Efficient Data Structures from Union-Free Families of Sets

Ronald de Wolf*

March 12, 2012

$1 r$-Union-free families of sets

We generalize the definition of an r-union-free family \mathcal{F} given in the book [Juk11, Section 8.6] to the case where no set in \mathcal{F} intersects much with the union of r other sets from \mathcal{F} :

Definition 1. Let \mathcal{F} be a family of sets over the universe $[n], r \geq 1$ an integer, and $\varepsilon \in(0,1]$. The family is called (r, ε)-union-free if for all distinct $A_{0}, A_{1}, \ldots, A_{r} \in \mathcal{F}$ we have

$$
\begin{equation*}
\left|A_{0} \cap\left(\cup_{i=1}^{r} A_{i}\right)\right|<\varepsilon\left|A_{0}\right| . \tag{1}
\end{equation*}
$$

The family is called r-union-free if it is $(r, 1)$-union-free (such families are also often called r-cover-free).
Note that a 1-union-free family is just an antichain, due to the strict inequality in Eq. (1).
How big can \mathcal{F} be, as a function of r, n, and ε ? For the case of r-union-free families (so where $\varepsilon=1$), [Juk11, Theorem 8.13] proves an upper bound of $|\mathcal{F}| \leq 2^{O\left(n \log (r) / r^{2}\right)}$. Surprisingly, this upper bound is almost achievable, even if we set ε to some constant less than 1: in Section 3 we give an existence proof of an (r, ε)-union-free family of size $|\mathcal{F}| \geq 2^{\Omega\left(n \varepsilon^{2} / r^{2}\right)}$.

2 Efficiently storing sparse sets

Consider the following data structure problem. We are given a set S which is a subset of some universe $[U]$, and we would like to store S in a way that is both space-efficient, and that allows us to efficiently answer "membership queries", i.e., decide if a given $j \in[U]$ is an element of S or not. One solution is just to store the characteristic vector of S using U bits. So our encoding of S would be some string $E(S) \in\{0,1\}^{U}$. In this case, we can answer a membership query perfectly just by looking at the j th bit of $E(S)$ (looking at a bit of the data structure is called a "bitprobe"). In general, if we don't know anything more about S, then this is the best we can do.

However, suppose we know that S is "sparse", i.e., its size $|S|$ is at most some r that is much smaller than the universe size U. In this case, using U bits to store it would be wasteful: we could just write down its elements in $r \log U \ll U$ bits, which is essentially optimal. ${ }^{1}$ Unfortunately with such an encoding it's not clear that we can still decide membership in S efficiently, with only one bitprobe. Using an (r, ε)-unionfree family one can construct an encoding that takes somewhat more space ($r^{2} \log U$ instead of $r \log U$

[^0]bits), and that allows us to answer membership queries with success probability $1-\varepsilon$ using only one bitprobe [BMRV02].

So fix some allowed error probability ε and positive integer r, and take an (r, ε)-union-free family $|\mathcal{F}|=\left\{A_{1}, \ldots, A_{U}\right\}$ over a universe $[n]$. By the result of Section 3, we can take $n=O\left(r^{2} \log U\right) .{ }^{2}$ Here's the data structure that we use: each $S \subseteq[U]$ is encoded as an n-bit string $E(S)$ as follows

Encoding: Let $E(S) \in\{0,1\}^{n}$ be the characteristic vector of the set $\cup_{i \in S} A_{i}$
Here's how we can answer a membership query about a given element $j \in[U]$ with 1 bitprobe:
Query-answering: Pick a uniformly random $k \in A_{j}$, and read and output the k th bit of $E(S)$.
Let's see how well this performs. First, if $j \in S$ then $A_{j} \subseteq \cup_{i \in S} A_{i}$ so all A_{j}-bits in $E(S)$ are set to 1 . Hence no matter which position $k \in A_{j}$ the algorithm probes, it will always output the correct answer in this case. Second, if $j \notin S$ then $E(S)$ is the characteristic vector of a set $\cup_{i \in S} A_{i}$ that has little intersection with A_{j} : by the (r, ε)-union-free property, only an ε-fraction of the $k \in A_{j}$ will lie in $\cup_{i \in S} A_{i}$. Hence the probability (over the choice of k) that $E(S)_{k}=1$ is at most ε. Accordingly, the algorithm will give the correct answer 0 with probability at least $1-\varepsilon$.

