such that C(f x fA=<
(1+&)}C(f) and arbitrarily complex functions f:{0,1}"—{0,1} such that C(ve(fxf))=
(1+ €)C(f). These results and the techniques developed to obtain them are used to show that
Ashenhurst decomposition of switching functions does not always yield optimal circuits, and to
prove a new result concerning the gap between circuit size and monotone circuit size.

1. Intreduction

Let f be a switching function and C(f) the size of the smallest circuit with 2-input
1-output 3ates which realizes f Define (f X g)(x,y)=(f(x),g(y)) and define
(fog)(s)=f(g(x)).' Let v:{0,1F—{0,1} denote the logical OR.

In this paper we deal with the following question: How do C(f X f) and
C(ve(f X f)) behave in terms of C(f)? Intuition suggests at least for the first
problem C(f X f}, = 2C(f) for any f, because two evaluations of f on disjoint sets of
variable “have nothing to do with each other”.

We show that this intuition is wrong and that for certain functions f the above
conjectures are far from reality. Our main results are: For any ¢ >0 there are
arbitrarily complex functions f:{0, 1}* = {0, 1}" such that C(f X f) <(1+ ¢)C(f)
and there are arbitrarily complex functions g:{0,1}" —{0,1} such that
C(veo(g xg)=(L+¢)C(g).

However we were not able to show that for any d >>0 there are arbitrarily
complex one output functions f : {0, 1}* — {0, 1} such that C{f X f) < 2C(f)—d. We
cannot show this even for d =1 and consider this as an interesting problem.

It turns out that with the at ove theorems and the tools developed to obtain them
we can do more than only exhibit the existence of pathological behavior of circuit
complexity.

* This resecarch was supported by DAAD (German Academic Exchange Service) Grant No.
430/402/563/5.
' x and y are 0-1 vectors of appropriate length.

383



384 W. J. PAUL

We describe a well known heuristic approach for circuit design: a function
f:{0,1}*—>{0,1} has simple disjoint decomposition if there are functions
“h:{0,1}" —{0,1} and g :{0, 1}"**'— {0, 1} such that f(x,y)=g(h(x),y). Such a
decompcsition of f suggests realizations of f which make use of this decomposition
in an obvious way. We show that these realizations are not always optimal, hereby
settling a conjecture stated in [3, p. 430]. However we can prove optimality of such
realizations under the severe restrictions that C(h) = s — 1 and f depends on all its
arguments.

Finally we turn to monotone circuits; these are circuits in which all gates are
AND-gates or OR-gates. For a monotone function § denote by MC(f) the size of
ihe smallest monotone circuit which realizes f. Using a result due to Fischer [5],
which establishes MC(f X g) = MC(f) + MC(g) for all monotone f and g, we exhibit
a sequence of monotone functions f, :{0, 1}" — {0, 1}" such that for almost all
n: MC(,) = const. n*/log** n, but C(f,) < O(n log®n).>?

2. Preliminaries

We introduce some notations and definitions which we will use throughout this
paper. '
N={1,2,...}, No =N U {0}.

For m,n €Ny, [m:n]l={m,m +1,..,n}.

If X is a finite aiphabet, then 3 * is the set of finite words over 3. For w € 3'* let
| w| denote the length of w and w; the ith symbol of w.

For finite sets A and n €N, A" is the n-fold Cartesian product of A. For
w €{0, 1}", w; dznotes the ith component of w. )

Any function f:{0, 1}" — {0, 1} is called a switching function.

We use the special symbols A, v, —, &, = for the functions logical AND, logical
OR, negation, -+ mod 2, equivalence.

For functions f:{0, i}" — {0, 1}" and g : {0, 1}" = {0, 1}, gof : {0. 1}" = {0, 1}* is
the usual composition of functions. For functions f:{0,1}"—{0,1}" and
g:{0,1¥ — {0, 1}%, fx g :{0,1}"** = {0, 1}™** is defined by

(f(ay,..., a.)) if 1<sism,
({(fxg)ay,..,anby,... b)) =
(8. bp))i-m if m<i<sm+gq.

