Given a family of sets A_{1}, \ldots, A_{N}, their average size is

$$
\frac{1}{N} \sum_{i=1}^{N}\left|A_{i}\right|
$$

The following lemma says that, if the average size of sets is large, then some two of them must share many elements.

Lemma 2.2. Let X be a set of n elements, and let A_{1}, \ldots, A_{N} be subsets of X of average size at least n / w. If $N \geq 2 w^{2}$, then there exist $i \neq j$ such that

$$
\begin{equation*}
\left|A_{i} \cap A_{j}\right| \geq \frac{n}{2 w^{2}} \tag{2.3}
\end{equation*}
$$

Proof. Again, let us just count. On the one hand, using Jensen's inequality (1.15) and equality (1.10), we obtain that

$$
\sum_{x \in X} d(x)^{2} \geq \frac{1}{n}\left(\sum_{x \in X} d(x)\right)^{2}=\frac{1}{n}\left(\sum_{i=1}^{N}\left|A_{i}\right|\right)^{2} \geq \frac{n N^{2}}{w^{2}}
$$

On the other hand, assuming that (2.3) is false and using (1.11) and (1.12) we would obtain

$$
\begin{aligned}
\sum_{x \in X} d(x)^{2} & =\sum_{i=1}^{N} \sum_{j=1}^{N}\left|A_{i} \cap A_{j}\right|=\sum_{i}\left|A_{i}\right|+\sum_{i \neq j}\left|A_{i} \cap A_{j}\right| \\
& <n N+\frac{n N(N-1)}{2 w^{2}}=\frac{n N^{2}}{2 w^{2}}\left(1+\frac{2 w^{2}}{N}-\frac{1}{N}\right) \leq \frac{n N^{2}}{w^{2}}
\end{aligned}
$$

a contradiction.
Lemma 2.2 is a very special (but still illustrative) case of the following more general result.
Lemma 2.3 (Erdős 1964b). Let X be a set of n elements x_{1}, \ldots, x_{n}, and let A_{1}, \ldots, A_{N} be N subsets of X of average size at least n / w. If $N \geq 2 k w^{k}$, then there exist $A_{i_{1}}, \ldots, A_{i_{k}}$ such that $\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right| \geq n /\left(2 w^{k}\right)$.

The proof is a generalization of the one above and we leave it as an exercise (see Exercises 2.8 and 2.9).

2.2 Graphs with no 4-cycles

Let H be a fixed graph. A graph is H-free if it does not contain H as a subgraph. (Recall that a subgraph is obtained by deleting edges and vertices.) A typical question in graph theory is the following one:

How many edges can a H-free graph with n vertices have?
That is, one is interested in the maximum number ex (n, H) of edges in a H-free graph on n vertices. The graph H itself is then called a "forbidden subgraph."

Let us consider the case when forbidden subgraphs are cycles. Recall that a cycle C_{k} of length k (or a k-cycle) is a sequence $v_{0}, v_{1}, \ldots, v_{k}$ such that $v_{k}=v_{0}$ and each subsequent pair v_{i} and v_{i+1} is joined by an edge.

If $H=C_{3}$, a triangle, then $\operatorname{ex}\left(n, C_{3}\right) \geq n^{2} / 4$ for every even $n \geq 2$: a complete bipartite $r \times r$ graph $K_{r, r}$ with $r=n / 2$ has no triangles but has $r^{2}=n^{2} / 4$ edges. We will show later that this is already optimal: any n-vertex graph with more than $n^{2} / 4$ edges must contain a triangle (see Theorem 4.7). Interestingly, $\operatorname{ex}\left(n, C_{4}\right)$ is much smaller, smaller than $n^{3 / 2}$.

