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The methods used to perform the switching functions of the Bell System 
have been devehped under the fundamental assumption that the holding 
time of the completed call is long compared to the time needed to set up 
the call. In considering certain forms of communication with and among 
computers the possibility arises that a message, with its destination at 
its head might thread its way through a communication network without 
awaiting the physical realization of a complete dedicated path before 
beginning on its journey. One such scheme has been proposed by J. R. Pierce 
and may be called "loop switching." We imagine subscribers, perhaps 
best thought of as computer terminals or other data generating devices, 
on one-way loops. These "local" loops are connected by various switching 
points to one another as well as to other "regional" loops which are in 
turn connected to one another as well as to a "national" loop. If a message 
from one loop is destined for a subscriber on another loop it proceeds 
around the originating loop to a suitable switching point where it may 
choose to enter a different loop, this process continuing until the message 
reaches its destination. The question naturally comes up, how the message 
is to know which sequence of loops to foUow. It wotdd be desirable for the 
equipment at each junction to be otie to apply a simple test to the destination 
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address (U the head of the message which wotUd determine which choice 
the message shoidd make at that junction. 

In this paper we propose a method of addressing the loops which has 
several attractive features: 

(i) It permits an extremely simple routing strategy to be used by the 
messages in reaching their destinations. 

(ii) By using this strategy, a message υηΙΙ always take the shortest 
possible path between any two heal loops in the same region. 

(Hi) The method of addressing applies to any collection of loops, no 
matter how complex their interconnections. 

The addressing scheme we propose wiU be applied primarily to local 
hops where the mutual interconnections may be quite varied. If a certain 
amount of hierarchical structure is introduced into the regional and national 
loop structure, as suggested by J. R. Pierce,^ it is possible to achieve 
addressings which are both compact and quite efficient. 

I. INTRODUCTION 

The methods used to perform the switching fmictions of the Bell 
System have been developed imder the fundamental assumption t ha t the 
holding t ime of the completed call is long compared to the t ime to set 
up the call. I t is thus sensible to hold portions of a route while the 
a t t empt is made to establish the connection. In considering certain 
forms of communication with and among computers, as well as the 
consideration of many schemes for t ime division switching, the 
possibility arises t ha t a message, with its destination a t its head, might 
thread its way through a communication network without awaiting the 
physical realization of a complete dedicated pa th before beginning on its 
journey. 

One such scheme has been proposed by J. R. Pierce, ' and may be 
called "loop switching." We imagine subscribers, perhaps best thought 
of as computer terminals or other da t a generating devices, on one-way 
loops. If a meassage is destined for a subscriber on another loop it 
proceeds around the originating loop to a suitable switching point where 
i t may choose to enter a different loop and continue the process unti l 
it reaches its destination. 

The question now comes up, how the message is t o know which se­
quence of loops to follow. A sufficiently complicated memory in the 
originating loop might, of course, look up an appropriate route, and then 
a t t empt to seize a complete pa th ; bu t this is the old and perhaps in-
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appropriate solution. I t would be more convenient and sometimes 
preferable if the equipment a t each junction could apply some simple 
test to the destination address a t the head of the message which would 
determine which choice the message should make a t t ha t junction. 

In the nation-wide loop switching system as conceived by Pierce, we 
can envisage local loops, regional loops, and a national loop. The simplest 
imaginable s tructure is one in which each local loop has an interchange 
only with its regional loop and with no other loop; similarly each regional 
loop interchanges with the national loop and otherwise only with its 
local loops. How does it work? Suppose t ha t a message originates in local 
loop X, and has its destination in local loop Y, where X and Y may or 
may not be identical. When the message comes to the interchange 
between X and X's regional loop, it exits onto the regional loop if and 
only ii Y ^ X. I t later exits onto the national loop if Y'a region is 
different from X's region; otherwise the message stays on X's regional 
loop until it reaches Y. Therefore what should addresses look like? We 
see t ha t if a portion of the loop address represents the regional loop, and 
another portion the local loop, routing decisions will be made on the 
basis of identity or nonidentity of certain portions of the sending and 
the receiving addresses. 

The loop configuration just described is perhaps too special to be 
practical. For example, it provides for no alternate routing, and for no 
special direct connections between two local loops with high mutual 
traffic. Pierce has shown how each of these difficulties can, to some 
extent, be alleviated. There remain, however, the further problems of 
the configuration of local loops belonging to a given region, and of the 
configuration of regional loops themselves. I t is quite likely t ha t the 
local loops at tached to a given regional loop have many mutual switching 
points among themselves, so tha t calls within one region are not normally 
expected to use the regional loop. How should we address such local 
loops so as to make routing easy? Much of the rest of this paper will 
be devoted to this problem. We shall, in this and the next two sections, 
speak of " loops" generally, bu t mean a system of local loops as the most 
likely realization. We note in passing t ha t a completely general national 
configuration of loops on which no hierarchical s t ructure has been 
impo.sed will have the same addressing problem—but probably a much 
larger number of loops. We return to the hierarchical situation in Section 
IV. 