A switching circuit is a finite directed acyclic graph G together with three mappings
A, r, 1. Each node in G has indegree 8 or 2. Nodes with indegree 0 are input nodes
and are usaally denoted x,, x,...; nodes with outdegree 0 are output nodes.

? All logarithms in this paper are taken to the base 2.
* log'n = (log n)".
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A :{nodes of G}— 2, 2 ={h|h:{0,1}*—>{0, i}} labels the nodes of G with
operations.

r,1:{nodes of G}— {nodes of G} U {#} =re mappings such that

(i) for each input node x; : r{x;)=l(x:)=0,

(ii) if node ¢ has indegree 2 and ¢, and c, are the parents of ¢, thzn
r{c)Ul(c)={c,, ca}.

if G has n input node< then with each node ¢ in G one associates in a natural
way a function resg(c): {0, 1}" — {0, 1} by defining for a € {0, 1}",

a if ¢ is the input node x;,
resg(c)(a} =
A(c)(resg(I(c))(e),resg(r(c))(a)) if indegree(c)=2.

A function f:{0, 1} — {0, 1}™ is computed by the circuit G if in the circuit G there
are m output nodes c,,...,c, such that for all a€{0,1}", f(a)=
(resg(ci)(a), ..., resg(cm)(a)).

Define C(«s), the complexity of the circuit G as the number of nodes with
indegree 2 (number of gates) in G, and define C(f), the (combinational) complexity
of the function f, by C(f) = min{C(G)| G computes f}. A circuit G is an optimal
circuit for f if G computes f and C(G) = C(f).

Some facts about optimal circuits which we often use implicitly «re stated in:

Lemma 1. (a) If G is an optimal circuit, c is a node in G with indegree 2 and c is not
an output node, then A(c) depends properly on both arguments.

(b) For each f :{0,1}" — {0, 1}™ there is an optimal circuit G for f with at most m
outpu! nodes.

3. A technical lemma

In this section we show how to save gates by simultancously evaluating the sam.
function g on imany disjoint sets of variables instead of makinz many copies of 2
circuit for g.

For g :{0,1}' — {0, 1} and k €N define

g’=g g =gxg'

Lemma 2. There is a constant « such that for all k, n €N and all g : {0, 1}" = {0, 1}
the following holds:

C(g")< a max{n2", nk log’k}.

The idea of the proof is simpie. To evaluate the finite function g on k inputs, we
construct a Turing machine M, which soits the inputs (using merge sort), deter-
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mines the result of g on these inputs by table look up, then “unsorts” the results
and prints them out. Applying to machine M the Fischer-Pippenger Conversion of
Turing machines to circuits, yields the desired circuit. The proof of Lemma 2 itsel,
however, is somewhat lengthy because we have to take care of some technical
details.

We first describe a result from [4, 7] which we use later. Let M be a deterministic
multitape Turing machine with input alphabet = output alphabet = 3. Let fu be the
function computed by M, i.e. fu: 2*— 2%, fu(w) = the output produced by M on
input w.

Let D C 3" for some n. We say M is length respecting on D if for all w,w'E€ D,
[f(w)| = |f(w")]. |

For w € 3*, i &[1:|f(w)]] let t(w, i) be the time at which M prints out (f(w)):
when M was started with w. We say M is uniform on L if for all w,w'€ D,
t(w,i)=t(w',i) for all i for which the equation is defined.

Let o = [log (cardinality of X)],* and let ¢: 2 51{0, 1} be an encoding of 3.
Extend ¢ : 3*—{0, 1}* by defining y(w,... w,) = &(wy).. ¥ (wa).