Theorem 2.4 (Reiman 1958). If $G=(V, E)$ on n vertices has no 4-cycles, then

$$
|E| \leq \frac{n}{4}(1+\sqrt{4 n-3})
$$

Proof. Let $G=(V, E)$ be a C_{4}-free graph with vertex-set $V=\{1, \ldots, n\}$, and $d_{1}, d_{2}, \ldots, d_{n}$ be the degrees of its vertices. We now count in two ways the number of elements in the following set S. The set S consists of all (ordered) pairs $(u,\{v, w\})$ such that $v \neq w$ and u is adjacent to both v and w in G. That is, we count all occurrences of "cherries"

in G. For each vertex u, we have $\binom{d_{u}}{2}$ possibilities to choose a 2 -element subset of its d_{u} neighbors. Thus, summing over u, we find $|S|=\sum_{u=1}^{n}\binom{d_{u}}{2}$. On the other hand, the C_{4}-freeness of G implies that no pair of vertices $v \neq w$ can have more than one common neighbor. Thus, summing over all pairs we obtain that $|S| \leq\binom{ n}{2}$. Altogether this gives

$$
\sum_{i=1}^{n}\binom{d_{i}}{2} \leq\binom{ n}{2}
$$

or

$$
\begin{equation*}
\sum_{i=1}^{n} d_{i}^{2} \leq n(n-1)+\sum_{i=1}^{n} d_{i} \tag{2.4}
\end{equation*}
$$

Now, we use the Cauchy-Schwarz inequality

$$
\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{i=1}^{n} y_{i}^{2}\right)
$$

with $x_{i}=d_{i}$ and $y_{i}=1$, and obtain

$$
\left(\sum_{i=1}^{n} d_{i}\right)^{2} \leq n \sum_{i=1}^{n} d_{i}^{2}
$$

and hence by (2.4)

$$
\left(\sum_{i=1}^{n} d_{i}\right)^{2} \leq n^{2}(n-1)+n \sum_{i=1}^{n} d_{i}
$$

Euler's theorem gives $\sum_{i=1}^{n} d_{i}=2|E|$. Invoking this fact, we obtain

$$
4|E|^{2} \leq n^{2}(n-1)+2 n|E|
$$

or

$$
|E|^{2}-\frac{n}{2}|E|-\frac{n^{2}(n-1)}{4} \leq 0
$$

Solving the corresponding quadratic equation yields the desired upper bound on $|E|$.

Example 2.5 (Construction of dense C_{4}-free graphs). The following construction shows that the bound of Theorem 2.4 is optimal up to a constant factor.

Let p be a prime number and take $V=\left(\mathbb{Z}_{p} \backslash\{0\}\right) \times \mathbb{Z}_{p}$, that is, vertices are pairs (a, b) of elements of a finite field with $a \neq 0$. We define a graph G on these vertices, where (a, b) and (c, d) are joined by an edge iff $a c=b+d$ (all operations modulo p). For each vertex (a, b), there are $p-1$ solutions of the equation $a x=b+y$: pick any $x \in \mathbb{Z}_{p} \backslash\{0\}$, and y is uniquely determined. Thus, G is a $(p-1)$-regular graph on $n=p(p-1)$ vertices (some edges are loops). The number of edges in it is $n(p-1) / 2=\Omega\left(n^{3 / 2}\right)$.

To verify that the graph is C_{4}-free, take any two its vertices (a, b) and (c, d). The unique solution (x, y) of the system

$$
\left\{\begin{array}{lll}
a x=b+y \\
c x=d+y & \text { is given by } & x=(b-d)(a-c)^{-1} \\
2 y=x(a+c)-b-d
\end{array}\right.
$$

which is only defined when $a \neq c$, and has $x \neq 0$ only when $b \neq d$. Hence, if $a \neq c$ and $b \neq d$, then the vertices (a, b) and (c, d) have precisely one common neighbor, and have no common neighbors at all, if $a=c$ or $b=d$.

2.3 Graphs with no induced 4-cycles

Recall that an induced subgraph is obtained by deleting vertices together with all the edges incident to them (see Fig. 2.1).