In some very simple arrangements of loops it is easy to see how 
addressing might successfully be accomplished. Consider, for example. 
Fig. 1 showing four loops which touch as if they were circles of radius i a t 
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Fig. 1—Simple arrangement of loops. 

the vertices of the uni t square. If the address of each loop were just the 
two-digit ntimeral ij, i, j = 0 or 1, representing the coordinates of i ts 
center, then routing could be done in the following extremely simple 
manner: a t each junction, go into the new loop if this decreases the 
Hamming distance* between where you are and your destination. If it 
doesn't decrease the Hamming distance, don ' t go. Thus , if you wish to go 
from loop 10 to loop 11 then the Hamming distance is 1. You will not 
take the exit from 10 to 00 if you reach it first, for this increases ra ther 
than decreases the Hamming distance. You will, however, exit into 11 
when you reach t ha t junction. To go from 10 to 01 either exit, to 00 or to 
11, improves the Hamming distance and either routine is equally good. 

A simple potential routing scheme can thus be described as follows. 
Each loop has a binary address, η bits long. You make an exit from one 
loop to another if and only if it decreases the Hamming distance between 
where you are and where you want to go. If several exits do the same job 
then each one must lead to an equally short optimal pa th from sending 
loop to receiving loop. Furthermore, the number of loops traversed 
should, if possible, be exactly the Hamming distance between sender and 
receiver, with each transfer decreasing the distance from the receiver by 
exactly 1. 

Can such an addressing scheme be de\rised for every collection of loops 
with whatever adjacency structure? A little reflection shows t ha t there 
will certainly be difficulties. Let 's think of the collection of loops ab­
stractly as a graph, with each loop a vertex, and two vertices connected 
if and only if the two loops have a mutual transfer point. Thus , the 
graph of the previous example is as shown on Fig. 2. We have numbered 
each vertex with a pair of bmary digits so t h a t adjacent vertices differ 
in exactly one position, the number of edges required to pass from one 
point to another is exactly the Hanuning distance between the cor­
responding numberings, and all shortest pa ths between two pomts are 
achieved by following routes of decreasing Hamming distance to the 
destination. Another example (Fig. 3) : if we wanted a collection of sue 

* The Hamming distance between two n-place binary numbers is the number of 
places in which they differ. 
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Fig. 2—Graph of Fig. 1. 

loops arranged cyclically we could use the numbering 000, 100, 101, 111, 
Oi l , and 010. We see t ha t we are looking for a closed path on the 3-
dimensional cube with the additional property t h a t two points are 
exactly as far apar t in Hamming distance as the number of edges to be 
traversed between them—otherwise, the routing logic would be ruined. 
Thus we can use the realization for a cycle of six loops shown in Fig. 4a. 
The realization shown in Fig. 4b, however, would not be a valid solution. 
In this la t ter picture, 100 and 110 have Hamming distance 1 and there­
fore should be directly connected. The pa th between them, however, has 
length 3, the first link out increases rather than decreases Hamming 
distance, and therefore would not represent a useful addressing scheme. 

We thus see a difficulty caused by points coming too close together on 
the cube for the addressing scheme to work, bu t there are even dee{>er 
difficulties. Suppose we wish to construct an addressing scheme for a 
system consisting of three pairwise adjacent loops (see Fig. 5). This can 
never be drawn on a cube of o?)?/ dimension. For any closed pa th of 
edges on a cube has even length, and 3 is odd. Is the scheme therefore 
kaput? 

Not quite. We can still imagine the 3-cycle embedded on a cube in an 
appropriate dimension (in this case a square) if we are willing to gen-
eraUze what we mean. We shall a t tach to A the code 00, Β the code 10, 
and to C both 11 and 01 . We shall denote the pair 11 and 01 by the 
symbol d l , where d means "don ' t care ." Hamming distance between two 
n-tuples of O's ,rs, or d's is computed by crediting 1 for every position a t 

Fig. 3—Cyclic arrangement of six loops. 
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Oil, 
/ 

/ 

010. 

|M1 

000 Κ 

101 
(a) 

/ 
/ 

/ 

'100 000« 

101 

111 

(b) 
no 

'100 

Fi^. 4—Realizations for a cycle of six loops: (a) a valid solution; (b) not a valid 
solution. 

which one n-tuple has a 0 and the other a 1, and 0 for every other 
position. Thus , the Hamming distance between OldldO and lldOlO is 2, 
with the contributions coming from the first and fourth positions. With 
this convention, the Hamming distance between any two of the three 
addresses 00, 10, and dl is certainly 1, and correct routing still consists 
exactly of decreasing by 1 the Hamming distance a t each jmiction a t 
which a transfer is made. 

We now have a number of fundamental questions to answer. Can 
every collection of loops be numbered by assigning to each loop an address 
consisting of a sequence of O's, I 's , and d's? We require t h a t every 
shortest route between two loops can be found automatically by moving 
from a loop to an adjacent one if and only if this decreases the Hamming 
distance to the final destination by 1. How many bits long would such 
an address have to be? Let ' s s ta te right away the fimdamental theorem 
of this paper: Every collection of η loops, with maximum distance s 
between any two loops, can indeed be realized by giving each loop an 
address of no more than s(n — 1) O's, I 's, or d's. In fact, we know of no 
example where more than (n — 1) " b i t s " are needed, and we shall give 
a construction t ha t has found addresses no more than η — 1 bits long 
in every case on which it has been tried. The construction, however, is 
not quite an algorithm and we do not have a proof t ha t it can always be 
done with as few as η — 1 bits. 