Fact 1 (Fischer and Pippenger).® For each Turing machine M there is a constant Bu
such that for all n € N the following holds- If for any D C 2", M is length respecting
and uniform on D and if for all w € D, M halts after ai most T(D) steps, then one
can construct from M a circuit with BuT(D)log T(D) gates, which or input
w € (D) computes ¢ (fu(w)).
Define int: {0, 1}* — N and bin:N— {0, 1}* by

int(b) = the integer whose binary representation is b,

bin(b) = binary representation of b.
We design a Turing machine M, which given a description of g :{0, 1}" — {0, 1} and

k arguments (i.e. binary n-tuples) computes ¢ at these arguments. Thus for n.
k €N on inputs of the form

ao#...#az"-l##b1#...#bk, (31)
where a; €{0, 1}, b €{0, 1}", the Turing machine M prints out
Qinby) « - » Biniioe) -

M operates as follows:

*[x]=min{n|n €N and n = x}.

* This theorem is stated in [4] only for D = 3" but the proof of the theorem described here is implicit
in the proof of the corresponding theorem in [4].
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(1) From the list
Lo=[by,..., b],
M computes the list
L, = [(b:, bin(1)),. .., (b, bin(k))].

(2} Using merge sort (for details see, e.g., [1, pp. 6¢, ¢7]), M sorts the list L,
according to the size of the numbers int(b;). So it produces the list

L = [(b, bin(iy)), . . ., (bi, bin(ik )],
where int(b,) < int(b,.,) for all j€{1:k —1].
(3) Scanning ao#...# a»»_, once, M computes
L; = \@imes, »» DIN(i)), - - -, (@inats, »» DN )]-

(4) Again using merge sort, M sorts the list L; according to the size of the i;.
So M produces

L= [(a int(by)y bil’l(l)), Y (aim(bk), bin(k ))]
{5) Scanning L. once, M prints out

L5 = Giaby) » » » Dinn(by)

Time analysis: Each of the parts (1) and (5) takes time O(n - k). Each of part (2)
and (4), which use merge sort of a list of k elements involve k log k comparisons,
each comparison involving n steps on M. It turns out that merge sort can be
implemented on M using time O(nk log k). Part (3) takes time at most O(2" + kn).

Now one can modify M slightly such that for some constants k,, k,, k5 and fo: all
n and k, part (1) takes exactly k, - n - k steps, each of part (2) and (4) take exactly
time k.nk log k and part (3) takes exactly time k;(2" + kn ).

Thus if part (5) is programmed in the most straightfcrward way and if for
n, k €N we define D, « to be the set of all inputs of the form. (3.1), then for each n
and k the modified machine M is length-respecting and unifcrm on D, ,. Also there
is a constant k, such that for all n and k, M halts after at most

T(D,..)= ksmax{2" + kn, nk log> k} (3.2)

steps if started with any w € D, .
Hence by Fact 1, for each r and k there is a circuit G, . which on inputs

lll(ao#...#az"-l# #b]# #bz)
computes

(,/(aim(bl) e aint(br‘})s

where ¢ is a coding as defined abeve, and
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M N 2.T(D Moo T(D. . ) (3.3)
AUk J= PM L \nk jiVp &\ &k ) ( )
= Byymax{(2" -+ kn)log (2" + kn), nk log k -log(n )
N chearys that in mavf } for k < 2"/n* the first term dominates and can be
INUW JUDUVIVL LIIGR 111 IHIGA  r s ey e v e ] ()
estimated from above by 4n2" If k = 2"/n* the second term of max{...,...} can be
ncttonntad b Ak Ias?2 l Lionca far oall w and I
CSIMAalCu Uy 7R 1UE R. LIUIUL 2UL Qi1 Iy Gits

4ozl anding and danadine natwarke the circnit 3. . can be transformed into a
DY tivia: COUINE aiu GULHllg HViWUIRs iy Viabial U g Wil UT LIRRoIUVI ISR sty &
circuit G.., such that (G,. has 2"+ kn inputs and kn outputs, and on input

