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Abstract

A bipartite covering of order k of the complete graph Kn on n vertices is a collection

of complete bipartite graphs so that every edge of Kn lies in at least 1 and at most

k of them. It is shown that the minimum possible number of subgraphs in such a

collection is Θ(kn1/k). This extends a result of Graham and Pollak, answers a question

of Felzenbaum and Perles, and has some geometric consequences. The proofs combine

combinatorial techniques with some simple linear algebraic tools.

1 Introduction

Paul Erdős taught us that various extremal problems in Combinatorial Geometry are best

studied by formulating them as problems in Graph Theory. The celebrated Erdős de Bruijn

theorem [3] that asserts that n non-collinear points in the plane determine at least n distinct

lines is one of the early examples of this phenomenon. An even earlier example appears in

[4] and many additional ones can be found in the surveys [5] and [12]. In the present note

we consider another example of an extremal geometric problem which is closely related to a

graph theoretic one. Following the Erdős tradition we study the graph theoretic problem in

order to deduce the geometric consequences.
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A finite family C of d-dimensional convex polytopes is called k-neighborly if d − k ≤
dim(C ∩C ′) ≤ d− 1 for every two distinct members C and C ′ of the family. In particular, a

1-neighborly family is simply called neighborly. In this case the dimension of the intersection

of each two distinct members of the family is precisely d− 1. Neighborly families have been

studied by various researchers, see, e.g., [10], [14], [15], [16], [17]. In particular it is known

that the maximum possible cardinality of a neighborly family of d-simplices is at least 2d

([16]) and at most 2d+1 ([14]). The maximum possible cardinality of a neighborly family of

standard boxes in Rd, that is, a neighborly family of d-dimensional boxes with edges parallel

to the coordinate axes, is precisely d+1. This has been proved by Zaks [17], by reducing the

problem to a theorem of Graham and Pollak [8] about bipartite decompositions of complete

graphs. In the present note we consider the more general problem of k-neighborly families of

standard boxes. The following result determines the asymptotic behaviour of the maximum

possible cardinality of such a family.

Theorem 1.1 For 1 ≤ k ≤ d, let n(k, d) denote the maximum possible cardinality of a

k-neighborly family of standard boxes in Rd. Then

(i) d+ 1 = n(1, d) ≤ n(2, d) ≤ · · · ≤ n(d− 1, d) ≤ n(d, d) = 2d.

(ii) (
d

k
)k ≤

k−1∏
i=0

(bd+ i

k
c+ 1) ≤ n(k, d) ≤

k∑
i=0

2i
(
d

i

)
< 2(

2ed

k
)k.

This answers a question of Felzenbaum and Perles [6], who asked if for fixed k, n(k, d) is a

nonlinear function of d.

As in the special case k = 1, the function n(k, d) can be formulated in terms of bipartite

coverings of complete graphs. A bipartite covering of a graph G is a family of complete

bipartite subgraphs of G so that every edge of G belongs to at least one such subgraph.

The covering is of order k if every edge lies in at most k such subgraphs. The size of the

covering is the number of bipartite subgraphs in it. The following simple statement provides

an equivalent formulation of the function n(k, d).

Proposition 1.2 For 1 ≤ k ≤ d, n(k, d) is precisely the maximum number of vertices of a

complete graph that admits a bipartite covering of order k and size d.
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The rest of this note is organized as follows. In Section 2 we present the simple proof of

Proposition 1.2. The main result, Theorem 1.1, is proved in Section 3. Section 4 contains

some possible extensions and open problems.

2 Neighborly families and bipartite coverings

There is a simple one to one correspondence between k-neighborly families of n standard

boxes in Rd and bipartite coverings of order k and size d of the complete graph Kn. To see

this correspondence, consider a k-neighborly family C = {C1, . . . , Cn} of n standard boxes in

Rd. Since any two boxes have a nonempty intersection, there is a point in the intersection of

all the boxes (by the trivial, one dimensional case of Helly’s Theorem, say). By shifting the

boxes we may assume that this point is the origin O. If n ≥ 2, O must lie in the boundary of

each box, since it belongs to all boxes, and the dimension of the intersection of each pair of

boxes is strictly smaller than d. Put V = {1, 2, . . . , n}. For each coordinate xi, 1 ≤ i ≤ d, let

Hi be the complete bipartite graph on V whose sets of vertices are V +
i = {j : Cj is contained

in the half space xi ≥ 0}, and V −i = {j : Cj is contained in the half space xi ≤ 0}. It is not

difficult to see that if the dimension of Cp ∩ Cq is d − r, then the edge pq of the complete

graph on V lies in exactly r of the subgraphs Hi. Therefore, the graphs Hi form a bipartite

covering of order k and size d.