W I T H A B S T R A C T G R A P H 

Fig. 5—^Three pairwise adjacent loops. 
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How is this routing algorithm going to work in practice? Here we have 
only the very earliest and simplest suggestions. The basic idea of the 
scheme is to obtain the greatest possible simplicity of routing strategy a t 
the expense of the length of the loop address. Thus , for example, you 
could physically realize addres.ses consisting of O's, I 's , and d'a by 
encoding 0 as 00, 1 as 01 , and rf as either 10 or 11. The logic then says: 
If the 2k — 1st digit of both addresses is 0 then compute the Hamming 
distance between the 2i:th digits. If the 2k — 1st digit of either address 
is 1, ignore it. Add up over all fc, and see if going into the new loop 
decreases Hamming distance to the destination. This could be very easy 
to mechanize; the arbitrary bit following a 1 in an odd position could be 
used for pari ty checks or other purposes. 

I t is not immediately clear who assigns the loop address to an in­
dividual message. The "phone book" may contain a shorter code t ha t is 
translated in the first junction you come to , or the sending computer 
itself may use the destination's correct loop address. This problem is 
connected with t ha t of system growth. How many numbers do you have 
to change if a loop is added to the system? The consequent desire for a 
hierarchical loop address s tructure is to a large extent fulfillable and will 
be discussed in Section IV. 

Before we proceed with the general theory, let 's see how a particular 
and not so simple example works out. Thus , consider the system of 
loops in Fig. 6. The distance between pairs of vertices is given by the 
following (symmetric) table: 

A Β C D Ε F 

A 0 2 1 3 1 2 

Β 2 0 2 1 1 2 

C 1 2 0 2 1 1 

D 3 1 2 0 2 1 

Ε 1 1 1 2 0 2 

F 2 2 1 1 2 0 

We shall a-ssign a sequence of five O's, I 's, and d's to each vertex in such a 
way tha t the Hamming distance between the 5-tuples corresponding to 
two vertices is exactly the distance in the table. One solution, as the 
reader should verify, is the following: 
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CsS-
W I T H A B S T R A C T GRAPH 

Fig. 6—System of loops. 

A — l l l l d 

β—OOldd 

C—lldOd 

D-OOOdl 

.B—lOddO 

F—OlOdd 

I n the sequel, we shall see how such a solution can in fact be found for 
every possible system of loops. A really siu^irising amount of interesting 
mathematics seems, a t present, to be involved in the problem. 

I n order to see how a set of satisfactory loop addresses can always be 
constructed, let us analyze the previous example in more detail. The first 
column of the solution is: 

A—\ 

B—0 

C—1 

D—0 

E—1 

F—0 

We see t h a t A, C, and Ε have the value 1 a t this coordinate while B, D, 
and F have the value 0. Thus, this coordinate will contribute a 1 t o the 
Hamming distance from any of ACE to any of BDF. We may denote 
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this BS ACE X BDF. Therefore, the first column makes the following 
contribution to the overall distance matrix. 

A Β c D Ε F 

A 0 1 0 1 0 1 

Β 1 0 1 0 1 0 

C 0 1 0 1 0 1 

D 1 0 1 0 1 0 

Ε 0 1 0 1 0 1 

F 1 0 1 0 1 0 

The second column may be written aaACFX BDE and contributes the 
following to the distance matrix. 

A Β c D Ε F 

A 0 1 0 1 1 0 

Β 1 0 1 0 0 1 

C 0 1 0 1 1 0 

D 1 0 1 0 0 1 

Ε 1 0 1 0 0 1 

F 0 1 0 1 1 0 

The first two colunms (i.e., coordinates) then contribute the sum of the 
previous matrices to the distance matrix. 

A Β c D Ε F 

A 0 2 0 2 1 1 

Β 2 0 2 0 1 1 

c 0 2 0 2 1 1 

D 2 0 2 0 1 1 

Ε 1 1 1 1 0 2 

F 1 1 1 1 2 0 
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distance matrix: 

A Β C D Ε F 

A 0 0 0 1 0 1 

Β 0 0 0 1 0 1 

C 0 0 0 0 0 0 

D 1 1 0 0 0 0 

Ε 0 0 0 0 0 0 

F 1 1 0 0 0 0 

umns (coordinates) thus contribute t 

A Β c D Ε F 

A 0 2 0 3 1 2 

Β 2 0 2 1 1 2 

C 0 2 0 2 1 1 

D 3 1 2 0 1 1 

Ε 1 1 1 1 0 2 

F 2 2 1 1 2 0 

The last two columns are .4 X C and D X Ε respectively. If the cor-

The third column is: 

.4—1 

B—\ 

C—d 

D-0 

E—d 

F—0 

I t will contribute 1 between A οτ Β and D or F. Since C and Ε have the 
third coordinate value d, it cannot contribute to the Hamming distance 
from C or to any other point. We can write . 4 5 X DF and obtain the 
following contribution to the distance matrix: 
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responding I 's are added to the distance matrix, we obtain the matrix of 
our example. We see, therefore, t h a t we can think of the distance matrix 
for our example as generated by the sum of the products ACE X BDF, 
ACF X BDE, ABXDF,AXC,DX E. Notice t ha t in each product we 
assign a 0 t o each element of one multiplier, a 1 t o each element of the 
other, and a d to any possible multiplier which does not occur. Which set 
you make 0 and which set you make 1 does no t mat ter . If we carry this 
out we obtain the coordinates for A through F given previously. 