7 et {
\

y...d: 1 by .. b, a; €10, 1}, b ne output Qinoy) « « - Fimiprr

k} Setting the first 2" inputs of G, . to the
recnsely, setting a; = g(bin(i))

tha dacivad n-—nn--f £
LG ULSIIGU VIRV UIL LU

1

Moreover C{G W) S @ Mmaxin2", nk log

descnptlon of a functlon g: {0 1}"—= {0
t M

P PN

foraili €{0:2" -- 1] — does
k

g
In exactly the same way one proves

L
-~
|
> 3
=]
3
=

Lemma 3. There is a constant y such that for allk, n € N and all g : {0, 1}* — {0, 1}",
C(g*)=< y max{n’2", nk log’ k}.

4. Functions on disjoint sets of variables

We state some facts which we will use later:

Fact 2. (a) There is N € N such that for ail n > N and all but a vanishing fraction of
the functions f :{0, 1}" — {0, 1} the following holds: C(f)=2"/3n.

(b) There is N € N such that for all n > N and all but a vanishing fraction of the
functions f :{0, 1}" — {0, 1} the following holds: C(f)=2"/3.

These facts are proven by the well-known Shanncn counting argument [14] (see
also [4] or [17]).

Theorem 1. For all ¢ >0 there is d € N such that for sufficiently large n € N there is
f:{0,1}" = {0, 1} such that
C(f)=2"", 4.1)
C(veo(f X))+ &)C(). 4.2)
To prove Theorem 1 we first show

Lemnma 4. For all ¢ >0 there are N, ¢ EN such that for all n > N there is
mE[n:n? and g : {0, 1} — {0, 1} such that
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C(g)=2"", 4.3)
C(ve(gxg)=(1+e)C(g). (4.4)

This implies Theorem 1 as follows: Given ¢ and given aay n > N°7? where N, ¢
are as in Lemma 4. Then by Lemma 4 there is an m €[n"“?:n] and

g :{0,1}" — {0, 1; such tnat (4.3) aad (4.4) hold.
Defiue f:{0,1}" —{0, 1} by

f(a)=g(a:,....,a,) forall a€{0,1}"

Clearly C(f) = C(g) and C(veo(f X f))=C{ve(g X g)),s0
C(f)=C(g)=2m" = 27", @.5)
S(ve(fXf))=C(veo(g X gn=<(1+¢e)C(g)=(1+€)C(f). (4.6)

Thus Theorem 1 uolds with d = ¢ - (¢ —2) if Lemma 4 is correct.
Lemma 4 is proven by contradiction. Given £ >0, choose ¢ and N such that

(c = 2log(l+¢)=3; ' 4.7
N = max{N,, N,, N, N.},

N, =min{N|Vn > N, 3g :{0,1}" — {0, 1} such that C(g)=2"/3n},

N, =min{1|2"""3pitc-D = 2"} 4.8)
N;=min{n|n2" = (c —2)’n° 'log’ n},

N, =min{n|n®2" >3an2" +3n°?)}, a as in Lemma 2.

(4.9). Let n > N and assume that for all m €[n : n°7?] and all g : {0, 1}" — {0, 1}
such that C(g)=2"" the following holds:

Clveg?)=(1+e)Cle).
Chcose g :{0,1}" — {0, 1} such that
C(g):z:2"/3n. 4.10)
For i €[0:(c - 2)log n] define
GO)=g G(@i)=ve(G(i -1)x G(i — 1)) @.11)

For p € N define v,:{0,1}* - {0, 1},
V(@i .., @)=a;v...Vva.
Clearly for all i € [0: (c — 2)log n],
G(i):{0, 1}"* —{0, 1}, G(i)=vaiog?

Moreover for i < (C - 2)log n, n2‘ < n‘_l’ thus n = {zin)?:’(c—ﬂ) and
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= n?2"/3 by (4.7).

