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FRACTIONAL COVERS AND COMMUNICATION COMPLEXITY*
MAURICIO KARCHMER!, EYAL KUSHILEVITZ!, AND NOAM NISANS

Abstract. It is possible to view communication complexity as the minimum solution of an
integer programming problem. This integer programming problem is relaxed to a linear program-
ming problem and from it information regarding the original communication complexity question is
deduced. A particularly appealing avenue this opens is the possibility of proving lower bounds on
the communication complexity (which is a minimization problem) by exhibiting upper bounds on the
maximization problem defined by the dual of the linear program.

This approach works very neatly in the case of nondeterministic communication complexity. In
this case a special case of Lovdsz’s fractional cover measure is obtained. Through it the amortized
nondeterministic communication complexity is completely characterized. The power of the approach
is also illustrated by proving lower and upper bounds on the nondeterministic communication com-
plexity of various functions.

In the case of deterministic complexity the situation is more complicated. Two attempts are
discussed and some results using each of them are obtaied. The main result regarding the first
attempt is negative: one cannot use this method for proving superpolynomial lower bounds for
formula size. The main result regarding the second attempt is a “direct-sum” theorem for two-round
communication complexity.
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1. Introduction. Many combinatorial optimization problems can be expressed
as integer programming problems. Relaxing an integer programming problem to a
linear programming problem often gives useful information regarding the original one.
In this paper we apply this technique to the study of communication complezity.

We consider communication complexity in the wide context of computing rela-
tions: we have two players P; and P, holding n-bit input strings, £ and y respectively.
They wish to find a value z satisfying a relation R(z,y,2).! The goal of the players
is to communicate as few bits as possible. This general communication complex-
ity problem contains as special cases the communication complexity of functions, as
defined by Yao [Y79] (and studied in numerous works later on), and the relations
defined by Karchmer and Wigderson [KW88], which are important because of their
close relationship with boolean circuit depth.

It is convenient to count the number of different histories of the protocol. It is
well known (see [K89]) that the logarithm of this quantity is equal (up to a constant
factor) to the communication complexity. In the case of relations corresponding to
circuit depth of boolean functions, this measure gives exactly the formula size. We

* Received by the editors October 13, 1992; accepted for publication (in revised form) December
27, 1993. A preliminary version of this paper appeared as an invited paper in Proc. Tth IEEE
Structure in Complerity Theory, June 1992, pp. 262-274.

T Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139 (mauricio@math.mit.edu). This author’s research was supported by National Science Foun-
dation grant NSF-CCR-90-10533.

 Department of Computer Science, Technion, Haifa 32000, Israel (eyalk@cs.technion.ac.il).
This author’s research was done while the author was at Aiken Computation Lab., Harvard Univer-
sity, and was supported by National Science Foundation grant NSF-CCR-90-07677.

§ Department of Computer Science, Hebrew University, Jerusalem 91904, Israel (noam@cs.huji.
ac.il). This author’s research was supported by the Wolfson Research awards administered by the
Israel Academy of Sciences and Humanities and by USA-Israel BSF 89-00126.

1 We assume that such z always exists. Alternatively, we can say that if there is no such z then
any output is legal.
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may thus view the communication problem as a covering problem: cover the whole
space of possible inputs by possible histories. As an integer programming problem this
becomes the following: assign 0-1 weights to the possible histories of a communication
protocol such that each possible input is covered with weight 1.

We formalize this integer programming problem and then study the linear pro-
gramming relaxation of it. Two of the most intriguing features of this approach are

e It allows one to study the dual linear programming problem. In particular,
one can give lower bounds to the original problems by providing upper bounds
to their dual problems.

o It turns out that the linear programming relaxation often has “direct sum”
properties; i.e., the complexity of solving two independent problems simul-
taneously is exactly equal to the sum of the separate complexities. These
results then imply similar results for the original complexity measure.

In this paper we study three different formalizations and relaxations. The first
formalization deals with the nondeterministic case. It is presented first since it is the
most elegant and successful case. Two formalizations for the deterministic case are
also presented, neither of them without problems.

Our first formalization, for nondeterministic communication complexity, is studied
in §2. The main results we obtain in this case are

e The linear relaxation gives exactly Lovdsz’s “fractional cover” measure [L75].
On the other hand it has a natural interpretation in communication complex-
ity terms.

e The linear relaxation is always very close to the “true” nondeterministic com-
munication complexity.

e We get direct-sum results for nondeterministic communication complexity,
re-proving and strengthening the recent results of [FKN91]. In particular
we show that the linear relaxation completely characterizes the amortized
nondeterministic communication complexity.

e Various known upper and lower bounds are given new simple proofs using the
linear programming relaxations.

e Some connections are shown with the private-coins vs. public-coins question
in randomized communication complexity.

Our second formalization, studied in §3, considers the “natural” approach to de-
scribing deterministic communication complexity as integer and then linear programs.
Our main concern in this section is with communication complexity of relations that
correspond to boolean circuit depth and formula size (as in [KW88]). The main results
we obtain using this approach are

e We give a surprising new proof of Khrapchenko’s quadratic lower bound [K71]
on the formula size of the parity function.

o We show that this approach cannot give superquadratic lower bounds for the
formula size of any boolean function. In particular, the solution of the integer
program may be vastly different from the solution of the linear program.

e We give some indication that for monotone circuit depth and formula size,
this approach may yield exponential lower bounds.

The basic failure of the “natural” approach to deterministic communication com-
plexity led us to consider the third formalization, discussed in §4. This formalization
uses a round-by-round approach to communication complexity, and we were only able
to obtain results for one-round and two-round protocols. The main results we obtain
are
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e Direct-sum results for deterministic one-round and two-round communication
complexity.

e En route we generalized some of Lovész’s results regarding fractional covers
to the weighted case, results that may be of independent interest. (General-
izations of some of the results were already known [C79].)