The same mathematics works in general. Take the system of loops for 
which we wish to ñnd an addressing scheme, and find the abstract graph 
in which each loop represents a vertex and two vertices are connected if 
and only if the loops touch. Now write down the (symmetric) distance 
matrix for this graph. If the vertices of the graph are A,, A, , · · · , A,, 
and the Hamming distance between A, and A, is d,,, then we may take 
d,i copies oí Ai X Aj and then sum over all i and The contribution to 
the address of each At will be d,, coordinates 1 to A, , 0 to A,, and d to all 
other vertices. Therefore, the total contribution to the distance matrix 
will be d,, in the (i, j) position, and 0 everywhere else. Thus , the re­
sulting complete set of coordinates for the A» will consist of O's, I 's, 
and d's calculated from each necessary copy of each A, X Α,· and will 
produce the desired distance matrix. 

This proves t ha t the addressing scheme is always possible, bu t we have 
used a ridiculously large number of coordinates, perhaps 

sn(n — 1) 
2 

where a is the largest point-to-point distance in the distance matrix. We 
can save a factor n/2 if we take 

A, X (A2 , A 3 , · · · , A,) 

-t- A. X (A, . , A, . , · • · , A,, .) -I- A, X (A, . , · · · , A, J -|- · · • 

where A, , , · · · A,j_ are all those vertices for which d,.,, ^ 2, A, , , · · · 
A„_ are all tho.se vertices for which d,,,, ^ 3, etc. We then repeat 
for Aj X ( A 3 , · · · A.) · · • , and so on up to d . - , , . copies of A._, X A , . 
This t ime we have a t most s(n — 1) products, and therefore have 
found a set of a t most s(n — 1) coordinates for the A, such t h a t loop 
addressing will work in the desired way. We have proved: 

Theorem 1: Given any system of η loops so that the maximum distance 
between any two loops is s, a system of addresses such that every minimal 
path between loops is obtained by switching to an adjacent loop if and only if 
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the Hamming distance to the destination is decreased by 1 can always he 
found. The length of each address can be taken to be no more than s(n — 1). 

Let us remark right away t ha t we believe the right answer to be 
(n — 1) rather than s(n — 1). We have no proof and we have no counter­
examples. We will, however, prove the following theorems in the sequel. 

Theorem 2: If the abstract graph of the loop system is the complete graph 
on η vertices, then addresses of length (n — 1) are best possible. 

Theorem 3: If the abstract graph af the loop system is a tree on η vertices, 
addresses of length (n — 1) are best possible. 

Theorem 4: / / the abstract graph of the loop system is a cycle of length n, 
then addresses of length n/2 are best possible if η is even, and addresses 
of length {n — 1) are best possible if η is odd. 

II . MATHEMATICAL DEVELOPMENT 

Let us summarize what we have proven so far. Let (da) be the distance 
matrix of the abstract graph G with vertices At. Let 

A r ( 0 ) 

Σ ( ^ . . . . · · · A,„J X ( A , . . . · • · A , . . J (1) 
a - l 

represent the graph G in the sense t h a t A, and A ¡ appear on opposite 
sides of products exactly d,, t imes. The number of coordinates which we 
must assign to each vertex of G is the minimum of N{G) over all de­
compositions t h a t satisfy the above conditions. 

The problem is equivalent to a problem in quadrat ic forms. Wri te 

Σ dijXiXi 

= Σ (̂ .... + • · · + ^....Jfe... + • · · + X,...,). (2) 
o - l 

Since d.i = 0, no single Xt can appear in both factors of any single 
product. The equivalence is immediate since either decomposition will 
immediately yield the other. Our problem then is to find the minimum 
number Ν for any given quadrat ic form whose coefficients da are the 
distance matrix of a graph. We shall prove the following lemma due to 
H. S. Witsenhausen. 

Lemma 1: Let n+, n_ he respectively the number of strictly positive and 
strictly negative eignevalues of the distance matrix (d, ,) . Then 

Ν ^ max (n+ , n_) . 
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Prooj: Let Q(x„ · · · , Xn) denote the quadrat ic form ^ I S . S Í S » daXiXj. 

As we have seen, the existence of a length k addressing of G is equivalent 
t o the existence of a decomposition of Q into the sum of k products of the 
form (z,. + • · • + Xi,Kxi, + · · · + X i . ) . Bu t we see t ha t 

Q = Σ (Χ'... + · · · + X<..r,.,)(Xi.., + · · · + Xi...,.,) 
o-l 

= 7 Σ + 
+ Xi...i., + Xi.., + · · · + Xi...i.y 

- (xi... + · • · +Xi..,,.> - Xi... - ••• - Xi.,.,.y\ 
so t h a t we have represented Q as a sum of k squares minus another sum of 
A; squares. However, it is an easy consequence of the theory of quadratic 
forms (cf. Ref. 2) t ha t for any representation of Q as a sum of ρ squares 
minus a sum of q squares, we must have 

ρ ^ index Q = n + , 

q ^ rank Q — index Q = n_ . 
Therefore, fc ^ max ( n + , n _ ) and the lemma is proved. For most simple 
examples equality seems to hold in the above lemma. However, most 
unfortunately, in general Ν ^ max ( n + , n _ ) . For the graph given in 
Fig. 7, we have n+ = 1, n - = 5, bu t a computer search of possible 
decompositions has shown iV = 6. 