> 2(2!n yiite -i)/3 (Zin )1/(¢ - l')) > 2(25,, yise

C(g™ ™)< a max{n2”,(c —2)a1°'log’n}

But applying i.emma 2 with

and in particular for i = (c —2)logn,

e

~_~
o0
N

A

£

an?

» 1}

0

{
4.12)

sf:{0,1}" —

A

»

-
~

<n®2"/3 by (4.8).

d >0 there are arbitrarily complex function

r ail

. Fo

Py

This contradiction proves Lemma 4 and tne theorem.

liary 1
such that

Coroiia
:{0, 1}" = {0, 1}" such that

Thus
Theorem 2. For all £ >0 there is d € N such that for almost all n € N rhere is
f
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There are 2" different binary (n X n)-matrices D. Each matrix defines a function
fo :{0, 1}" = {0, 1}", fo (@) = Da, where Dq is the Boolean product® of the matrix D
and the vector a. fp # fp- for D # D', hence by a counting argument one concludes

that for almost all n and all but a vanishing fraction of all binary n X r matrices we
have C(fo) = n?/7log n. Choose D such that C(fp) = n*/7log n. Assuming Corol-

lary 2 is false for d, one proves by induction on i that ("lf' \, iC(fo)—id. In

azio ¥ 4 4 | o LA A 4 > ] 23 i2 1128 e P« Lia

particular for i = n,
C(fp) = n’/Tlog n — nd.

But for (column) vectors x; € {0, 1}", f2{x,, ..., x.) is the Boolean :natrix product
of D with the matrix (x;...x.). Using Strassen’s matrix muitiplication algorithm
[15] and fast integer multiplication [13], Fischer and Meyer [6] have shown that the

RBoolean matrix sroduct can be dv with cost ﬂ{n'°827lno n loglog n iogloglog n) <

Ar i wisea clalina e s b d d - YV ALEE WS Y AU GIV G T USRIV EIVE T

O(n**), a contrausction.

5. Ashenhurst decomposition

Definition (see [21). f:{0, 1}" — {0, 1} has simple disjoint decomposition if there is
h:{0,1} —={0,1}, 2=s<n-1, g:{0,1}"*"'—{0, 1} and a permutation

(o)

f(a)=g(h(ai,...,a.)a,.,...,a,) forall a€{0,1}"

such that

If f has simple disjoint decomposition, this decomposition suggests in a natural
way a realization of f in the form of Fig. 1, where g and h are realized optimally.
We say that such a realization makes use of a decomposition of f.

x“ cow x" x.’” cve xjm

Fig. 1.

¢ Replace in the usual definition of the product of a matrix with a vector *“- " by “A” and ““ + " by “v™.
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Theorem 3. A realization of a switching function f which makes use of a decomposi-
tion of f is not necessarily optimal.

Proof. Forall f:{0, 1}" — {0, 1}, v o (f X f) can be decomposed in an obvious way. If
realizations of f, which make use of a decomposition of f were always optimal, then
C(v o{f X f))=2C(f). But this contradicts Theorem 1. []

As pointed cut by an unknown referee, Theorem 3 can also be proven directly.
Let f:{C,1}" -+ {0, 1} be such that C(f)=2"/3n. Define

F:{0, 17" = {0, 1},
F(x,y.2)=zf(x)v zf(y) for z€{0,1}, xy€{0,1}"

Making use of the obvious decomposition of F one gets a realization with cost at
least 2C(f). But F can be realized as

F(x,y,z)=f(zx1V Zy1, ..., 2Xa V ZYn),

hence C(F)= C(f) + 3n.

Although Theorem 3 shows that realizaticas which make use of a decomposition
are not opiimal in. the general case, we can show the optimality of such realizations
for a very restricted class of functions.

Theerem 4. If f:{0,1}"—{0,1} has simple disjoint decomposition f(x)=
gh(xi, ... X)), 2iprys - X3, ), C(h) = s — 1 and f depends on all its arguments, then
C(f)=C(g)+ s —1, i.e. there is an optimal realization of f, which makes use of this
decomposition.