We have constructed a data structure of length $n=O\left(r^{2} \log U\right)$ bits that allows us to store r-subsets of the universe $[U]$ in such a way that we can answer membership queries using only one bitprobe. Note that the general upper bound $|\mathcal{F}| \leq 2^{O\left(n \log (r) / r^{2}\right)}$ mentioned above is equivalent $n=\Omega\left(\frac{r^{2} \log U}{\log r}\right)$. Hence this construction cannot be improved much just by plugging in a better \mathcal{F}.

The length of our data structure $n=O\left(r^{2} \log U\right)$ is still a factor r larger than the information-theoretically minimal length $O(r \log U)$. It is in fact possible to give a 1-bitprobe data structure with this minimal length [BMRV02], but now there will be an ε error probability in both cases (also if $j \in S$). That construction is based on expander graphs, and we won't explain it here.

$3 \operatorname{Good}(r, \varepsilon)$-union-free families exist

Error parameter $\varepsilon>0$, integer r, and family-size U are given. We use the probabilistic method to prove the existence of an (r, ε)-union-free family \mathcal{F} of U distinct sets over a universe of size $n=O\left(\frac{r^{2} \log U}{\varepsilon^{2}}\right)$.

Consider an integer a, whose value will be chosen later. Set $n=2 a r / \varepsilon$, rounded up to an integer. Let A be a random variable obtained by uniformly choosing a elements from $[n]$ (with repetition, so $|A|$ is at most a). Choose $|\mathcal{F}|=\left\{A_{1}, \ldots, A_{U}\right\}$ by choosing U independent copies of A. Fix distinct indices $i_{0}, i_{1}, \ldots, i_{r} \in[U]$. The "bad event" for this sequence of indices is

$$
(*)\left|A_{i_{0}} \cap\left(\cup_{j=1}^{r} A_{i_{j}}\right)\right| \geq \varepsilon\left|A_{i_{0}}\right|
$$

The set $B=\cup_{j=1}^{r} A_{i_{j}}$ has at most ar elements, hence the probability that a random element of $[n]$ lands in B is at most $a r / n=\varepsilon / 2$. The set $A_{i_{0}}$ consists of a such random elements, so we expect the overlap between $A_{i_{0}}$ and B to be at most $a \varepsilon / 2$. The bad event $(*)$ is that this overlap is at least twice as large as its expectation, hence by a Chernoff bound the probability of $(*)$ is $<2^{-c \varepsilon a}$ for some constant $c>0$. ${ }^{3}$ Choosing a the first integer greater than $\frac{\log \binom{U}{r+1}}{c \varepsilon}$ makes the probability of $(*)$ smaller than $1 /\binom{U}{r+1}$.

[^1]Since there are $\binom{U}{r+1}$ different such sequences of indices, the union bound now implies that with positive probability none of the $\binom{U}{r+1}$ bad events happens, and hence there exists a choice of \mathcal{F} which is (r, ε)-unionfree. Note that avoiding all bad events also implies that all A_{i} are distinct, so \mathcal{F} will have U distinct elements. The size of the required universe is $n=2 a r / \varepsilon=O\left(\frac{r^{2} \log U}{\varepsilon^{2}}\right)$. Equivalently, as a lower bound on $|\mathcal{F}|=U$ this can be written as $U \geq 2^{\Omega\left(n \varepsilon^{2} / r^{2}\right)}$.

References

[BMRV02] H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and S. Venkatesh. Are bitvectors optimal? SIAM Journal on Computing, 31(6):1723-1744, 2002. Earlier version in STOC'00.
[Juk11] S. Jukna. Extremal Combinatorics, with Applications in Computer Science. EATCS Series. Springer, second edition, 2011.

[^0]: ${ }^{*} \mathrm{CWI}$ and university of Amsterdam, rdewolf@cwi.nl
 ${ }^{1}$ Since we need at least $\binom{U}{r}$ different codewords, the length of the codewords has to be at least $\log \binom{U}{r} \geq r \log (U / r)$ bits.

[^1]: ${ }^{2}$ The dependence on the fixed ε disappears in the $O(\cdot)$ notation.
 ${ }^{3}$ You can get $c=1 / 6 \ln (2)$ by using the last bound on [Juk11, page 276] with $\mu=a \varepsilon / 2$ and $\delta=1$.