Lemma 1 is strong enough to settle the best Ν in many cases. In 
preparation let us prove Lemma 2, due to E. N . Gilbert. 

Lemma 2: Ij the η X ti distance matrix (d,,) is cyclic (meaning d.y = 
a(j — i) mod n), then the eigenvcdues oj (d,,) are the valxies oj 

P(z) = Σ ο,ζ ' 

at each nth root oj unity. 

Fig. 7—^Graph for Lemma 1. 

Authorized licensed use limited to: Vilnius University. Downloaded on December 23,2022 at 16:20:29 UTC from IEEE Xplore.  Restrictions apply. 



2508 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1971 

Proof of Lemma 2: Let the cycHc matrix Μ be 

Oo Ol · · · α„-ι 

Μ α„-ι ο„ 

Οι θ2 

If we t r y an eigenvector of the form 

1 

0.-2 

Oo 

then 
1 ^ Oo + 0,Z + · · • + α ._ ,2- ' 

ζ = 0„_i + OoZ + · • + 0„.2Z"-

.z'-\ . O, + OjZ + · • + OoZ"-' . 

Μ 

If ζ" = 1, then the lat ter matr ix equals 

(Oo + OiZ + • · · + α._,2-') 

1 

ζ 

U"-
Thus the values of Oo + Oiz + · · · + o , _ i z " " ' if z" = 1 are eigenvalues of 
the matrix Af. Since they are η in number, and since Μ has only η 
eigenvalues, they are all the eigenvalues of M. 

Theorems 2, 3, and 4 may now be proved by using these lemmas. Let 
us prove a s ta tement equivalent to : 

Theorem 2: If Gis the complete graph* on η vertices, then N{G) = η — 1. 

Proof: For this graph, d,,- = 1, 1 ^ t < j ^ n. The corresponding 
quadrat ic form is 

lS«ISn 
XiXi 

* i.e., any two vertices of G are joined by an edge. 
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which is equal to 

X .r.(.c,^, + · · · + Xn). 

Hence N{G) g η — 1. To obtain an inequality in the opposite direction, 
we examine the eigenvalues of the (rf,,) matrix. By Lemma 2, they are 
the values of 

F(z) = z + z' + ••• + 2 - ' 

when z'=l. Bu t P(z) = [z(z"''-l)/(z-l)], so t h a t if z'=l and z ^ l , 
P(.z) = - 1 . If ζ = 1, P(z) = (n - 1). H e n e e n . = 1, n_ = (n - 1), and, 
by Lemma 1, Ν(6) ^ η - L Hence N(G) = η - 1. 

Theorem 3: If the graph G is a tree* ivith η vertices, then N(fl) = η — 1. 

Proof: We first examine the distance matrix D , for a tree with η vertices. 
Consider a terminal vertex t',, i.e., a vertex which is distance 1 from 
just one other vertex, say υ,. By a suitable relabeling we can assume i = η 
and i = η — Thus , rf.t = 1 + d,- , . i for 1 g fc g η — L Hence, 
the matrix D, has the form 

0 

rf,2 

d,2 

0 d j n - l 

0 

1 

1 + 

1 + ¿2» - . 

1 

0 

We wish to evaluate the determinant det (D,) of Z)„ . Certainly we 
can subtract column ?i — 1 from column η and row )i — 1 from row η 
of D„ without changing det (Z)„). This leaves us with a matrix D„ 
with the form 

D' = 

0 

1 

rf,n-. 

1 

1 

1 

1 

- 2 j 

• i.e., G is coiuieoted and ha.« ,ui cycles. 
• We have chosen j = η - 1 to .simplify the exposition of the first part of the 

proof. Ill fad , any j , 1 S j S π - 1, is acceptable. This generality is required later 
in the proof. 
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But , we now imagine removing the vertex v, from G, forming a tree 
Gn-i with η — 1 vertices. The interpoint distances in G, are given 
exactly by the upper-left (n — l)-by-(n — 1) submatrix of DJ . As 
before, we can suitably relabel the vertices of so t h a t is a 
terminal vertex adjacent only to v .-a . The correspondmg rearranged 
matrix D',' now has the form 

0 

1 + d . , -2 

1 

d.2 

0 

dln-2 1 + d u - 2 

¿ 2 . - 2 1 + ¿ 2 . - 2 

0 

1 

1 

0 

1 

By subtract ing column η — 2 from colunm η 
row η — 1 we obtain 

— 1 and row η — 2 from 

0 ¿ 1 2 1 1 

d,2 0 d2«-2 1 1 

dln-l ¿211-2 • 0 1 1 

1 1 1 - 2 0 

1 1 1 0 - 2 . 

