
24 2 Advanced Counting

Given a family of sets A1, . . . , AN , their average size is

1

N

N∑

i=1

|Ai|.

The following lemma says that, if the average size of sets is large, then some
two of them must share many elements.

Lemma 2.2. Let X be a set of n elements, and let A1, . . . , AN be subsets of
X of average size at least n/w. If N ≥ 2w2, then there exist i 6= j such that

|Ai ∩ Aj | ≥ n

2w2
. (2.3)

Proof. Again, let us just count. On the one hand, using Jensen’s inequality
(1.15) and equality (1.10), we obtain that

∑

x∈X

d(x)2 ≥ 1

n

(∑

x∈X

d(x)

)2

=
1

n

( N∑

i=1

|Ai|
)2

≥ nN2

w2
.

On the other hand, assuming that (2.3) is false and using (1.11) and (1.12)
we would obtain

∑

x∈X

d(x)2 =

N∑

i=1

N∑

j=1

|Ai ∩ Aj | =
∑

i

|Ai| +
∑

i6=j

|Ai ∩ Aj |

< nN +
nN(N − 1)

2w2
=

nN2

2w2

(
1 +

2w2

N
− 1

N

)
≤ nN2

w2
,

a contradiction. ⊓⊔

Lemma 2.2 is a very special (but still illustrative) case of the following
more general result.

Lemma 2.3 (Erdős 1964b). Let X be a set of n elements x1, . . . , xn, and let
A1, . . . , AN be N subsets of X of average size at least n/w. If N ≥ 2kwk,
then there exist Ai1 , . . . , Aik

such that |Ai1 ∩ · · · ∩ Aik
| ≥ n/(2wk).

The proof is a generalization of the one above and we leave it as an exercise
(see Exercises 2.8 and 2.9).

2.2 Graphs with no 4-cycles

Let H be a fixed graph. A graph is H-free if it does not contain H as a
subgraph. (Recall that a subgraph is obtained by deleting edges and vertices.)
A typical question in graph theory is the following one:
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How many edges can a H-free graph with n vertices have?

That is, one is interested in the maximum number ex(n, H) of edges in a
H-free graph on n vertices. The graph H itself is then called a “forbidden
subgraph.”

Let us consider the case when forbidden subgraphs are cycles. Recall that
a cycle Ck of length k (or a k-cycle) is a sequence v0, v1, . . . , vk such that
vk = v0 and each subsequent pair vi and vi+1 is joined by an edge.

If H = C3, a triangle, then ex(n, C3) ≥ n2/4 for every even n ≥ 2: a
complete bipartite r × r graph Kr,r with r = n/2 has no triangles but has
r2 = n2/4 edges. We will show later that this is already optimal: any n-vertex
graph with more than n2/4 edges must contain a triangle (see Theorem 4.7).
Interestingly, ex(n, C4) is much smaller, smaller than n3/2.

Theorem 2.4 (Reiman 1958). If G = (V, E) on n vertices has no 4-cycles,
then

|E| ≤ n

4
(1 +

√
4n − 3) .

Proof. Let G = (V, E) be a C4-free graph with vertex-set V = {1, . . . , n}, and
d1, d2, . . . , dn be the degrees of its vertices. We now count in two ways the
number of elements in the following set S. The set S consists of all (ordered)
pairs (u, {v, w}) such that v 6= w and u is adjacent to both v and w in G.
That is, we count all occurrences of “cherries”

w

u
v

in G. For each vertex u, we have
(

du

2

)
possibilities to choose a 2-element

subset of its du neighbors. Thus, summing over u, we find |S| =
∑n

u=1

(
du

2

)
.

On the other hand, the C4-freeness of G implies that no pair of vertices v 6= w
can have more than one common neighbor. Thus, summing over all pairs we
obtain that |S| ≤

(
n
2

)
. Altogether this gives

n∑

i=1

(
di

2

)
≤
(

n

2

)

or
n∑

i=1

d2
i ≤ n(n − 1) +

n∑

i=1

di . (2.4)

Now, we use the Cauchy–Schwarz inequality

( n∑

i=1

xiyi

)2

≤
( n∑

i=1

x2
i

)( n∑

i=1

y2
i

)

with xi = di and yi = 1, and obtain
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( n∑

i=1

di

)2

≤ n

n∑

i=1

d2
i

and hence by (2.4)

( n∑

i=1

di

)2

≤ n2(n − 1) + n

n∑

i=1

di .