The three different sections of this paper are technically nearly independent of
each other. Each section contains an introduction which describes the formalization
studied in the section and mentions the basic results obtained.

2. Nondeterministic complexity.

2.1. Introduction. In the nondeterministic model of communication complex-
ity the two players may act nondeterministically, but once they reach an answer, they
must be sure of its correctness. It is well known that the nondeterministic communi-
cation complexity of a relation R, denoted Cy(R), is simply the logarithm (base 2) of
the number of monochromatic rectangles needed to cover the matrix associated with
the function.

DEFINITION 2.1. Given a relation R C {0,1}" x{0,1}" x Z we denote by Mg the
matriz representing this relation. That is, each row of Mg corresponds to an input
z of P, and each column corresponds to an input y of P». The entry (z,y) contains
the set of all z’s that satisfy R(z,y, z). A rectangle of Mg is a submatriz of the form
A x B where A,B C {0,1}". A rectangle A x B is called monochromatic if there
erists some element z which is a member of all entries of the rectangle.

DEFINITION 2.2. The nondeterministic cover number of a relation R, denoted
N(R), is the minimum number of monochromatic rectangles that cover Mg, allowing
overlaps.

We associate with every relation R a hypergraph Hgr = (V, E) as follows. The
vertices of Hp are all possible inputs (i.e., V = {0,1}" x {0,1}"). The hyperedges
are all monochromatic rectangles. We can write the nondeterministic cover number
as an integer programming problem. Let R be a relation, and let Hg = (V, E) be the
corresponding hypergraph. A nondeterministic cover of R can be viewed as a boolean
function ¢ : E — {0, 1}, such that

YveV : Z é(e) > 1.

e€E : veEe

The cover number N(R) is defined as ming ), #(e) where ¢ ranges over all non-
deterministic covers of Hg.2 We now define the relaxation of N(R).

DEFINITION 2.3. A nondeterministic fractional cover of Hg is a real function
¢: E —[0,1], such that

wevV: ) d(e)>1.

ecE : vEe

The fractional cover number of R, denoted N*(R), is defined as ming ) . ¢(€)
where ¢ ranges over all nondeterministic fractional covers of Hg.

2 Note that in fact all the definitions of the various cover numbers do not make any use of
the special structure of the hypergraphs of the form Hpg, and therefore can be generalized to any
hypergraph (as in [L75]). For making the exposition more clear we concentrate on hypergraphs of
the form Hpg. In the technical part of this section we will be interested in the cover numbers of other
hypergraphs as well.
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As mentioned, this definition is just a special case of Lovész’s definition of frac-
tional covers [L75], and therefore we may apply his more general results. In particular,
Lovész shows (see Theorem 2.6 below) that the fractional cover number N* can never
be much smaller than the cover number N (clearly, N*(R) < N(R), for every R).
Thus, the linear program will give us much information regarding the original nonde-
terministic communication complexity problem. We use this approach to obtain some
very simple proofs of (basically known) upper and lower bounds to nondeterministic
communication complexity.

We now give a simple interpretation for the fractional cover number in the case
of communication complexity: a simple way to give a lower bound to N(R) is to give
an upper bound to the size of any monochromatic rectangle. This can of course be
done relative to any distribution P on X x Y: let Boundp(R) = max, Prp(e), where
e ranges over all monochromatic rectangles of R. It is clear that for any distribution
P, 1/Boundp(R) is a lower bound for N(R). It turns out that the best bound one
can obtain this way is exactly N*(R).

LEMMA 2.4. N*(R) = maxp 'E'o'ﬁmlip—(R)’ where P ranges over all probability
distributions on X x Y.

Proof. By the same argument as above, N*(R) > m, for every P. There-
fore one direction follows immediately. For the second direction we use the primal-dual
theorem for linear programming. The dual of the linear program defining N*(R) is

max ) €(,y),
z,Y

where £ is any real function £ : V — [0, 1], such that

Vee B Y &x,y) <1

(z,y)€e

The lemma can be verified by associating with every £ a distribution P, P¢(z,y) =
£, 9) /2 €@ Y). 0

The main result we obtain regarding the fractional cover number is that this
measure captures completely the cost of solving simultaneously several problems on
independent inputs. In particular, we show that N* is multiplicative with respect to
the direct sum.

THEOREM. Let R, R1,..., Ry be arbitrary relations. Then,

e log N*(R) < Cn(R) < log N*(R) + O(logn),
o I, N*(R;) = N*(Ry x --- X Ry)

These results immediately imply the “direct sum” results in [FKN91]. In fact the
following corollary gives the underlying reason for these “direct sum” results. Let k
be an integer and let R* denote the “direct sum” of R k times. Namely, to compute
R* we need to compute simultaneously R on k independent inputs. Denote by Cy(R)
the amortized communication complezity of R [FKN91], i.e., limsup_, .., Cn(R¥)/k.

COROLLARY. Let R be any relation. Then, Cn(R) = log N*(R) > Cn(R) —
O(logn).

A similar theorem holds for the “one-sided” version of nondeterministic complex-
ity of boolean functions, where the players have to be sure about the output only
if they output 1. In this case, the problem is to cover the 1’s of the function us-
ing 1-monochromatic rectangles. (We denote by Cnp(f),Cnp(f), and NP*(f) the
analogues of Cn(f), Cn(f), and N*(f), for this case.)
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To demonstrate the tightness of our results we exhibit a simple function which
has a large gap between NP(f) and NP*(f), and thus also between Cp(f) and
Cnp(f). Let NE(z, y) be the nonequality function giving “1” iff the n-bit strings x
and y are not equal. We show

Cnp(NE) = ©(logn) but Cyp(NE) = ©(1).

It is interesting to note that for this function the complexity difference between
Cnp(f) and Cnp(f) mirrors the complexity difference between the “private-coins”
and “public-coins” variants of randomized complexity. We explain this phenomena
(that randomization in the public-coins model is more powerful than nondeterminism)
and prove that while the (one-sided error) randomized complexity in the public-coins
model can be smaller than Cnp(f), it is always at least Cnp(f) = log NP*(f).