I t is not difficult to see t ha t this process can be continued imtil we 
reach the matrix 

D: = 

0 1 1 1 · · 1 1 

1 - 2 0 0 · · 0 0 

1 0 - 2 0 · · 0 0 

1 0 0 - 2 • · 0 0 

1 0 0 0 ·• • - 2 0 

1 0 0 0 · · 0 - 2 . 

The first (surprising) conclusion we draw is t ha t de t (D.) depends 
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only on the number of vertices η and not on the structure of the tree G. 
B y expanding de t (D*) along the last column i t is easy to get the 
recurrence 

D . = ( - ΐ Γ ' 2 " - ' - 2D„_. , Z), = 0, D,= - l 

from which it follows t ha t 

D, = ( - ir ' (n - l ) 2 " - ^ η ^ 1. 

We next note t h a t if we relabel the vertices of G, according to the 
relabeling used to get the matrix D*, in the corresponding distance 
matrix D, (which is a permutat ion of the original distance matrix Z),) 
the upper left-hand k-hy-k submatrix D j of D, is just the distance 
matr ix for some k vertex subtree of G. Hence, 

det (Dl) = ( - l ) ' - ' ( f c - 1)2*-*, k ^ l . 

Finally, t he sequence of determinants 

1, det (D[), det (D¡), · · · , det (D.) (3) 

is just 

1, 0, - 1 , 4, - 1 2 , 32, • · , ( - l ) " - ( n - 1)2""'. 

Hence, the number of permanences of sign of this sequence (where 0 
is fixed as either positive or negative) is just one! By a theorem in 
matr ix theory (cf. Ref. 2), the number of permanences in sign of the 
sequence (3) is exactly the number of positive eigenvalues of D . which 
we have seen is just one. Since D,_^ nonsingular for η ^ 1, then D , 
has no zero eigenvalues and hence, Ö . must have η — 1 negative eigen­
values. Therefore D, also has Η — 1 negative eigenvalues and by 
Lemma 1, N{G) ^ η - 1. 

The construction which gives N(G) g η — 1 has an easy recursive 
definition: Each t ime we choose the next vertex v, in the tree to assign an 
address to ,* make sure t h a t it is adjacent to a vertex Vj which is already 
addressed, and let A (v.) A (w,) 1 and A (vt) —»A (υ») 0 for the previously 
addressed vertices (i.e., 1 and 0 are adjoined to the previous addressee). 
Thus , after all vertices have been addressed, all addresses will have 
length η — 1 and, in fact, no d's are used. Therefore, N(G) = η — 1 
and the theorem is proved. 

Theorem 4: If G is a cycle on η vertices, then N(G) = n/S if η is even and 
(n — 1) if η is odd. 

* Where we assign 0 to the first vertex and 1 to the second vertex. 
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A, = (0 · · · 0, 1 · · · 1) if wi + 2 á s g 2m. 

t-M-l 2Μ-Α4-1 Clearly d., = min {\i — j \ , 2m — \i — j\) is the number of places in which 
Ai and A^ differ, and is the correct distance on a cycle. Hence iV(u) ^ m. 
On the other hand, d,,„+, = m, and hence A, and A„+i mus t differ in 
exactly m coordinates. Therefore there must be a t least m coordinates, 
and hence N{G) ^ m. Thus N{G) = m. 

If η = 2m + 1, consider the following addresses: 

2m 

m m 

Ao —000· -OO -OOO 

A, — d O O - 0 0 - 0 0 1 

A J — d d O - O O - O U 

A . —ddd-dl-\n 
Α . , — I d d - d l - Ι Ι Ο 

A . + , — d l d - d l - l O O 

A . . 3 — d d l - d l - O O O 

Aj„ — d d d - - 1 0 · - O O O 

We see tha t : 

(i) if 0 g ζ ^ i g m, di, = J - i; 
(it) if m < t g ί g 2m, di, = ; - i; 

(iii) if 0 ^ i ^ m and ; = m + β where s > 0, then consider sepa­
rately i > 8 and i ^ s. If t > s then the first m coordinates 
contribute 0 and the second m contribute j — i. If t ^ β the 

Proof: If η = 2m, then the vertices A, , · · · At„ can be coordinatized as 
follows: 
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P(Zk) = 2 Σ J «"»äl + i · * = 0. 1. 2, · · · > 2m. 

then 

g{x) = I 1ΓΧ 
sm 

Therefore 

2m + 1 

rx . 1 —ñ—+ sin irx sin - . + r — V T COS T Z C O S - - " " I , 
, , > _ π 2m + 1 2m + 1 2m + 1 2m + 1 

^^'^' - 2 . 2 πχ 
2 ; ; Γ Τ Τ 

is τ/{2m + 1) t imes the desired series if χ is 1,2, · · · 2m. B u t g'{x) < 0 a t 
all of these points. Hence n + = 1, n . = 2m, and N{G) έ 2m by Lemma 1. 
The theorem is proved. 

III. ADDRESSES OF MINIMUM LENGTH 

We describe an algorithm which is guaranteed to produce a valid 
addressing for any graph G. This algorithm has always succeeded in 
finding an addressing of length g w — 1 for every graph G on η vertices 
to which it has been applied. However, no proof tha t this \vill always 
happen is currently known. 