Euler’s theorem gives
∑n

i=1 di = 2|E|. Invoking this fact, we obtain

4|E|2 ≤ n2(n − 1) + 2n|E|

or

|E|2 − n

2
|E| − n2(n − 1)

4
≤ 0 .

Solving the corresponding quadratic equation yields the desired upper bound
on |E|. ⊓⊔

Example 2.5 (Construction of dense C4-free graphs). The following construc-
tion shows that the bound of Theorem 2.4 is optimal up to a constant factor.

Let p be a prime number and take V = (Zp \ {0}) × Zp, that is, vertices
are pairs (a, b) of elements of a finite field with a 6= 0. We define a graph G
on these vertices, where (a, b) and (c, d) are joined by an edge iff ac = b + d
(all operations modulo p). For each vertex (a, b), there are p − 1 solutions of
the equation ax = b + y: pick any x ∈ Zp \ {0}, and y is uniquely determined.
Thus, G is a (p − 1)-regular graph on n = p(p − 1) vertices (some edges are
loops). The number of edges in it is n(p − 1)/2 = Ω(n3/2).

To verify that the graph is C4-free, take any two its vertices (a, b) and
(c, d). The unique solution (x, y) of the system

{
ax = b + y
cx = d + y

is given by
x = (b − d)(a − c)−1

2y = x(a + c) − b − d

which is only defined when a 6= c, and has x 6= 0 only when b 6= d. Hence, if
a 6= c and b 6= d, then the vertices (a, b) and (c, d) have precisely one common
neighbor, and have no common neighbors at all, if a = c or b = d.

2.3 Graphs with no induced 4-cycles

Recall that an induced subgraph is obtained by deleting vertices together with
all the edges incident to them (see Fig. 2.1).

Theorem 2.4 says that a graph cannot have many edges, unless it contains
C4 as a (not necessarily induced) subgraph. But what about graphs that
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G

Fig. 2.1 Graph G contains several copies of C4 as a subgraph, but none of them as an
induced subgraph.

do not contain C4 as an induced subgraph? Let us call such graphs weakly
C4-free.

Note that such graphs can already have many more edges. In particular,
the complete graph Kn is weakly C4-free: in any 4-cycle there are edges in Kn

between non-neighboring vertices of C4. Interestingly, any(!) dense enough
weakly C4-free graph must contain large complete subgraphs.

Let ω(G) denote the maximum number of vertices in a complete subgraph
of G. In particular, ω(G) ≤ 3 for every C4-free graph. In contrast, for weakly
C4-free graphs we have the following result, due to Gyárfás, Hubenko and
Solymosi (2002).

Theorem 2.6. If an n-vertex graph G = (V, E) is weakly C4-free, then

ω(G) ≥ 0.4
|E|2
n3

.

The proof of Theorem 2.6 is based on a simple fact, relating the average
degree with the minimum degree, as well as on two facts concerning indepen-
dent sets in weakly C4-free graphs.

For a graph G = (V, E), let e(G) = |E| denote the number of its edges,
dmin(G) the smallest degree of its vertices, and dave(G) = 2e(G)/|V | the
average degree. Note that, by Euler’s theorem, dave(G) is indeed the sum of
all degrees divided by the total number of vertices.

Proposition 2.7. Every graph G has an induced subgraph H with

dave(H) ≥ dave(G) and dmin(H) ≥ 1

2
dave(G) .

Proof. We remove vertices one-by-one. To avoid the danger of ending up with
the empty graph, let us remove a vertex v ∈ V if this does not decrease the
average degree dave(G). Thus, we should have

dave(G − v) =
2(e(G) − d(v))

|V | − 1
≥ dave(G) =

2e(G)

|V |

which is equivalent to d(v) ≤ dave(G)/2. So, when we stick, each vertex in
the resulting graph H has minimum degree at least dave(G)/2. ⊓⊔
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Fig. 2.2 (a) If u and v were non-adjacent, we would have an induced 4-cycle
{xi, xj , u, v}. (b) If y and z were non-adjacent, then (S \ {xi}) ∪ {y, z} would be a
larger independent set.