2.2. Direct sums. We start by defining the product of two hypergraphs.

DEFINITION 2.5. Given two hypergraphs Hy; and H, we define their product
HyxHj by V(Hl XH2) = V(Hl)XV(Hg) and E(H1 XH2) = {61 X62|€1 € E(Hl), € €
E(H2)}.

The following result of Lovész is crucial.

THEOREM 2.6 ([L75]). Let H, H,, and H, be any hypergraphs then

1. N*(H) > ﬁ,-(-}%)_,
2. N*(Hl XH2) N*(Hl)N*(Hz)

The first statement directly yields the following corollary.

COROLLARY 2.7. Let R be any relation. Then, log N*(R) < Cn(R) < log N*(R)+
logn + O(1).

DEFINITION 2.8. Given two relations R and S, their direct sum, denoted R x S,
is the problem of solving both R and S simultaneously on independent inputs.

Note that usually, for two relations R and S, the hypergraph Hgxs is not the
same as the hypergraph obtained by the product Hr x Hg. However, the following
lemma claims that both have the same nondeterministic fractional cover number.

LEMMA 2.9. Let R and S be two relations. Then N*(Hgpxs) = N*(Hg x Hg).

Proof. For proving that N*(Hgrxs) < N*(Hgr x Hg), note that if er is a
monochromatic rectangle of Mr and eg is a monochromatic rectangle of Mg, then
er X eg is a monochromatic rectangle of Mpyxs. Therefore, E(Hr x Hg) C E(Hgxs)-
This implies that every nondeterministic fractional cover ¢ defined for Hr x Hg can
be extended with zeroes to a nondeterministic fractional cover of Hry g, and thus the
inequality follows.

On the other hand, given the optimal nondeterministic fractional cover ¢ defined
on E(Hpgxs), we can take every hyperedge e = X x Y C V(HR) x V(Hg) with
¢(e) > 0, and define Xg, Xg,YR, and Ys to be the projections of X and Y on the
first and second coordinates respectively (i.e., the projections on V(HEg) and V(Hg)
respectively). Now, define eg = XgrXYg and es = XgxYs. These are monochromatic
rectangles of Mg and Mg (respectively) and thus eg X eg is a hyperedge of Hr x Hg.
Define, for every e, ¢/(er X es) = ¢(e) (if more than one hyperedge correspond to the
same eg, es then ¢'(egr x eg) is the sum of @(e) for all those e’s). We get that ¢’ is
a nondeterministic fractional cover of Hg x Hg (since the monochromatic rectangle
er X eg contains the monochromatic rectangle e) and therefore N*(Hgr x Hg) <
N*(Hgxs)- 0

We can now get the following set of “direct sum” results.

THEOREM 2.10. Let R, R,,..., Ry be the arbitrary relations:
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o N*(xiyRi) = [T, N*(Rq);
o Y8 log N*(R;) < Cn(xE1Ri) < T8 log N*(R;) + log kn + O(1);
e Cn(R) =log N*(R).

Proof. The lower bounds on Cj follow from Theorem 2.6 and Lemma 2.9. The
upper bounds follow from Theorem 2.6 and Corollary 2.7. The bound for Cy is
obtained by taking k copies of R and letting k approach infinity. o

By using Corollary 2.7 we can eliminate N* from the statement, getting as a
corollary the somewhat weaker results of [FKN91].

COROLLARY 2.11. Let R, Ry, ..., Ry be the arbitrary relatwns

o Y4, Cn(R:) — klogn — O(1) < On(xk, R) < 25, Cn(R)
e Cn(R)—logn—0(1) < Cn(R) < Cn(R)

2.3. One-sided nondeterministic complexity. In the case that boolean func-
tions are computed, one is frequently only interested in the “NP”-version of nonde-
terministic complexity, i.e., where the players need only be sure of the answer in the
case where f(z,y) = 1. We denote this complexity by Cnyp(f). It is not difficult to
see that the corresponding covering problem is simply to cover all the 1-inputs of f
by 1-monochromatic rectangles.

It is straightforward to carry over all of our results to this case as well, where in
the direct sum of f and g, we need only cover the joint 1’s of f and g, i.e., cover the
1’s of f A g. In particular we get the following corollaries.

THEOREM 2.12. Let fi,..., fr be any k functions. Then

k k
> Cnp(fi) —klogn—0(1) <Cnp(frA---Afi) < > Cnp(fi)-
i=1

=1

The following example shows how the above results can be used for proving lower
bounds on the nondeterministic communication complexity.

Ezample 1. Let the “disjointness” function be defined as follows: DISJ,(z,y) is
defined for every z,y € {0,1}™ as 1 if there is no index ¢ such that z; = y; = 1 (and
0 otherwise). Clearly,

DISJ,(z,y) = /\DISJl(Cﬂuyz)

i=1

Therefore, NP(DISJ,,) > NP*(DISJ,,) = (NP*(DISJ;))" = 2™, where the last equal-
ity follows by noting that NP*(DISJ;) = 2. Thus we have

Cn(DISJ,) = Cyp(DIST,) = n.

2.4. Fractional covers and randomized complexity. The following theorem
relates NP*(f) to Cr—pub(f)—the communication complexity of computing f by a
probabilistic one-side error protocol (i.e., a protocol that might err only if f(z,y) =1
with probability smaller than, say, %) in the public coins model.® It is known that
Cr—pub(f) is smaller than Cr_priv(f) (one-sided error protocols in the private-coins
model) by at most an additive factor of logn. Clearly, Cnp(f) < Cr—priv(f).* We

3 In the public coins model, instead of flipping coins locally, the two parties share a string of
random coins. For a formal definition of the model and some results on the relations between the
public coins and private coins models, see [N91].