The algorithm proceeds as follows: 

first m coordinates contribute 1 and the second m contribute 
t + 2wi — j , so t h a t together they give 2m + 1 — ; + i which 
is the correct cycHc distance. 

We thus know t h a t N{G) g 2m. 
To prove N(G) ^ 2m, we use Lemmas 1 and 2. 

P(z) = 2 + 2z' + · · · + m i - + mz"*' + (m - 1)2"** · · · + 2*", 

and we consider ζ such t h a t 2 ' " * ' = 1. 
If Zt = exp (2TÍk/2m + 1) , then 

2JTfc 

i - l ^ 

P ( l ) > 0; we shall prove P(zt) < 0 for all other fc. We find t h a t if we 
define 
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(i) Number the η vertices of G with integers {1, 2, · · • , n} eo that for 
k > 1, the vertex numbered k is adjacent to some vertex with a smaller 
number. Since G is connected, this is always possible. Let v{k) denote the 
vertex to which k has been assigned. 

(«•) Assign the (partial) addresses of 0 to υ(1) and 1 to υ(2). 
(ΜΪ ) I n general, suppose we have assigned (partial) addresses to 

t;(l), t>(2), • · • , v{k), say, A{i) has been assigned to Ü ( í ) , SO t h a t d., = 
d„(A{i), Aij)), 1 ^ i < j ^ k, where d« denotes the Hamming distance 
and dii denotes the distance between v{i) and v(j) in G. We next search 
for an address A (λ; + l)(of the same length as the i4(i)) with the property 
t h a t max i í . í t (d,,t+, — d„{A({), A{k + 1))) = m^+i is as small as 
possible under the constraint 

min (d, , . . , - d„(A(t) , A(k + 1))) ^ 0. (•) 
I i i s * 

Of course, we can always find some address which satisfies (*), namely 
the all d's address. Typically we can choose A(fc + 1) so t ha t ίη»+, = 1. 
In fact, it is usually possible to do this by choosing A (A; + 1) t o be a 
slightly perturbed copy of some A(l) where v{l) is adjacent to vik + 1). 
This is intuitively reasonable since in this case |d..t+i — d , . i | ^ 1. 

After A (fc + 1) has been chosen, we then adjoin m^+t symbols to each 
of the partial addresses A (t), 1 g i ^ + 1, as follows. To A(fc -|- 1) we 
adjoin I 's . T o A( i) we adjoin 7η»+, — (d,,*.! — dniAii), A(k + 1))) 
d's and d,.t+i — dtf(A(t), A(k + 1)) O's. I t is easy to check t h a t for the 
new augmented addresses A'(t), 1 ^ t ^ A; + 1, we have 

d,., = d„(A'(i), A 'O)) , I ^ i < j ^ k + I. 

We continue in this manner until the addressing is completed. B y 
construction, the terminal addresses will form a valid addressing for G of 
length 1 + nia + · · · + m,. 

As an example, we construct an addressing for the graph in Section I 
by this process. In Fig. 8 we show this graph with a particular "adjacent-
numbering" chosen and also the distance matrix for the graph. 
We s ta r t with 

vertex address 

1—0 
2—1 

Adjoining vertex 3, we see t ha t any partial address of length one will 
give TOa = 1. We choose 0. 
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0 1 1 2 3 2 

1 0 1 2 2 

1 1 0 t 2 2 

2 2 1 0 1 2 

3 2 2 1 0 1 

2 1 2 2 1 0 

D = ( d i j ) 

Fig. 8—Addressing example. 

vertex address 

1—0 
2—1 
3 - 0 

We next adjoin ma 
cordingly. 

1 I 's to A (3) and augment A ( l ) and A(2) ac-

vertex address 

1—00 
2—Id 
3—01 

Now adjoin vertex 4, choose partial address 01 , calculate t ha t 
and augment the partial addresses accordingly. 

vertex address 

1 - 0 0 0 
2—IdO 
3—010 
4—011 

Continue this for two more steps. Each t ime τη» = 1. 

1, 

vertex address 

1—0000 
2—ldOd 
3—0100 
4—0110 
5—0111 

vertex address 

1—OOOOd 
2—IdOdd 
3—OlOOd 
4—01100 
5—01 l i d 
6 — i d l d l 
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The last array gives a length 5 addressing for G. Of course, different 
partial addresses or a different initial vertex numbering will result in 
different addressings for G. 

As we have previously stated, we have no general proof t h a t 
N{G) g Ji — 1 in all cases although a number of partial results in t ha t 
direction have been given as well as a heuristic construction. 

IV. ADDRESSING IN RESTRICTED LOOP SYSTEMS 

The addressing scheme we have been describing has the very great 
power of being able to handle an arbitrary configuration of loops, and to 
provide alternate routing in an optimal way without any supervisory 
memory. The price we have paid for this generality is in the length of the 
address—typically η — 1 " b i t s " for η loops in the simplest encoding— 
and in possible complications under system growth. I t is clear t h a t if a 
new loop is added which greatly shortens the distance between many 
pairs of loops, then many addresses may change a good deal. There 
would be various ways of handling this, bu t it is obviously a problem. 
I t arises essentially because the numbering in its full generality is not 
hierarchical. 