Clearly C(f) < C(g) + s — 1. It remains tc show C(f) = C(g) + s — 1. To prove this
we first show

Lemma §. If f:{0,1}"-->{0,1} has simple disjoint decomposition f(x)=
g(h(x,, x,), Xy, ..., X;,) and f depends on all its arguments, then C(f)=C(g)+1.

Proof. For simplicity of notation we assume ij=j for j€[1:n]. For Boolean
functions or variables x and a € {0, 1} let

x if a=1,
x® =

x if a=0.

Because f depends on all arguments, so does h. There are t-0 cases:
Case 1: h(x,,x2)= x{ @ x, for some a € {0, 1},
Case 2: h(xi, x;)=(x§ A x3)° for some a,b,c € {0, 1}.

Let G be any optimal circuit for /. Transform G into another circuit G’ as follows:
Case 1: (i} Sei the input x, to thc constant 0.
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(i) Set the input x, to x{ by negating it if a = 0, i.e. change the labels A (c) of all
sons ¢ of x, i1 an obviocus way.

Case 2: (i) Set the input x, to the constant b.

(ii) Set the input x, to x{~° by negating it if a =c =0.

Because f depends on x,, the input node x. has a successor node C in G.
7 ransformation (i) makes one input of C constant, hence C can be eliminated.

Transformation (ii) does not change the cost of the circuit. Hence C(G"<
c(G)-1.

Let gy, x3,..., x») be the function computed by G'. Then in Case 1,

q(y, X3, ..., X0 ) = f(y°,0,%3,. .., %)
=g(h(y%0),x5,..., %)
= g(y“@O,xa, .oy xn)

=g(y, X3,...5Xa).
In Case 2,
q(y, xs, .. X)) =f(y°", b, X3, ..., Xn)
= g(h(ya-c’ b)v X3y..0 xn)
=g(((y*=)* A D), X35y Xn)
=g(Y, X35+ s Xn)-

Hence in both cases g = g and
Cig)=C(GY)=C(G)-1=C(f)—-1.

The theorem is now proven by induction on s. For s =2 the theorem follows
from Lemma 5. Suppose the theorem is proven for s — 1. Because f (and hence h)
depends on all its variables and C(h) = s — 1, the graph of any optimal circuit G for
h is a tree. There are at least two inpnt nodes (leaves) x;, x; and a node ¢ in H such
that x; and x; are the parents of c. Let k" = A(c), i.e. 1" is the function computed by
the node (gate) c.

For ease of notation let i = 1, j = 2. Transform G into a circuit G’ by deleting x;
and x, and making ¢ a new input node. Let h'(c, xs,...,x) be the function
computed by G'. Then h’ depends on all its arguments and C(h')=s—2.

Hence for f'.{0,1}""'—{0, 1),

Fl(6 X305 %a) = gR'(C, X3y w0y Xs)y Xty o e oy X))y
the induction hypotbesis implies C(f')= C(g)+ s — 2. But
fCr, .. %)= f'(R"(x1, X2), X3, . . .5 Xn),
hence by Lemma 5,

CHi=C(f)+1=C(g)+s-1. O



304 Lo W. J. PAUL

Definiticn. For a,b€{0,1}" define a<b if for all i€[l:n], a <b.

. . . . : : M 6, "
A switching circuit is monotone if all nodes with indegree 2 are labelled with “a
-~ &G .99
R vV .
The monotone functions are exactly the functions computable by monotone
circuits. For monotone [ define the monotone complexity of f[:MC(f)=
(727722 % Vo B GIRRY SN B o BN JUR gy Wpepy |
mn{C(U j| O computes J ana U is monowoncy.
— F T . o 2 % . T L. Y.
The fcliowing thecrem is due to riscner [Jj:
n m " P q

‘Theorem: 5. For any monotone f : {0, 1}
the following holds:
MC(f X g) = MC(f) + MC(g).

