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For every t > 1 and positive n we construct explicit examples of graphs G with IV(G)I = n ,  
2 ] IE(G)I > c t .n  -• which do not contain a complete bipartite graph Kt,t!+l.  This establishes 

the exact order of magnitude of the qSar~n numbers ex(n, Kt,s)  for any fixed t and all s > t! + 1, 
improving over the previous probabilistic lower bounds for such pairs (t,s). The construction 
relies on elementary facts from commutative algebra. 

1. In t roduc t ion  

Let H be a fixed graph. The classical problem from which extremal graph 
theory has originated is to determine the maximum number of edges in a graph on 
n vertices which does not contain a copy of H. This maximum value is the Turdn 
number of H and is customarily denoted by ex(n, H). 

The determination of Turs numbers is particularly interesting when H is 
bipartite, as in most cases even the order of magnitude is open. In this note we study 
the Turin numbers of complete bipartite graphs (the "Zarankiewicz problem"). 

Let t, s be positive integers with t < s. We denote by Kt,s the complete bipartite 
graph with t+s vertices and ts edges. K6v~ri, T. S6s, and Turs gave the following 
upper bound for an arbitrary fixed t and s_  t: 

2__  l (1) ex(n,t{t,s) < Ct,sn ~, 

where Ct,s > 0 is a constant depending on t and s. The right hand side is conjectured 
to give the correct order of magnitude. However, the best general lower bound, 
obtained by the probabilistic method, yields only 

(2) c'n 2 ~+*-~  ~t-1 <: ex(n, I(t,s), 
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where c' is a positive absolute constant. (Cf. [8], p.61, proof of inequality (12.19).) 

Note that for all t ,s  such that 2 < t < s, we have ~ > -~, hence the lower 

bound (2) is always of lower order of magnitude than the upper bound (1). 
The optimality of the order of magnitude (up to a constant factor) of the upper 

bound (1) has been established via explicit constructions for t =  2,3 and all s >_ t. 
The incidence graphs of projective planes demonstrate this order of magnitude for 
t = 2 (this was observed by E. Klein, as reported by Erd6s [6]). In this case, however, 
even the asymptotic order of magnitude is known: 

ex(n, K2,2) = 1 n3/2 + O(n 4/3) (Erd6s, a~nyi, W. S6s [7], Brown [5]), 

and for general s>2 ,  

ex(n,K2,s) = ~ - - ! n 3 / 2  + O ( n  4/3) (Fiiredi [9]). 

The optimality of the upper bound (1) for t - -3 was established by W. G. Brown 

[5], hence ex(n, K3,3)= @(n5/3). His construction is the "unit distance graph" in 
the 3-dimensional affine space over finite fields of order q - - - 1  mod 4. 

Here we give an explicit construction which demonstrates the optimality, up 
to a constant factor, of the upper bound (1) for all values of t>_2 and s > t ! + l .  

For more details and references on these problems we refer to Chapter VI, 
Section 2 of Bollobs [3] and to Ffiredi [9]. 

2. T h e  n o r m - g r a p h  

Let q be a prime-power and t > 1 be an integer. We define the norm-graph 
G--  Gq,t as follows. 

The set of vertices V(G)  of G is GF(qt),  the finite field with qt elements. For 

aE GF(q t) let N(a)  denote the GF(qt ) /GF(q) -norm of a, i.e. N(a)  =a.aq.. .  a qt-1 = 

a ( r  eGF(q) .  Now let two vertices a # b E V ( G ) = G F ( q  t) of G be adjacent 

iff g ( a + b ) -  1. The number of solutions in GF(q t) of the equation g ( x ) - - 1  is 

q~-I (For this and other basic facts about finite fields the reader is referred to q--l" 

Lidl-Niederreiter [10].) Thus, if we write n = qt for the number of vertices of G, 

lqt~s lq2t-1 ln2- ~ then the number of edges is at least ~ ~ q-1 _ ~ = ~ . We formulate 

now the main result of the paper. 

Theorem 2.1. The graph G =  Gq,t contains no subgraph isomorphic to Kt,t!+l. 

Coronary 2.2. For t >_ 2 and s > t! + 1 we have 
1 

ex(n,/(t,s) _> c~. ~2-~, 
where ct > 0 is a constant depending on t; we may choose ct = 2 -~. For every t and 
s >_ t, the inequality holds with c = 1/2 for infinitely many values of n. 