Typical Bell System loop configurations, as we noted in the intro­
duction, will not be arbitrary collections of loops, bu t \\\\\ have a 
hierarchical s tructure. 

By correspondingly restricting the allowable adjacency graphs G, it is 
possible to modify the routing algorithm and effectively take advantage 
of a natura l "produc t" construction, as pointed out by J. R. Pierce. ' I n 
this system, as we saw, loops are partitioned into three classes—national, 
regional, and local. The address portion of the message is subdivided 
into three corresponding portions. The routing algorithm now consists of 
three steps: (t) First apply the previous Hamming distance algorithm 
to the "nat ional" portions of the sending and the destination addresses; 
(n) When the distance in i becomes zero, then apply the Hamming 
distance algorithm to the "regional" portions of the addresses; ( m ) 
Finally, when the distance in ii is zero, apply the Hamming distance 
algorithm to the "local" portions of the address. 

This scheme combines the eflBciency of the Hamming distance al­
gorithm with the savings in address lengths resulting from the hierar­
chical s tructure. As an example, the network in Fig. 9 has 44 local 
vertices. For a direct Hamming algorithm addressing we should expect 
addresses to have length of around 59. By distinguishing national, 
regional, and local loops (capital letters, lower case letters, and integers 
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Fig. 9—Net work example. 

respectively), with a small additional computed cost in routing (several 
extra conditional transfers) we can have addresses of length a l l . 
For example, let N, R, L denote national, regional, local, respectively. 
One possible addressing begins: 

£ _R_ 

.4—(00, 000 — ) 

A—(01, 000, — ) 

C—(10, 000, — ) 

¿ ) - ( l l , 0 0 0 , — ) 

α—(00, 001,000) 

ί)—(00, 010, 000) 

c—(00, IrfO, 000) 

rf—(01, 001, 000) 
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1—(01,001,001) 

2—(01, 001, 010) 

3—(01 ,001 , IdO) 

44—(11, 000, 001) 

Moreover, to add additional local stations to a regional station it is a 
very simple mat te r to modify just the neighboring local addresses to 
obtain a correct addressing for the augmented network. 

The restriction on local loops in the above addressing is tha t each one 
must interchange directly with one and only one regional loop. If a local 
loop meets no regional loop directly, bu t only other local loops, then the 
addressing must make special provision for routing calls to other regions 
properly. If a local loop meets more than one regional loop—really a 
violation of the hierarchical concept—then routing becomes more 
difficult, and must assure tha t a call to a different region exits the local 
loop properly. As J. R. Pierce has pointed out , ' a special t runk loop 
connecting a local loop in one region to a local loop in another (i.e., a 
preferred alternate route in a special case to the national loop) is no 
problem. The exit from the local loop is just before the regional inter­
change, and the entrance to the local loop just after. Exit is made only if 
the total loop address matches exactly. Alternate routes more generally 
are perhaps most easily provided by duplicating portions of regional or 
natural loops. 

v. SOME VARIANTS OF THE ADDRESSING PROBLEM 

The purpose of this section is to record very briefly some other 
alternatives tha t have been considered. 

(i) We have required tha t in every alternate route between the loops, 
Hamming distance decrease by exactly 1 at each transfer. One could 
consider the alternate problem in which any exit which decreases 
Hamming distance is valid—even if it decreases it by more than 1. Under 
special conditions, this can lead to shorter addresses, but we do not 
have a solution for this al ternate problem. 

(ii) Since the introduction of d's causes some complication of the 
address codes, it is interesting to consider the possibility of getting rid of 
them. They arose originally because of the need for odd cycles, as in the 
case of a 3-cycle. One way out of this example would be to double all the 
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distances. If these vertices were located a t 000,110, and 101 respectively, 
the Hamming distance between any pair is two, and correct routing 
would be possible without any d's in the addresses. 

Unfortunately, this technique of doubling all the distances to get rid 
of d's does not generalize. Consider the graph in Fig. 10a. We double all 

Fig. 10—Graphs to illustrate one variant of the addressing problem. 

distances, so tha t AB = AC = AD BC = BD = 2, CD = 4. Then 
Α = 0 0 · · , Β = 11···, where the coordinates are identical from the 
third onward. Now C must differ from each of A and Β by 2. I t therefore 
must differ in one of the first two columns, and in one other, say the 
third. Thus , we may assume A = 000 · · · , J5 = 110 · · , C = 101 · · · , 
where the coordinates are identical from the fourth onward. D must also 
differ in exactly two places from A and Β and in four places from C. 
Hence A = 0000 · · · , 5 = 1100 · · · , C = 1010 · · · , Ö = 0101 · · . 

So far so good. If we now require yet another point Ε (Fig. 10b) such 
t h a t EA = EB = 2, EC = ED = 4, we have no possible coordinates for 
Ε left. E's address must begin with 01 or 10 in order to differ from A 
and Β by equal amounts , say with 10. To differ from C and D by equal 
amoimts the first four coordinates must be 1001. Bu t it now differs 
from A and ß b y 2 and from C and D by 2; no additional coordinates can 
make EC = ED = 4 without destroying EA = EB = 2. Thus doubling 
distances will not get rid of d's. ' 

Similar arguments show tha t even if we are allowed to multiply all 
distances by a fixed number m > 2, we still cannot get along without d's. 
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