4 The parties “guess” good random coins and run the randomized protocol.
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already proved that log NP*(f) is smaller than Cnp(f) by at most an additive term
of logn. To complete the picture we give the following theorem.

THEOREM 2.13. Let f be a function. Then log NP*(f) < Cr—pub(f) + 1.

Proof. Given F, a probabilistic one-sided error protocol for f in the public-coins
model, we will construct a fractional cover for the 1’s of My, as needed. Let r be a
possible (public) random string and let p(r) be its probability. Fixing r, then F is
just a deterministic protocol and therefore induces a cover of the 1’s of M; by at most
2Cr-pun(f) monochromatic rectangles. We add to the cover all the rectangles in which
the output is “1.” As the protocol has only one-sided errors then these rectangles
cover only “1”-entries. With each such rectangle e we associate a value ¢(e) = 2p(r).
We repeat this process for every possible random string r. We claim that the obtained
cover is what we aim for. First, note that for every (z,y) such that f(z,y) =1 we
have

Z ¢(e) =2 - Prob(F outputs 1 on input (z,y)) > 2- % =1.
e: (z,y)€e

Finally, note that the cover we construct satisfies

Z ¢(e) < Z 2p(7‘) . 9Cr—pub(f) = 9. 9CR-pun(f) o
e kA

We now show that the above theorem can be used to estimate N P*(f).

Ezample 2. Let the “nonequality” function be defined as follows: NE,(z,y) is
defined for every z,y € {0,1}"™ as 1 if z # y and 0 otherwise. It is known that
Cp(NE,) = n, and that Cy(NE,) = O(logn).5 On the other hand, Cr—pub(NE,) =
0(1).% By Theorem 2.13, we get that NP*(NE,) = O(1). (Note that for this function
CR—pub is less than NP.)

In the following example we show how to use these techniques to derive nontrivial
upper bounds on the nondeterministic communication complexity. Interestingly, this
is done without describing explicitly protocols that compute the functions.

Ezample 3. Let n be a perfect square. Let f, be the following function: view
each input string as \/n substrings of length \/n (ie., * = T173...T s and y =
1Yz ---Uym, Where T;,7; € {0,1}V™, for every i). Let f, be defined as follows:
fn(z,y) is 1 if there exists an ¢ such that Z; = J;. This function was studied in
[MS82], [F87], and a (tight) O(y/n) upper bound was proved for its nondeterministic
communication complexity, using a complex protocol. Here we give a very simple
proof for this upper bound. Clearly, Cnp(fn) = O(v/n).” Therefore to prove that
Cn(fn) = O(y/n) it is enough to prove that Cnp(f,) = O(v/n).8 For this, we write
falz) = /\;{__—"1 NE /7(%;,7;). Therefore, NP*(f,) = (NP*(NE\/E))‘/’—‘ which equals
by the previous example to (O(1))V™. This implies that Cyp(f,) = O(v/n).

5 P; “guesses” an index i and sends the index i together with z; to Pa.

6 The parties can view the public random string as a n-bit vector b and exchange the inner product
of b with z and y.

7 Py “guesses” i and sends i and T; to P, who checks whether Z; = ;.

8 The trivial upper bound for Cxp(f,) is O(v/nlogn): Py “guesses” for every 1 < i < /n an
index in which Z; differs from %;. It sends to P all those indices with their values.
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3. Deterministic complexity: disjoint cover.

3.1. Introduction. As shown, our approach works well for nondeterministic
complexity. In the case of computing functions we do get some nontrivial information
regarding deterministic complexity, as [AUY83] showed that there can be at most a
quadratic gap between deterministic and nondeterministic complexity. In the case
of relations we may get no information at all, as the gap between deterministic and
nondeterministic complexity can be exponential. However, we will show that the
suggested approach leads to some results.

A natural approach to present deterministic communication complexity as a cov-
ering problem is simply to forbid overlap of any two rectangles in the monochromatic
cover.

DEFINITION 3.1. The deterministic cover number of a relation R, denoted D(R),
is the minimum number of monochromatic rectangles in a disjoint (nonoverlapping)
cover of the set of inputs.

As opposed to the nondeterministic case where the nondeterministic complexity,
Cn(R), was always O(log N(R)), it is still an open problem whether the deterministic
complexity, Cp(R), is always ©(log D(R)). However, it is still true that log D(R) <
Cp(R). Furthermore, it is implicit in [AUY83] that log D(R) > /Cp(R), and thus
these two measures are quite close. Let us also mention that if Ry is a relation
associated with the circuit depth of a boolean function g (& la [KW88]) then D(R,)
yields. a lower bound to the formula size complexity.

Therefore it is important to understand the measure D(R). This measure has the
advantage of being more combinatorial than Cp(R). As previously, we can express
D(R) as an integer program. For a relation R, let Hg = (V, E) be the corresponding
hypergraph. A deterministic cover of Hg is a boolean function ¢ : E — {0, 1}, such
that

WweV: > ¢le)=1

ecE : v€Ee

The deterministic cover number of R, denoted D(R), is ming ) . ¢(e) where ¢ is a
deterministic cover. Again, we can relax the integrality condition. Thus, we get the
following definition.

DEFINITION 3.2. A deterministic fractional cover of the hypergraph Hg is a real
function ¢ : E — [0,1], such that

YveV : Z ¢(e) = 1.

e€E : vEe

D*(R) is defined as ming Y, 5 ¢(e) where ¢ is a deterministic fractional cover.
Our goal is to prove lower bounds on D(R) by proving lower bounds for D*(R).