Theorem 2.4 says that a graph cannot have many edges, unless it contains C_{4} as a (not necessarily induced) subgraph. But what about graphs that

Fig. 2.1 Graph G contains several copies of C_{4} as a subgraph, but none of them as an induced subgraph.
do not contain C_{4} as an induced subgraph? Let us call such graphs weakly C_{4}-free.

Note that such graphs can already have many more edges. In particular, the complete graph K_{n} is weakly C_{4}-free: in any 4-cycle there are edges in K_{n} between non-neighboring vertices of C_{4}. Interestingly, any(!) dense enough weakly C_{4}-free graph must contain large complete subgraphs.

Let $\omega(G)$ denote the maximum number of vertices in a complete subgraph of G. In particular, $\omega(G) \leq 3$ for every C_{4}-free graph. In contrast, for weakly C_{4}-free graphs we have the following result, due to Gyárfás, Hubenko and Solymosi (2002).

Theorem 2.6. If an n-vertex graph $G=(V, E)$ is weakly C_{4}-free, then

$$
\omega(G) \geq 0.4 \frac{|E|^{2}}{n^{3}}
$$

The proof of Theorem 2.6 is based on a simple fact, relating the average degree with the minimum degree, as well as on two facts concerning independent sets in weakly C_{4}-free graphs.

For a graph $G=(V, E)$, let $e(G)=|E|$ denote the number of its edges, $d_{\text {min }}(G)$ the smallest degree of its vertices, and $d_{\text {ave }}(G)=2 e(G) /|V|$ the average degree. Note that, by Euler's theorem, $d_{\text {ave }}(G)$ is indeed the sum of all degrees divided by the total number of vertices.

Proposition 2.7. Every graph G has an induced subgraph H with

$$
d_{\mathrm{ave}}(H) \geq d_{\mathrm{ave}}(G) \quad \text { and } \quad d_{\min }(H) \geq \frac{1}{2} d_{\mathrm{ave}}(G)
$$

Proof. We remove vertices one-by-one. To avoid the danger of ending up with the empty graph, let us remove a vertex $v \in V$ if this does not decrease the average degree $d_{\text {ave }}(G)$. Thus, we should have

$$
d_{\mathrm{ave}}(G-v)=\frac{2(e(G)-d(v))}{|V|-1} \geq d_{\mathrm{ave}}(G)=\frac{2 e(G)}{|V|}
$$

which is equivalent to $d(v) \leq d_{\text {ave }}(G) / 2$. So, when we stick, each vertex in the resulting graph H has minimum degree at least $d_{\text {ave }}(G) / 2$.

Fig. $2.2(a)$ If u and v were non-adjacent, we would have an induced 4 -cycle $\left\{x_{i}, x_{j}, u, v\right\}$. (b) If y and z were non-adjacent, then $\left(S \backslash\left\{x_{i}\right\}\right) \cup\{y, z\}$ would be a larger independent set.

Recall that a set of vertices in a graph is independent if no two of its vertices are adjacent. Let $\alpha(G)$ denote the largest number of vertices in such a set.

Proposition 2.8. For every weakly C_{4}-free graph G on n vertices, we have

$$
\omega(G) \geq \frac{n}{\binom{\alpha(G)+1}{2}}
$$

Proof. Fix an independent set $S=\left\{x_{1}, \ldots, x_{\alpha}\right\}$ with $\alpha=\alpha(G)$. Let A_{i} be the set of neighbors of x_{i} in G, and B_{i} the set of vertices whose only neighbor in S is x_{i}. Consider the family \mathcal{F} consisting of all α sets $\left\{x_{i}\right\} \cup B_{i}$ and $\binom{\alpha}{2}$ sets $A_{i} \cap A_{j}$. We claim that:
(i) each member of \mathcal{F} forms a clique in G, and
(ii) the members of \mathcal{F} cover all vertices of G.