Moreover, the above correspondence is invertible; given a bipartite covering of the com-

plete graph on V = {1, 2, . . . , n} by complete bipartite subgraphs H1, . . . , Hd one can define

a family of n standard boxes as follows. Let V +
i and V −i denote the two color classes of Hi.

For each j, 1 ≤ j ≤ n, let Cj be the box defined by the intersection of the unit cube [−1, 1]d

with the half spaces xi ≥ 0 for all i for which j ∈ V +
i and the half spaces xi ≤ 0 for all i for

which j ∈ V −i . If the given covering is of order k, the family of standard boxes obtained is

k-neighborly.

The correspondence above clearly implies the assertion of Proposition 1.2, and enables

us to study, in the next section, bipartite coverings, in order to prove Theorem 1.1.

3



3 Economical bipartite coverings

In this section we prove Theorem 1.1. In view of Proposition 1.2 we prove it for the function

n(k, d) that denotes the maximum number of vertices of a complete graph that admits a

bipartite covering of order k and size d.

Part (i) of the theorem is essentially known. The fact that n(1, d) = d+ 1 is a Theorem

of Graham and Pollak [8], [9]. See also [7], [11], [18], [13], [1] and [2] for various simple proofs

and extensions. The statement that for every fixed d, n(k, d) is a non-decreasing function of

k is obvious and the claim that n(d, d) = 2d is very simple. Indeed, the chromatic number

of any graph that can be covered by d bipartite subgraphs is at most 2d, implying that

n(d, d) ≤ 2d. To see the lower bound, let V be a set of 2d vertices denoted by all the binary

vectors ε = (ε1, . . . , εd), and let Hi be the complete bipartite graph whose classes of vertices

are all the vertices labelled by vectors with εi = 0 and all the vertices labelled by vectors

with εi = 0. Trivially H1, . . . , Hd form a bipartite covering (of order d and size d) of the

complete graph on V , showing that n(d, d) = 2d, as claimed.

The lower bound in part (ii) of the theorem is proved by a construction, as follows. For

each i, 0 ≤ i ≤ k − 1, define di = b(d + i)/kc and Di = {1, 2, . . . , di, di + 1}. Observe that∑k−1
r=0 dr = d. Let V denote the set of vectors of length k defined as follows

V = { (ε0, ε1, . . . , εk−1) : εi ∈ Di }.

For each r, 0 ≤ r ≤ k − 1, and each j, 1 ≤ j ≤ dr, let Hr,j denote the complete bipartite

graph on the classes of vertices

Ar,j = { (ε0, ε1, . . . , εk−1) : εr = j }

and

Br,j = { (ε0, ε1, . . . , εk−1) : εr ≥ j + 1 }.

Altogether there are
∑k−1
r=0 dr = d bipartite subgraphs Hr,j. It is not too difficult to see

that they form a bipartite covering of the complete graph on V . In fact, if (ε0, . . . , εk−1)

and (ε′0, . . . , ε
′
k−1) are two distinct members of V , and they differ in s coordinates, then the

edge joining them lies in precisely s of the bipartite graphs. Since 1 ≤ s ≤ k for each such
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two members, the above covering is of order k, implying the lower bound in part (ii) of the

theorem.

The upper bound in part (ii) is proved by a simple algebraic argument. Let H1, . . . , Hd

be a bipartite covering of order k and size d of the complete graph on the set of vertices

N = {1, 2, . . . , n}. Let Ai and Bi denote the two vertex classes of Hi. For each i ∈ N , define

a polynomial Pi = Pi(x1, . . . , xd, y1, . . . yd) as follows:

Pi =
k∏
j=1

(
∑

p: i∈Ap
xp +

∑
q: i∈Bq

yq − j).

