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Proof. It is enough to show that |H \P | < 1
2 |H |. For every non-popular point

b ∈ Ai, we have that

|{a ∈ H : ai = b}| <
1

2k

|H |
|Ai|

.

Since the number of non-popular points in each set Ai does not exceed the
total number of points |Ai|, we obtain

|H \ P | ≤
k∑

i=1

∑

b6∈Pi

|{a ∈ H : ai = b}| <

k∑

i=1

∑

b6∈Pi

1

2k

|H |
|Ai|

≤
k∑

i=1

1

2k
|H | =

1

2
|H | . ⊓⊔

Corollary 2.15. In any 2α-dense 0-1 matrix H either a
√

α-fraction of its
rows or a

√
α-fraction of its columns (or both) are (α/2)-dense.

Proof. Let H be an m×n matrix. We can view H as a subset of the Cartesian
product [m] × [n], where (i, j) ∈ H iff the entry in the i-th row and j-th
column is 1. We are going to apply Lemma 2.14 with k = 2. We know that
|H | ≥ 2αmn. So, if P1 is the set of all rows with at least 1

4 |H |/|A1| = αn/2
ones, and P2 is the set of all columns with at least 1

4 |H |/|A2| = αm/2 ones,
then Lemma 2.14 implies that

|P1|
m

· |P2|
n

≥ 1

2

|H |
mn

≥ 1

2
· 2αmn

mn
= α .

Hence, either |P1|/m or |P2|/n must be at least
√

α, as claimed. ⊓⊔

2.6 The Lovász–Stein theorem

This theorem was used by Stein (1974) and Lovász (1975) in studying some
combinatorial covering problems. The advantage of this result is that it can
be used to get existence results for some combinatorial problems using con-
structive methods rather than probabilistic methods.

Given a family F of subsets of some finite set X , its cover number of F ,
Cov (F), is the minimum number of members of F whose union covers all
points (elements) of X .

Theorem 2.16. If each member of F has at most a elements, and each point
x ∈ X belongs to at least v of the sets in F , then

Cov (F) ≤ |F|
v

(1 + ln a) .
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Proof. Let N = |X |, M = |F| and consider the N ×M 0-1 matrix A = (ax,i),
where ax,i = 1 iff x ∈ X belongs to the i-th member of F . By our assumption,
each row of A has at least v ones and each column at most a ones. By double
counting, we have that Nv ≥ Ma, or equivalently,

M

v
≤ N

a
. (2.7)

Our goal is to show that then A must contain an N × K submatrix C with
no all-0 rows and such that

K ≤ N/a + (M/v) ln a ≤ (M/v)(1 + ln a) .

We describe a constructive procedure for producing the desired submatrix C.
Let Aa = A and define A′

a to be any maximal set of columns from Aa whose
supports† are pairwise disjoint and whose columns each have a ones. Let
Ka = |A′

a|. Discard from Aa the columns of A′
a and any row with a one in A′

a.
We are left with a ka × (M −Ka) matrix Aa−1, where ka = N −aKa. Clearly,
the columns of Aa−1 have at most a−1 ones (indeed, otherwise such a column
could be added to the previously discarded set, contradicting its maximality).
We continue by doing to Aa−1 what we did to Aa. That is we define A′

a−1 to be
any maximal set of columns from Aa−1 whose supports are pairwise disjoint
and whose columns each have a − 1 ones. Let Ka−1 = |A′

a−1|. Then discard
from Aa−1 the columns of A′

a−1 and any row with a one in A′
a−1 getting a

ka−1 × (M −Ka −Ka−1) matrix Aa−2, where ka−1 = N −aKa − (a−1)Ka−1.
The process will terminate after at most a steps (when we have a matrix

containing only zeros). The union of the columns of the discarded sets form
the desired submatrix C with K =

∑a
i=1 Ki. The first step of the algorithm

gives ka = N − aKa, which we rewrite, setting ka+1 = N , as

Ka =
ka+1 − ka

a
.

Analogously,

Ki =
ki+1 − ki

i
for i = 1, . . . , a.

Now we derive an upper bound for ki by counting the number of ones in Ai−1

in two ways: every row of Ai−1 contains at least v ones, and every column at
most i − 1 ones, thus

vki ≤ (i − 1)(M − Ka − · · · − Ki+1) ≤ (i − 1)M ,

or equivalently,

ki ≤ (i − 1)M

v
.

† The support of a vector is the set of its nonzero coordinates.
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So,

K =

a∑

i=1

Ki =

a∑

i=1

ki+1 − ki

i

=
ka+1

a
+

ka

a(a − 1)
+

ka−1

(a − 1)(a − 2)
+ · · · +

k2

2 · 1
− k1

≤ N

a
+

M

v

(
1

a
+

1

a − 1
+ · · · +

1

2

)
≤ N

a
+

M

v
ln a .

The last inequality here follows because 1 + 1/2 + 1/3 + · · · + 1/n is the n-th
harmonic number which is known to lie between ln n and ln n + 1. Together
with (2.7), this yields K ≤ (M/v)(1 + ln a), as desired. ⊓⊔

The advantage of this proof is that it can be turned into a simple greedy
algorithm which constructs the desired N × K submatrix A′ with column-set
C, |C| = K:

1. Set C := ∅ and A′ := A.
2. While A′ has at least one row do:

- find a column c in A′ having a maximum number of ones;
- delete all rows of A′ that contain a 1 in column c;
- delete column c from A′;
- set C := C ∪ {c}.

2.6.1 Covering designs

An (n, k, l) covering design is a family F of k-subsets of an n-element set
(called blocks) such that every l-subset is contained in at least one of these
blocks. Let M(n, k, l) denote the minimal cardinality of such a design. A
simple counting argument (Exercise 1.26) shows that M(n, k, l) ≥

(
n
l

)/(
k
l

)
.

In 1985, Rödl proved a long-standing conjecture of Erdős and Hanani
that for fixed k and l, coverings of size

(
n
l

)/(
k
l

)
(1 + o(1)) exist. Rödl used

non-constructive probabilistic arguments. We will now use the Lovász–Stein
theorem to show how to construct an (n, k, l) covering design with only ln

(
k
l

)

times more blocks. This is not as sharp as Rödl’s celebrated result, but it is
constructive. A polynomial-time covering algorithm, achieving Rödl’s bound,
was found by Kuzjurin (2000).

Theorem 2.17. M(n, k, l) ≤
(

n
l

)/(
k
l

)[
1 + ln

(
k
l

)]
.

Proof. Let X = (xS,T ) be an N × M 0-1 matrix with N =
(

n
l

)
and M =

(
n
k

)
.

Rows of X are labeled by l-element subsets S ⊆ [n], columns by k-element
subsets T ⊆ [n], and xS,T = 1 iff S ⊆ T . Note that each row contains exactly

v =
(

n−l
k−l

)
ones, and each column contains exactly a =

(
k
l

)
ones.

By the Lovász–Stein theorem, there is an N × K submatrix X ′ such that
X ′ does not contain an all-0 row and