The sets $A_{i} \cap A_{j}$ are cliques because G is weakly C_{4}-free: Any two vertices $u \neq v \in A_{i} \cap A_{j}$ must be joined by an edge, for otherwise $\left\{x_{i}, x_{j}, u, v\right\}$ would form a copy of C_{4} as an induced subgraph. The sets $\left\{x_{i}\right\} \cup B_{i}$ are cliques because S is a maximal independent set: Otherwise we could replace x_{i} in S by any two vertices from B_{i}. By the same reason (S being a maximal independent set), the members of \mathcal{F} must cover all vertices of G : If some vertex v were not covered, then $S \cup\{v\}$ would be a larger independent set.

Claims (i) and (ii), together with the averaging principle, imply that

$$
\omega(G) \geq \frac{n}{|\mathcal{F}|}=\frac{n}{\alpha+\binom{\alpha}{2}}=\frac{n}{\binom{\alpha+1}{2}} .
$$

Proposition 2.9. Let G be a weakly C_{4}-free graph on n vertices, and $d=$ $d_{\text {min }}(G)$. Then, for every $t \leq \alpha(G)$,

$$
\omega(G) \geq \frac{d \cdot t-n}{\binom{t}{2}}
$$

Proof. Take an independent set $S=\left\{x_{1}, \ldots, x_{t}\right\}$ of size t and let A_{i} be the set of neighbors of x_{i} in G. Let m be the maximum of $\left|A_{i} \cap A_{j}\right|$ over all $1 \leq i<j \leq t$. We already know that each $A_{i} \cap A_{j}$ must form a clique; hence, $\omega(G) \geq m$. On the other hand, by the Bonferroni inequality (Exercise 1.37) we have that

$$
n \geq\left|\bigcup_{i=1}^{t} A_{i}\right| \geq t d-\sum_{i<j}\left|A_{i} \cap A_{j}\right| \geq t d-\binom{t}{2} m
$$

from which the desired lower bound on $\omega(G)$ follows.
Now we are able to prove Theorem 2.6.
Proof of Theorem 2.6. Let a be the average degree of G; hence, $a=2|E| / n$. By Proposition 2.7, we know that G has an induced subgraph of average degree $\geq a$ and minimum degree $\geq a / 2$. So, we may assume w.l.o.g. that the graph G itself has these two properties. We now consider the two possible cases.

If $\alpha(G) \geq 4 n / a$, then we apply Proposition 2.9 with $^{*} t=4 n / a$ and obtain

$$
\omega(G) \geq \frac{(a / 2) \cdot t-n}{\binom{t}{2}}=\frac{n}{\binom{4 / a}{2}}
$$

If $\alpha(G) \leq 4 n / a$, then we apply Proposition 2.8 and obtain

$$
\omega(G) \geq \frac{n}{\binom{\alpha(G)+1}{2}} \geq \frac{n}{\binom{4 n / a+1}{2}}
$$

In both cases we obtain

$$
\omega(G) \geq \frac{n}{\binom{4 n / a+1}{2}}=\frac{a^{2}}{8 n+2 a} \geq 0.1 \frac{a^{2}}{n}
$$

2.4 Zarankiewicz's problem

At most how many 1s can an $n \times n 0-1$ matrix contain if it has no $a \times b$ submatrix whose entries are all 1s? Zarankiewicz (1951) raised the problem of the estimation of this number for $a=b=3$ and $n=4,5,6$ and the general problem became known as Zarankiewicz's problem.

It is worth reformulating this problem in terms of bipartite graphs. A bipartite graph with parts of size n is a triple $G=\left(V_{1}, V_{2}, E\right)$, where V_{1} and V_{2} are disjoint n-element sets of vertices (or nodes), and $E \subseteq V_{1} \times V_{2}$ is the set of edges. We say that the graph contains an $a \times b$ clique if there exist an

[^0]
[^0]: * For simplicity, we ignore ceilings and floors.