For this, we look at the dual linear program which is defined as follows. Let R be a

relation, and let Hg be the corresponding hypergraph. Then, by the duality theorem,

D*(R) = max Z w(z,y),
veV

where w ranges over all real functions that satisfy

Vee FE Zw(w,y) <1.
veEE
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It is important to notice that, as opposed to the nondeterministic case, there may
be a huge gap between D(R) and D*(R) (we will present an example below). Still,
lower bounds for D*(R) do give lower bounds to D(R). Our first result does exactly
that, giving a new proof to Khrapchenko’s quadratic lower bound for the formula
size of the parity function, by proving a lower bound for D*(Rg, ), where Rg, is
the relation associated (& la [KWB88]) with parity.® The new proof is achieved by
exhibiting an upper bound to the dual problem.

THEOREM. Let Rg,, be the relation associated with the parity function (as above)
then D*(Rg,) = ©(n?).

Our major result regarding this approach is negative though. We show that this
method cannot prove superquadratic lower bounds to the formula size of any boolean
function.

THEOREM. Let f be any boolean function and let Ry be the relation associated
with it. Then D*(Rs) = O(n?).

Note that for most boolean functions f, D(R;) = 28(®). This result specifically
suggests that anyone aiming to prove lower bounds for the circuit depth of boolean
functions should abandon this approach. However, we do give some indication that
proving lower bounds to monotone circuit depth might be possible using this approach.
This gives another example of the big difference between monotone and nonmonotone
computation.

3.2. Khrapchenko’s lower bound. Khrapchenko [K71] gives the only known
general lower bound for search problems. Let R C X x Y X Z be any relation, and
let M be the corresponding matrix. Let A C X X Y be any set with the following
properties:

L V(z,y) € A, [Myy| = 1.
2. Vz € X and z € Z there is at most one y € Y such that (z,y) € A and

Ml',y = {z}'
3. Vy € Y and z € Z there is at most one z € X such that (z,y) € A and
Mm)y = {z}‘

Turorem 3.3 ([K71]). D(R) > i

As an example of an application of Theorem 3.3 consider the matrix of Rg,
indexed by {z : @;z; = 1} x {y : ®;y; = 0} and whose (z,y) entry is {i : z; # y:}.

COROLLARY 3.4. D(Rg,) > n2.

Proof. Let A = {(z,y) € X x Y such that d(z,y) = 1}.1° It is easy to see that A
has the required properties and provides the desired lower bound. ]

We prove a slight strengthening of this result.

THEOREM 3.5. D*(R) > T)'I(%FYT'

COROLLARY 3.6. D*(Rg,) > n?, with equality for n = 2%.

We give here the proof of the corollary. The same ideas with some technical
algebraic calculations can be used to prove Theorem 3.5 in its full generality. In
§3.2.1, we give some general heuristics that can help in such proofs. In §3.2.2, we use
these heuristics for proving the corollary.

3.2.1. Heuristics for proving an upper bound for the dual. To prove a
lower bound for D*(R), we only have to ezhibit a solution to the dual program. For

9 The relation associated with a function f, denoted R ¢, consists of all triples (z,y,4) such that
f(@) =1, f(y) =0, and =; # y;.
10 d(a,y) = |{i : @i # yi}l.
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this, we have at our disposal the powerful paradigm of trial and error. The following
heuristics can be quite helpful in our quest for a solution for the dual problem. After
presenting these heuristics we will use them for the proof of Corollary 3.6.

o Let II(Hg) be the automorphism group of Hr. A solution @ for the dual
problem is invariant under II(HR) if w(z,y) = Wr(z,y) for every (z,y) and 7 €
II(HRg). Similarly, we can define invariant solutions for D*. A symmetrization
argument can be used to show that, without loss of generality, the optimal
solutions to both D* and its dual are invariant under II(Hg). This clearly
reduces the size of both linear programs.

o Intuitively, it is worthwhile to give (z,y) a positive weight if it does not
appear in many monochromatic rectangles. This is because such a positive
weight does not affect many rectangles. Conversely, if (z,y) appears in lots of
monochromatic rectangles then we could benefit by making w,,,) negative,
thus helping many rectangles without lowering by much the value of D*.

o Having decided which pairs (z,y) will get positive weights, we could test this
decision by asking whether the following modified version of M has the same
D*:

My, = { M, if Wia,y) is positive,
' Z otherwise,
where Z is the set of all possible solutions. In a sense, this means that we
have to assign positive weights to the hardest pairs. Conversely, if we have a
solution for the dual problem, we will get information about the core of the
problem.

e Given an optimal solution to D*, the theory of linear programming tells us
which of the inequalities of the dual have to be saturated. In particular, if for
a given monochromatic rectangle e, ¢(e) is positive then the corresponding
inequality in the dual has to be saturated. That is, the sum of the weights of
the entries in e have to add up to one. Given that we suspect that a given
solution to D* is optimal, we can use this information to try to construct a
suitable solution for the dual.

3.2.2. Proof of Corollary 3.6. We will assume that n = 2*. For general n
the corollary follows from the theorem. The upper bound follows from the protocol
attaining I'(Rg,) < n?, where I' denotes the number of different histories in the
protocol. We describe it here: let I = {1,...,n/2}. The players start by exchanging
the parities of their vectors on I. That is, ®;c;x; and ®;c;y;. The players then
continue recursively in either I or [n] \ I depending on whether ®;crx; # ®icry; or
not. It is easy to see that this is a correct protocol with n? different histories.

The lower bound will follow by providing a specific function w for the dual problem
which add up to n?. At this point we could provide w and finish in two more lines.
Instead, we will reason using our heuristics and derive the desired solution. We
therefore can get away with some informality.

First, we start with a belief that the upper bound just described is optimal.
If so, we know that the inequalities associated with the chosen rectangles have to
be saturated. We therefore have to understand better our upper bound. Let A =
{(z,y) € X x Y such that d(x,y) = 1}. A closer look at the protocol reveals that
each of its histories is followed by the same number of entries from A. Furthermore,
each history defines a square rectangle with exactly one entry from A in each row and
column. Note that the set of histories partition Mg, .
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Following our first heuristic, w(z,y) will depend only on d(z,y). Following our
second heuristic, it is worthwhile to give entries from A a positive weight. Let us try

_ a lf (iB, y) € A’
w(z,y) = { —b otherwise,

for some a and b. We will finish the proof if we find a and b which respect all
inequalities and saturate those associated with histories from our upper bound. This
is because we have n? saturated rectangles which partition the whole matrix.