L= g \¥

To prove Theorem 5 we use:

Fact 3 (Mehlhorn and Galil [9]). Let G be a monotone circuit whick computes a set of
1-output functions F = {f\,..., fu}. Let c be any gate in G and let to, 1,,.. ., t, be the
amgedaie o frmzaalin mcatn AL wan £ foant mart] Af amus sasireea fraem?ta n - : ;
prime implicants of resc{(c). If t, is not part’ of any prime imp' -ant of any function in
I 4l mce m ococ e e somcal e nn d bee o aam maes Py — v} o na A memuir MAamanss
F, then ¢ may be replaced by a node d with tesg(d)=t,v ...V ¢, and the new circuit
VYT RPN NSO J JPE S -

Sitli COMPULES e dSarne Sei U] junluorn r.

Proof of Theorem 5. Let G be a monotone circuit for f X g with input node
XiyeeeyXny Y1,..., Y. and output nodes u,..., Um+, We say a gate ¢ is shared
between f and g if there is a x; and y; such that there is a path from x; to ¢ and a
path from y; to ¢. To prove Theorem J it suffices to show that no optimai monotone
circuit G for f X g contains a shared gate.

Suppose G contains one or more shared gates. Then there is at least one shared
gate c in it such that no ancestor of ¢ is a shared gate. Thus one input of ¢ depends
only on the x;, the other only on the y;. By Lemma 1 we can assume that both inputs
for ¢ are non constant.

There are two cases to consider:

Case 1: c islabelied by A. Then resg(c)(x, y) = hi(x) A hx(y) for some functions
hy:{0,1}* = {0, 1}, h.:{0,1}* = {0, 1}. Because both h, aad h, are non constant
each prime implicant of h, is product of variables x; and each prime implicant in h,
is product of variables y;. Hence each prime implicant of h contains both variables
x; and variables y;.

It follows that no prime implicant of resg (c) is part of a.' prime implicant of any
resg (1) because these depend or entirely on x or entirely on y. Hence by Fact 3,
resgic) can be replaced by 0.
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Case 2: If the label of ~ is v, resg(c) can be replaced by 1. This is proven as in
Case 1, but one uses instead of Fact 3 the dual® of this fact. O

Corollary 3. For almost all n and all but a vanishing fraction of the binary
{n X n)-matrices D the following holds: If G is a monotone ciruit, which performs the
Boolean matrix product of D with an arbitrary (n X n)-matrix, then G has ai least
n*/(7logn) gates.

Proof. By Theorem 5 and the direct proof of Corollary 2. [

It has been shown that any monotone circuit, which computes the Boolean
product ¢f two arbitrary matrices requires O(n?) gates [9, 10, 12], but these proofs
are more involved.

Theorem 6. There is a sequence of montone functions f, :40,1}" = {0, 1}" and a
constant k si.ch that

(6.1) for almost all n, MC(f,) = k - n*/(log n)*?,
(6.2) C(f.) <O(nlog’n) for all n.

To prove Theorea 6 we prove

Lemms 6. There is a sequence of monotone functions g.. :{C, 1}™ —={0, 1}, m =27,
y EN and a constant k' such that

(6.3) MC(g..)= k'm?/(log m)** for all large enough m,

(6.4) C(gn)<O(m log’m) for all m.

This implies Theorem 6 in much the same way as Lemma 4 implies Theorem 1.

Proof of Lemma 6. For y €N there are at least® 2"% different monotone

functions h :{0,1) —{0, 1. It can easily be seen that ( );2)22’/)2 because
{= 1(y) 2¥ and ( /2) (y) for all i €[1: y|. Using Stirling’s formula one finds

(y)/)2) = const. 2’ /y'? (for details see e.g. [11]). Hence by a counting argument there

is a monotone function h :{), 1}’ — {0, 1} and a constant k' such that MC(h) =
Ch)= k"2 [y'2.