For each i ∈ N let ei = (bi1, . . . , bid, ai1, . . . , aid) be the zero-one vector in which aip = 1 if

i ∈ Ap (and aip = 0 otherwise), and, similarly, biq = 1 if i ∈ Bq (and biq = 0 otherwise). The

crucial point is the fact that

Pi(ej) = 0 for all i 6= j and Pi(ei) 6= 0. (1)

This holds as the value of the sum

∑
p: i∈Ap

xp +
∑

q: i∈Bq
yq

for xp = bjp and yq = ajq is precisely the number of bipartite subgraphs in our collection in

which i and j lie in distinct color classes. This number is 0 for i = j and is between 1 and k

for all i 6= j, implying the validity of (1).

Let P i = P i(x1, . . . , xd, y1, . . . , yd) be the multilinear polynomial obtained from the stan-

dard representation of Pi as a sum of monomials by replacing each monomial of the form

c
∏
s∈S x

δs
s

∏
t∈T y

γt
t , where all the δs and γt are positive, by the monomial c

∏
s∈S xs

∏
t∈T yt.

Observe that when all the variables xp, yq attain 0, 1-values, Pi(x1, . . . , yd) = P i(x1, . . . , yd),

since for any positive δ, 0δ = 0 and 1δ = 1. Therefore, by (1),

P i(ej) = 0 for all i 6= j and P i(ei) 6= 0. (2)

By the above equation, the polynomials P i (i ∈ N) are linearly independent. To see this,

suppose this is false, and let ∑
i∈N

ciPi(x1, . . . , yd) = 0,
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be a nontrivial linear dependence between them. Then there is an i′ ∈ N so that ci′ 6= 0. By

substituting (x1, . . . , yd) = ei′ we conclude, by (2), that ci′ = 0, contradiction. Thus these

polynomials are indeed linearly independent. Each polynomial P i is a multilinear polynomial

of degree at most k. Moreover, by their definition they do not contain any monomials that

contain both xi and yi for the same i. It thus follows that all the polynomials P i are in the

space generated by all the monomials
∏
s∈S xs

∏
t∈T yt, where S and T range over all subsets

of N satisfying |S| + |T | ≤ k and S ∩ T = ∅. Since there are m =
∑k
i=0 2i

(
d
i

)
such pairs

S, T , this is the dimension of the space considered, and as the polynomials P i are n linearly

independent members of this space it follows that n ≤ m. This completes the proof of part

(ii) and hence the proof of Theorem 1.1. 2

4 Concluding remarks and open problems

The proof of the upper bound for the function n(k, d) described above can be easily extended

to the following more general problem. Let K be an arbitrary subset of cardinality k of the

set {1, 2, . . . , d}. A bipartite covering H1, . . . , Hd of size d of the complete graph Kn on n

vertices is called a covering of type K if for every edge e of Kn, the number of subgraphs Hi

that contain e is a member of K. The proof described above can be easily modified to show

that the maximum n for which Kn admits a bipartite covering of type K and size d, where

|K| = k, is at most
∑k
i=0 2i

(
d
i

)
. There are several examples of sets K for which one can give a

bigger lower bound than the one given in Theorem 1.1 for the special case of K = {1, . . . , k}.
For example, for K = {2, 4}, there is a bipartite covering H1, . . . , Hd of type K of a complete

graph on n = 1 +
(
d
2

)
vertices. To see this, denote the vertices by all subsets of cardinality

0 or 2 of a fixed set D of d elements and define, for each i ∈ D, a complete bipartite graph

whose classes of vertices are all subsets that contain i and all subsets that do not contain i.

Similar examples exists for types K of bigger cardinality.

One can consider bipartite coverings of prescribed type of other graphs besides the com-

plete graph, and the algebraic approach described above can be used to supply lower bounds

for the minimum possible number of bipartite subgraphs in such a cover, as a function of

the rank of the adjacency matrix of the graph (and the type).
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The main problem that remains open is, of course, that of determining precisely the

function n(k, d) for all k and d. Even the precise determination of n(2, d) seems difficult.
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