Let us look now at the monochromatic rectangles. In each one there is at most
one entry from A in every row or column. Therefore, the heaviest rectangles are the
square ones with exactly one entry from A in each row and column. For a k x k such
square we have the inequality

ka —k(k—1)b <1

with equality when k = |A|/n? = N (the size of the rectangles in the optimal solution).
Writing the above inequalities as —bk? + (a + b)k — 1 < 0 we have one root of the left-
hand side, namely k = N. Noticing that the inequality is only restricted to integral
k, we can let the second root be N — 1 and solve for a and b. This finishes our proof.
For the skeptic, we provide the final values a = 2/N and b= 1/N(N — 1). 0

3.3. The linear programming bound and boolean relations. Let f : {0,1}"
~— {0,1} be a boolean function and let Rs be indexed by f~*(1) x f~!(0), and for
(z,y) € f~1(1) x f~1(0) let the corresponding entry be {i : z; # y;}. We call rela-
tions of the form Ry boolean relations. For example, Rg,, is a boolean relation. The
relevance of this definition comes from the following theorem.

THEOREM 3.7 ([KW88]). For every f, d(f) = C(Ryf) and L(f) = I'(Ry).

Here, d(f) and L(f) are the depth and formula size of f respectively. For def-
initions of circuits and related material concerning the above theorem see [BS90],
[K89].

Let Uy, be the relation indexed by {0, 1}"x{0, 1}" and for (z,y) € {0,1}"x{0,1}",
x # y, let the corresponding entry be {i : x; # y;}. If © =y, the corresponding entry
remains undefined. The following claim is trivial and explains why we call U,, the
universal relation [K89).

CrAam 3.8. For every f : {0,1}" — {0,1}, D(Ry) < D(U,) and D*(Ry) <
D*(U,).

We will show that the best lower bound for boolean relations attainable via the
linear programming bound is very weak by proving the following theorem.

THEOREM 3.9. D*(U,) = O(n?).

Proof. We will use some of the ideas behind the logarithmic randomized protocol
for U, [K89]. For S C [n], let As = {z : Pieszs = 1} x {y : Bicsy; = 0} and
Bg = {z: ®ieszi = 0} X {y : Diesy; = 1}. The upper bound of Corollary 3.6 implies
that both D(As) and D(Bs) are at most n?. Let Pg be an optimal partition of Ag
and Bg into monochromatic rectangles.

It is easy to see that for every x # y, (z,y) € AsU Bg for exactly half the subsets
S. We will give a weight of 27(®~1) to every rectangle from Uscn)Ps- Each pair
(z,y) with x # y is covered by 2"~! such rectangles with total unit weight. Also, the
total weight is 2" - (2n?) - 2=(»~1) = 4n?, 0
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3.4. The linear programming bound and monotone boolean relations.
Let f: {0,1}™ — {0, 1} be a monotone boolean function. We denote by min(f) and
max(f) the set of minterms and maxterms of f respectively (see [K89) for definitions).
Note that each minterm and each maxterm, as a set of variables, intersect. Let R
be a relation indexed by min(f) x max(f) and for (p,q) € min(f) x max(f) let the
corresponding entry be p N q. We call matrices of the form RY" monotone boolean
relations. The following theorem is the monotone analogue of Theorem 3.7.

THEOREM 3.10 ([KW88]). For every monotone function f, dm(f) = C(R})
and L (f) = T'(RY).

Here, d,;, and L,, denote monotone depth and monotone formula size (see [K89)
for definitions).

As in the preceding section, we define a monotone universal relation. Let U]
be a relation indexed by P([n]) x P([n]) and for p,q € P([n]) with pN g # 0 let the
corresponding entry be pNgq. If pNq = 0 the entry of U* remains undefined. We
have the following claim.

CLAM 3.11. For every monotone function f : {0,1}" — {0, 1} we have D(R}) <
D(Uy*) and D*(RF) < D*(U").

The main reason to define universal relations is to try on them new ideas to prove
lower bounds. The fact that D*(U,) = O(n?) means that the best lower bound for
boolean relations attainable with the linear programming bound is at most quadratic.
The following theorem gives evidence to the fact that the linear programming bound
may give exponential lower bounds for monotone boolean relations.

THEOREM 3.12. D*(U™) > d" for some constant d > 1.

Proof. We will construct a feasible solution to the dual problem whose value is
the desired bound. Following our first heuristic, w(p, q) depends only on |[pNg|. It is
natural to try the Hadamard matrix ((—1)“’”‘1'),,#61:(["]) as the sign pattern for our
weights. We want to give a positive weight to those entries (p,q) with [pNg| =1 and
we must give zero weights to the undefined entries. Let us try

{0 if pNng=20,
w(p,q) = { _(—1)“’”‘710 otherwise,

for some constant ¢ to be specified later. Using the fact that

Z (—1)lpnal = on

p,q€P([n])

we get

> wp,g)=c-{(p,g):png=0}=c-(3"-2")

p,9€P([n])

We now look at the monochromatic rectangles. Let R; = {p:i € p} x {q:i € q}.
Every monochromatic rectangle is a subrectangle of R; for some i. The pattern of
signs of weights of entries from R; constitute an 27! x 2"~! Hadamard matrix. We
will use the following lemma of Lindsey [ES74, p. 88] which says that minors of a
Hadamard matrix are balanced.

LEMMA 3.13. Let H be an N x N Hadamard matriz and let S and T be subsets
of rows and columns respectively. Then,

Z H;j </N-|S|-|T].