NORM-GRAPHS AND BIPARTITE TURAN NUMBERS 401 

The Corollary follows from Theorem 2.1 in view of the fact that  there is a 

prime power q between (1/2)n 1/t and n 1/t. The union of [n/qtj disjoint copies 
of Gq,t will have the appropriate number of edges. Better estimates for the gaps 
between consecutive prime powers yield improved constants. 

3. T h e  p r o o f  

The statement of Theorem 2.1 is a direct consequence of the following: if 
d l ,d2 , . . . ,  d~ are t distinct elements from GF(qt),  then the system of equations 

g ( x  + dl) = (x + dl)(xq + dq) . . . (x qt-1 + dl qt-1) -~ 1 
qt -1  

(3) N ( x  + d2) -= ( x  ~- d 2 ) ( x  q + dq) . . .  ( x  q t -1  + d 2 ) -= 1 

N i x + d r )  = i x + dt)(x q + dq). . . (x qt-'  + d q ' - ' )  = 1 

has at most t! solutions x E GF(qt).  
We shall infer this by considering a more general system of equations. 

Theorem 3.3. Let K be a field and aij,bi E K  for 1 < i , j  <t  such that aij I ~s 2 i[ 
Jl ~ J2. Then the system of equations 

(Xl -- a11)(x2 -- a21). . .  (xt -- at1) : bl, 
(Xl -- a12)(x2 -- a22). . .  (xt -- at2) = b2, 

(4 )  : : 

(Xl -- a l t ) ( x 2  -- a2 t )  . . . ( x t  --  a t t )  : bt 

has at most t! solutions (xl ,x2, . . .  ,xt) E K t. 

This indeed suffices to prove Theorem 2.1 because system (3) is a special case 
qi-1 i -1  

of system (4) ( K = G F ( q t ) ,  a i j = - d j  , x i = x  q , b j= l ) .  I 

We put f j  = f j ( x l , x 2 , . . .  , x t ) := (Xl - a l j ) ( x 2  - a 2 j ) " "  (xt - a t j )  (1 < j  < t )  for 
the polynomials on the left-hand side of the system (4). Let us define the regular 

map F :  K t - *  K t by F(Xl,X2, . . .  ,x t ):= ( f l (x l , . . .  ,x t ) , . . .  , f t ( x l , . . .  ,xt)).  Theorem 
3.3 claims that  IF-l(b)] <t! holds for every b E K  t. 

It is straightforward to verify that IF -1(0)1 =t!. The second half of our proof 
will in essence establish that  all roots of the equation F ( x l , . . . ,  x t ) =  0 are simple. 
The structure to be established in the first half of the proof then will allow the t! 
bound to carry over from b = 0 to all b. This conclusion will rest on the following 
result (see Theorem 3 in [14, Chap. II, Sec. 6.3, p.143]; in the first edition of [14], 
it is stated as Theorem 6 in [Chap. II, Sec. 5]). For some of the definitions, see 
below. 
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Fact. Let K be an algebraically closed field, A = K[z l , . . . , x t ] ,  f j  E A, B = 

g [ f l , . . .  ,fr], and define F:Kt---~K r by F ( x ) - - ( f l ( x ) , . . . , f r ( x ) )  ( x e K t ) .  Assume 
B is integrally closed in its field of quotients and that A is finite over B and has 
rank d over B. Then for all b e K  r, IF- l (b)[<d.  | 

To establish Theorem 3.3, we shall assume without loss of generality that  K 
is algebraically closed. We write A = K[xl ,  x2, . . . ,xt]  for the polynomial ring with 
indeterminates xi over K. As before, let f j  (1 _< j _< t) denote the polynomials on 

the left-hand side of the system (4). Let B = K [ f t , f 2 , . . .  ,ft] be the K-subalgebra 
of A generated by the polynomials f j .  

Recall that  a ring R is finite over a subring S C_ R if R is a finitely generated 
S-module. (We assume S contains the identity element of R.) Finiteness of R 
over S is equivalent to the following two conditions: (i) R is a finitely generated 
algebra over S; (ii) R is integral over S (every element of R is a root of a monic 
polynomial over S). 

An integral domain R has rank r over a subring S C_ R if the field of quotients 
QF(R)  of R is a degree-r extension of the field of quotients Q F ( S )  of S. For the 
basics of commutative algebra we refer to [2], [4], [12]; especially [2, Chap. 5]. 