Take such a function h and form m =2’. Define g:{0,1}" —{0,1}" by g =
h™"e™ By Theorem 5 and as y = log m,

* The dual of a theorem in Boolean algebra is obtained by interchanging in the theorem and in all
definitions preceding it A with v and 0 with 1. That the duai of 2 (henrem is also a theorem follows from
the duality of the axioms of Boolean algebra.

. (1‘:) =alfla-b)!b!.



logm

RAM 2 > m . 2 — = m2/{lna m Y2

1'1\,4\5’ — log m (log m)l W [\AVE VY g
N tho ~thar hand asnnlvine T amma 3 with 2 = loom = m /loag m. we oet
VIE LIV WtlIVL RiGlivd, GPPI]II]S B/ RBABERGE oF VVARAE PO AUy Tiey TV v A g Tivy Vv pwe

2.
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This proves Lemma 6 and the theorem. [J

Acknowledgements

I with to thank an unknown referee for bringing the aiternative procfs of Corollary
2 and Theorem 3 to my atter:tion and for simplifying the original proof of Lemma 5.
For discussions I wish to thank Zvi Galil, Nick Pippenger, Janos Simon and Larry
Stockmeyer. I am very thankful to Proiessor Albert Meyer for many helpful
suggestions and comments.

V. Ahs ¥ B Eanarnft and T T ITTHma 2 cioam
Vo £30Uy Jo Boe RRUPVIVULL QIR v, 300 UiiiTIGEE, X TC AsCONETE ATE

{Addlson—Weslev. Reading, Mass., 1974).
[2] R. L. Ashenhurst The decomposmon of switching functions, in: Proc. Internl. Symp. Theory of
Switching, Harvard University (1957) 74-116.

ew - > L8 ane

. A, Curtis, A New Approach to the Design of Switching Circuiis {(van Nostrand, New York, 1
(o1 8

=

ischer [ octurss on network comnlevxitv. [Iniversitv of Frankfort Pranr
: W nIVELS) Ci 'rang H

rankfort, Preprint (1974).

-
o
[
-

Dwiiviy EWWLLL WO VIR IIVLVVURR LUMEpAwWAILY 9

%)

=EE

;za-\-u
NGE:"JZK

I
. J. Fischer, private communication.
. J. Fischer and A. R. Meyer, Boolean matrix multiplications and transitive closure, IEEE
welft
ischer and N. Fippenger, o appear.

3.
3. Hotz, Schaltkreistheorie (de antpr Rerlin, 1974).

LL; 20 waaniay a S’

. Mehlhorn and Z. Galil, Monotone switching circuits and Boolean matrix product, Computing, to

Ann. Symp. SWAT (1971) 129-131.

th
Fi

- ey
0 =~
crwed Snswd

Py g
oL

[10] M. S. Pate rson, Complexity of montone networks for Boolean matrix product, Theoret. Comput.

11] W W Peterson- Error-correcting Codes (M.1.T. Press, Cambridge, Mass., 1961), Appendix A.

e =33, LONORNE SYEIRRI:; LIV LIiA A

[12] V. Pratt, The power o{ negative ahmkmg in multiplying Boolean matrices, 6th ACM- STOC (1974).
[13] A. Schonhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing 7 (1971)

141 © E_ Shannon. Ball Suctom Teck T £0 1040\
LET] N Bwe WJEIGIILIVEEy LITEE JYOICINE KTLIG J. OF \1777}-

[15] V. Strassen, Gaussian elimination is not optimal, Numer. Math. 13 (1969) 356-364.
fi6] V Strassen, Berechnung und Program 1, Acta Informat. 1 (1972) 320--335.
[17} V.Strassen, Berechnungen in partiallen Algebren endlichen Typs, Compuiing 11 (1973) 181-196.