1€8,j€T
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In our case, we use the lemma to show that for every subrectangle R of R;

Z Wp,q) < € V2rTI2n=12n—1 < e V23n < ¢ (V8)"

(p,9)ER

which is less than 1 if ¢ = (v/8)~™. We have therefore found a feasible solution whose
value is (v/8)~"(3" — 2") > d" for any d < 3//8. a

4. Deterministic communication: two rounds.

4.1. Introduction. The previous approach tried to look at the protocol globally,
and failed. Our next approach deals with the protocol in a round-by-round fashion.
We will associate a covering problem with every round of the protocol. Unfortunately,
we are not able to carry our results to protocols having an arbitrary number of rounds,
but only succeed for one-round and two-round protocols.

To best explain our approach let us first limit ourselves to one-round protocols.!!
Intuitively, in a one-round protocol, P, partitions the columns of the matrix in a way
that enables P; to decide on the answer. Formally, we associate with any relation R
the following covering problem. Let X denote the space of all possible inputs to P,
and Y the space of inputs to P,. A set A CY is called compatible if for every z € X
there exists an answer z that is a legal answer for all y € A (i.e., such that R(z,y, 2)
holds for all y € A). D;(R) is defined to be the minimum number of compatible sets
that are needed in order to cover Y.

It is not difficult to see that log D;(R) gives the one-round communication com-
plezity of R (denoted by Cp,(R)). It is also not difficult to see that in this case
the disjoint and nondisjoint covers are the same, and thus when we relax the inte-
ger problem to a linear one, giving D;"*(R), we will be able to use Lovész’s results
regarding fractional covers. At this point we will already be able to reprove the
“direct sum” results for one-round deterministic complexity obtained in [FKN91],
specifically Cp, > Cp, > Cp, — O(logn). In [KRW91] it was conjectured that
for every R, Cp(R) > Cp(R) — O(logn). In [FKN91] it was proved that Cp(R) >
VCp(R)—O(logn). Here we show that the conjecture is true for two-round protocols.

We look at two-round protocols!? in the following way: in the first round, P,
partitions the rows of the matrix, and then the parties continue with a one-round
protocol on the subdomain. This can be expressed as the following weighted covering
problem. Our aim is to cover X, where we are allowed to use any subset of X in the
cover, and the cost of using a subset A C X is the one-round complexity of solving R
given that € A, denoted D;(A).

DEFINITION 4.1. A cover of X is a boolean function ¢ : P(X) — {0,1}, such
that

Vre X : > s>t

AEP(X) : z€A

11 P, sends to P; a single message, and P; then needs to compute the answer.
12 p; sends a message to Pz, who sends another message to Pj, who computes the answer.
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The weighted cover number of R, denoted Dy(R), is defined as
Dy(R)=min > ¢(4)Di(4),

AeP(Y)

where ¢ is a cover.

It is not difficult to see that log D2(R) is equal (up to a constant factor) to
the two-round deterministic complexity, Cp,(R). Again, we relax the integrality
conditions and look at the resulting linear program giving D>*. We can now no longer
use Lovész’s results, as we have a “weighted” covering problem. This problem was
already considered by Chvétal [C79] who extended the first part of Theorem 2.6 to the
“weighted” case. We prove that the second part of Theorem 2.6 can be generalized
as well. We believe that these generalizations are of independent interest. Using
these generalization we can prove a direct-sum result for two-round communication
complexity. In particular, let Cp,(R) denote the amortized two-round communication
complexity of R.

THEOREM 4.2. For every two relations R and S,

o Da(R)D2(S)/poly(n) < Da(R x S) < D2(R)Dy(S);
e Cp,(R) =06(Cp,(R)) — O(logn).

4.2. Weighted fractional covers. In this subsection we present the new no-
tion of weighted fractional covers. This notion will be later used in the proof of
Theorem 4.2.

DEFINITION 4.3. Let H be a hypergraph and let w be a weight function de-
fined on E(H) such that w(e) > 1, for every hyperedge e. Given a determinis-
tic/nondeterministic integral/fractional cover ¢ the weight function w gives it a weight
w(P) = Y ccpm) w(e)p(e). The weighted cover numbers D(H,w), D*(H,w), N(H,w),
and N*(H,w) are defined as the minimum of w(¢) over all appropriate covers ¢.
(Note that the original definitions, as presented in §2.1, are special cases of the new
definitions with w = 1.)

The next theorem is an extension of Theorem 2.6.

THEOREM 4.4. Let H, Hy, and Hs be any hypergraphs, and let w, wy, and wo
be weight functions on E(H), E(Hy), and E(Hy) (respectively) that give weights > 1
for every hyperedge (i.e., w(e) > 1, for alle € E(H)). Then

L. N*(H,w) > .
2. N*(Hy x Ha,wy X wy) = N*(Hy,w;) - N*(Hg, ws), where wy X we is defined
as wy X wa(e; X e2) = wi(e1) - wa(ez).

Proof. Part (1) of the theorem was proved in [C79].!3 To prove (2) we first
prove that N*(H; x Ho,wy X we) < N*(Hy,w1) - N*(Hz,wz2). Let ¢1 and ¢2 be the
optimal-weight fractional covers for H; and Hy (i.e., those that give the minimum for
N*(Hy,w;) and N*(Ha,we) respectively). Define ¢(e; X e2) = ¢1(e1) - p2(e2). We
show that ¢ is a nondeterministic fractional cover of H; X Hs and that its weight
is the multiplication of the weights of ¢; and ¢o. Clearly, ¢ is a function from

EZ E(H; x H3) to [0,1]. In addition, every vertex (v1,v2) € V(H; x Hs) is covered
as needed:
Z pler x eg) = Z Z p(er x e2)
e1Xex€E : (v1,v2)€Ee; Xea e1€E, : vi€e1 e2€E; : va€ez

13 In fact, the result stated in [C79] is somewhat different than the one stated here. However, the
proof in [C79] immediately implies the result stated here.