Recall that a set of vertices in a graph is independent if no two of its
vertices are adjacent. Let α(G) denote the largest number of vertices in such
a set.

Proposition 2.8. For every weakly C4-free graph G on n vertices, we have

ω(G) ≥ n(
α(G)+1

2

) .

Proof. Fix an independent set S = {x1, . . . , xα} with α = α(G). Let Ai be
the set of neighbors of xi in G, and Bi the set of vertices whose only neighbor
in S is xi. Consider the family F consisting of all α sets {xi} ∪ Bi and

(
α
2

)

sets Ai ∩ Aj . We claim that:

(i) each member of F forms a clique in G, and
(ii) the members of F cover all vertices of G.

The sets Ai ∩ Aj are cliques because G is weakly C4-free: Any two vertices
u 6= v ∈ Ai ∩ Aj must be joined by an edge, for otherwise {xi, xj , u, v} would
form a copy of C4 as an induced subgraph. The sets {xi} ∪ Bi are cliques
because S is a maximal independent set: Otherwise we could replace xi in
S by any two vertices from Bi. By the same reason (S being a maximal
independent set), the members of F must cover all vertices of G: If some
vertex v were not covered, then S ∪ {v} would be a larger independent set.

Claims (i) and (ii), together with the averaging principle, imply that

ω(G) ≥ n

|F| =
n

α +
(

α
2

) =
n(

α+1
2

) . ⊓⊔

Proposition 2.9. Let G be a weakly C4-free graph on n vertices, and d =
dmin(G). Then, for every t ≤ α(G),

ω(G) ≥ d · t − n(
t
2

) .
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Proof. Take an independent set S = {x1, . . . , xt} of size t and let Ai be the
set of neighbors of xi in G. Let m be the maximum of |Ai ∩ Aj | over all
1 ≤ i < j ≤ t. We already know that each Ai ∩ Aj must form a clique; hence,
ω(G) ≥ m. On the other hand, by the Bonferroni inequality (Exercise 1.37)
we have that

n ≥
∣∣∣∣

t⋃

i=1

Ai

∣∣∣∣ ≥ td −
∑

i<j

|Ai ∩ Aj | ≥ td −
(

t

2

)
m ,

from which the desired lower bound on ω(G) follows. ⊓⊔

Now we are able to prove Theorem 2.6.

Proof of Theorem 2.6. Let a be the average degree of G; hence, a = 2|E|/n.
By Proposition 2.7, we know that G has an induced subgraph of average
degree ≥ a and minimum degree ≥ a/2. So, we may assume w.l.o.g. that the
graph G itself has these two properties. We now consider the two possible
cases.

If α(G) ≥ 4n/a, then we apply Proposition 2.9 with∗ t = 4n/a and obtain

ω(G) ≥ (a/2) · t − n(
t
2

) =
n(

4n/a
2

) .

If α(G) ≤ 4n/a, then we apply Proposition 2.8 and obtain

ω(G) ≥ n(
α(G)+1

2

) ≥ n(
4n/a+1

2

) .

In both cases we obtain

ω(G) ≥ n(
4n/a+1

2

) =
a2

8n + 2a
≥ 0.1

a2

n
. ⊓⊔

2.4 Zarankiewicz’s problem

At most how many 1s can an n × n 0-1 matrix contain if it has no a × b
submatrix whose entries are all 1s? Zarankiewicz (1951) raised the problem
of the estimation of this number for a = b = 3 and n = 4, 5, 6 and the general
problem became known as Zarankiewicz’s problem.

It is worth reformulating this problem in terms of bipartite graphs. A bi-
partite graph with parts of size n is a triple G = (V1, V2, E), where V1 and
V2 are disjoint n-element sets of vertices (or nodes), and E ⊆ V1 × V2 is the
set of edges. We say that the graph contains an a × b clique if there exist an

∗ For simplicity, we ignore ceilings and floors.