Lemma 3.4. A is finite over B and has rank t! over B. 

From the Lemma we infer that the transcendence degree of B over K is t, hence 
the f j  are algebraically independent over K. This implies that  B is isomorphic to 

A, and therefore integrally closed (in its field of quotients). Hence an application 

of the Fact (above) yields Iv-l(b)] ~t!. ]] 

It remains to prove the Lemma. 

Finiteness. We prove by induction on t that A is an integral extension of B. If t = 1 
then A = B and integrality is obvious. Suppose that t > 1 and let M = Q F ( A )  be 
the field of quotients of A. Theorem 10.4 of [12] states that  the integral closure of 
a subring C of M is the intersection of all valuation rings R < M which contain C. 
(Recall that  a valuation ring R of M is a subring of M such that  for every element 

y E M  either y E R  or y-1  cR . )  Thus, to verify the integrality of A over B, we show 
that  if R is a valuation ring of M containing B, then R>_A. 

Write I for the (unique) maximal ideal of the valuation ring R. By symmetry 
it is enough to prove that  xt E R. We do this by showing that  the assumption xt ~ R 
leads to contradiction. If xt ~ R then xt - a t j  ~ R and hence 1 / ( x t - a t j )  E I and 

gj := f j / ( x t - a t e )  ~ I  for j = 1, . . .  ,t. 
By the inductive hypothesis, the elements x l , . . . , x t - 1  are integral over C - -  

K[gl , . . .  ,gt-1]. This together with C <_R implies that  K[x l , . . .  ,xt-1] <It .  

Next observe that  the polynomials g l , . . . , g t  have no common zero in K t-1. 
By Hilbert's Nullstellensatz this implies that they generate the ideal (1) in 
K[xl , . . .  ,xt-1]: there exist polynomials hj E K[x l , . . .  ,xt-1] such that  ~-]~gjhj = 1. 
This relation leads to a contradiction because gj E I,  hj C R and hence the left-hand 



NORM-GRAPHS AND BIPARTITE TUR.~N NUMBERS 403 

side belongs to I ,  while 1 r I .  The finiteness of A over B now follows since A is a 
finitely generated algebra over B (actually even over K).  

Computing the rank. We have to show that  dimQF(B ) QF(A)=t! .  Since IF- l (0 ) [  = 

t], an application of the Fact shows that  the dimension is at least t!. 

Let m denote the ideal ( f l , . . . ,  ft) of B. Let Bm denote the corresponding local 
ring and Am the corresponding Bin-algebra. 

First we establish that  mA is a finite intersection of maximal  ideals of A. For 
a permutat ion a E St let Ia  be the (maximal) ideal (Xl - ala(1 ), x2 - a2a(2), . . . ,  xt - 

ata(t)) of A. We show that  mA = I-IaEst Ia.  Obviously we have mA C_ I~ for every 

a E St hence mA C_ AaES~ Ia  = l-IaEs~ I~. 

Now let f = / i f 2 " ' "  ft, fa = 1-[~=l(Xi - aia(i)) and ga = f / f a .  We observe first 

that  the polynomials f j  (1 _~ j _~ t) and ga (~ E St) have no common zero. Indeed 

a common zero of the polynomials fj  is of the form (alr(1),a2r(2), . . . ,at .r(t))  for 

some T E St, which is not a zero of gr. Again by the Nullstellensatz, for suitable 
polynomials hi, ha E A we have ~ hj f j  + ~ hag~ = 1. Now let g E IIaest Ia. We 

have ~hj f jg+~~,hagag  =g and ~ h j f j g  E mA. We show that  gag E mA which 
implies that  g E mA. 

The polynomial g can be written as a sum of terms of the form g* =g(l--[~-ESt m~- 

where g' E A and m r  E {xl-a17(1 ), x2--a2T(2),. . . ~ xt--at~-(t ) }. Now if ma = xi-aia(i), 
then g*ga is divisible in A by re(i), giving that  g*ga EmA and gEmA. 

By the Chinese remainder theorem 

A / m A  = A~ hadst Ia -~ @aestA/Ia ~- | 

and therefore dim K A/mA = t!. 
It  is elementary localization that  A/mA and Am~mAre are isomorphic as K-  

algebras. We obtain that  dimKAm/mA~ = t]. In other words, the / ( -space 
Am~mAre can be generated by t! elements. 