Downloaded 01/01/13 to 128.148.252.35. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

90 M. KARCHMER, E. KUSHILEVITZ, AND N. NISAN

>, Yo dulen)dalen)

e1€FE] : vi€ey e2€Ey : va€ep

Yo dile) D dalea)

e1€E; : vi€ey e2€E> : v2€ep

>1-1=1.

Thus, ¢ is a legal cover and we get

N*(Hl X Ho,wy X wa) < Z wy X 'LU2(61 X 62) . d)(el X €3)
ey Xex€F

D wiler)wa(ez)dr(e1)da(e2)

ey Xe€F

> wile)di(er) - D wale)pales)

e1€E, e2€E>
= N*(Hl,wl) . N*(HQ,'LU2).

For proving the other direction, that is N*(H;y X Ha,wy X we) > N*(Hy,wy) -
N*(Hj,ws), it is convenient to use again the dual program

N*(H,w) = max{fT‘I)|A<I> <w,®> 6}

We can think about every such vector ® as a real function defined over V(H). Let
®, and @, be the functions that give the maximum for N*(Hy,w;) and N*(Hz, w2)
(respectively), at the above linear program. Define ®(vi,v2) = ®1(v1) - P2(v2). We
show that ® satisfies the conditions in the linear program for H; x Hs and that
its value (i.e, 3°,cy (g, xm,) 2(v)) is the multiplicatign of the values of ®; and ®,.
Clearly, ® is a nonnegative function defined over V=V (H; x Hj). In addition, for
every hyperedge e; x ez € E(H; x Hj)

Z B(vy,v2) = Z Z ®(vy,v2)

(v1,v2)EV : (vy,v2)€Eer Xez v1EV] : v1€ey v2€EV2 & v2€en

= Z Z 1 (v1)P2(v2)

v1EV] : vi1€ey V2E€VL  va€en
= > Bim) ), Ba(w)
v1EV] : vi€ey v2€V2 : va€ey
wi(e1) - wa(ez)
= w; X wa(ey X ez).

IN

Thus,
N*(Hl X Hz,’wl X ’U)2) > Z (I)(’vl,’UQ)
(v1,v2)€V
= ) ®1(v1)®a(v2)
('01,1)2)6‘/
= Z ®1(v1) - Z P2 (v2)
v1EVY v2€V2

= N*(Hl,wl) . N*(Hz,’LU2).
This completes the proof of the theorem. 0
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4.3. Proof of Theorem 4.2. Now, we can come back to the proof of Theorem
4.2. To analyze the two-round deterministic communication complexity of a relation
R, we define the following hypergraph H%. The vertices are again all the pairs in
{0,1}™ x {0,1}". The hyperedges are all the rectangles of the form A x {0,1}", where
A C {0,1}™. Now, for each such hyperedge e we define its weight to be D;(e), the
one-way deterministic communication complexity of computing R on the subdomain
e.

Note that for every relation R, the definitions of H% and of D; imply that
D(H%,D;) = N(H%, D) and D*(H%,D,) = N*(H%, D).

We are interested in the relations between D(H%, ¢, D1) and D(H%, D1), D(HZ,
Dy). Again, it can be easily verified that D(H%, g,D1) < D(H%,D1) - D(HZ, D).
For proving connections in the opposite direction, let us concentrate for a while on
the case of computing functions. We need the following lemma.

LEMMA 4.5. Let e € E(H3},,). That is, e = A x ({0,1}" x {0,1}"), where
A C ({0,1}™ x {0,1}™). Let Ay and Ay be the projection of A on the first and second
coordinates (respectively). Then,

1. Dy((A5 x Ag) x ({0,1}" x {0,1}") = Dy(Ay x {0,1}") - Dy (A x {0,1}");
2. Di(e) = D1((Af x Ag) x ({0,1}™ x {0,1}™)).

Proof. (1) was proved in [FKN91]. We now prove (2): As A C Ay x Ay then one di-
rection is trivial. Therefore, it is enough to prove that for any B C ({0,1}" x {0,1}"),
if the submatrix A x B is constant in each row then so is the bigger submatrix
(Af x Ag) x B. By the definitions if A x B in constant in each row then for ev-
ery (z1,22) € A and every (y1,¥2), (¥1,¥5) € B we have f X g((z1,%2), (¥1,¥2)) =
[ xg((x1,22), (¥1,95)). In particular, this means that for every z, € Af,z2 € Ay and
every (y1,%2), (y1,¥3) € B we have f(z1,51) = f(21,97) and g(z2,%2) = 9(22,15),
which gives us what we need. 0

The following theorem is an analogue of Lemma 2.9.

THEOREM 4.6. Let f and g be two functions. Then N*(H%, ., D1) = N*(HF x
Hg", D1 X Dl)

Proof. The proof that N*(H3,,, D1) < N*(H} x H?, Dy x D) is similar to the
proof of Theorem 2.9 (second direction), together with the first part of Lemma 4.5
that guarantees that Dj(ey x eg) = Di(ey) - D1(eg).

The proof that N*(H}xg,Dl) > N*(H;‘ﬁ x H2,D; x D,) is similar to the proof
of Theorem 2.9 (first direction), together with the second part of Lemma 4.5 that
guarantees that D;(e) = Di(ey) - D1(eg). o

Using the last two theorems, we get

D(H3},D:) - D(Hg, Dy)

D(H%,Dy)- D(HZ, D1) > D(H?,,,D1) > o

for some constant c.

Let us now briefly discuss the case of computing general relations and not neces-
sarily functions. The equality in Lemma 4.5 part (1) does not hold anymore. However,
by [FKNO91] the two sides cannot be too far. As a result, Theorem 4.6 is changed as
well and it claims: let R and S be two relations. Then

N*(HI% X Hg,Dl X Dl)
In|V(HRrxs)|

< N*(leixSaDI)

< N*(H% x H2, D x Dy),
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