A is a finite B-module, thus Am is a finitely generated module over the local 
ring Bin. Nakayama's  Lemma implies that  Am can also be generated by at most 
t! elements as a B~-module.  Let X =  {u] , . . .  ,Up} be one such generating set with 
uiEAm and p<t!. 

Now we prove that  {ul , . . . ,Up} generates QF(A) as linear space over QF(B). 

Let x /yEQF(A) ,  x, yEA,  y~O. Here y is integral over B, hence there exists 

an element Or  such that  yzEB.  For x z E A C A m  we have xz=~P=lWiU i for 

some wi E Bin. Then x/y  = xz /yz  = E/P=I (wi/yz)ui, where wi/yz  E QF(B), hence 

X is indeed a linear generating set of QF(A) over QF(B). 
We have dimQF(B ) QF(A) ~ txI ~t! and this concludes the proof of the Lemma 

and the Theorems. | 
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4. C o n c l u d i n g  r e m a r k s  

Remark 1. We sketch here the geometric version of the proof of the finiteness of 
F,  which shows the simple ideas behind the algebraic arguments. 

Let A t denote the affine t-space over K.  There exists a projective variety X 
such that  ArC  X and F extends to a morphism F I : X  ~ p t  (where p t  denotes the 

projective t-space over K).  We can also assume that  the embedding u : A t ~-~ p t  

extends to a morphism u l :X--*Pt .  

If F is not finite, then there exists a point x e (X - A t) such that  F ' (x )  �9 A t. 

One can choose a smooth pointed curve y �9 C and a morphism p : C--* p t  such that  
p(y) =x  and p ( U -  y) C A t for a suitable neighborhood y �9 U C C. 

We can pass to the completion of the local ring of C at y. This is isomorphic to 
the ring of formal power series K[[z]], where z is a variable, u'op: C--* p t  has a power 
series-expansion (go(z) :.. .  :gt(z)). After dividing by go one can consider this in 

affine coordinates. We have the local expansion hi(z)=gi(z)/go(z)  ofu'op:C---~A t, 
where the hi are formal Laurent series. By construction p(y) = x �9 ( X - A t ) ,  implying 
that  one of these series, say hi,  has a pole at y, 

By construction, the jth coordinate function of F ' o u  ~ op is 1-Ii(hi(z)-  aij), 

and it does not have a pole at y since Fl(x) C A t. Thus, for every 1 < j < t there 
is a i = i(j) > 1 such that hi(O)-  aij = O. This leads to a contradiction because 

i( j l)  r i(J2) if Jl r  and the values o f / a r e  restricted to i= 2,... ,t. | 

Remark 2. We can say more about the embedding B ~-~ A than what is stated 
in the Lemma. In fact, A is a free B-module. The local condition for flatness in 
Theorem 23.1 from Matsumura [12] is applicable, giving that  A is locally free and 
hence projective over B. Now the Quillen-Suslin theorem [13], [15] implies that  A 
is a free module over B. | 

Remark 3. The bound obtained for the number of solutions of the original system 
(3) of equations may not be sharp. It is conceivable that  Gq,t does not contain Kt,8 

for an s much smaller than t!, possibly as small as o(2t) .  Note that  for q = 2 the 

bound 2 t - t  would be tight (all nonzero elements have norm 1). 

Remark 4. It would be interesting to see explicit constructions for graphs with 
large edge density and without Ift,t, even if the density is far worse than that  

guaranteed by the probabilistic lower bound (2). Motivation for such constructions 
comes especially from the theory of computing (cf. [1]). 

The first explicit examples of graphs with n 2-e edges which do not contain 
certain fixed bipartite graphs were given by A. E. Andreev [1]. He constructed 

bipartite graphs with n vertices on each side, with n 2-1/* edges, and without 
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Kr(t),s(t ) where both r(t) and s(t) are greater than (2t) t(t-1)/2. Our result reduces 

these parameters  to r ( t )= t  and s ( t ) = t ! + l .  

Remark  5. In connection with the preceding problem it may be interesting to s tudy 
the subgraphs Kr,s in Gq,t for t < r < s. In particular, does there exist and absolute 

constant C such that  Gq,t does not contain Kr,r for some r<tC? 
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Note added in proof. With the techniques of the paper  we obtained a slight im- 
provement of Corollary 2.2 recently. It  is valid for s >  ( t - 1 ) ! +  1. In particular we 

have ex(n, K4,7) > c.n 2-�88 . 
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