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Given a family of sets A1, ..., Ay, their average size is
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The following lemma says that, if the average size of sets is large, then some
two of them must share many elements.

Lemma 2.2. Let X be a set of n elements, and let Ay, ..., An be subsets of
X of average size at least njw. If N > 2w?, then there exist i # j such that
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Proof. Again, let us just count. On the one hand, using Jensen’s inequality
(1.15) and equality (1.10), we obtain that
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On the other hand, assuming that (2.3) is false and using (1.11) and (1.12)
we would obtain
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a contradiction. O

Lemma 2.2 is a very special (but still illustrative) case of the following
more general result.

Lemma 2.3 (Erdés 1964b). Let X be a set of n elements 1, ..., x,, and let
Ay,...,An be N subsets of X of average size at least njw. If N > 2kwk,
then there exist A;,, ..., A;, such that |A;, N---N A, | > n/(2wF).

The proof is a generalization of the one above and we leave it as an exercise
(see Exercises 2.8 and 2.9).

2.2 Graphs with no 4-cycles

Let H be a fixed graph. A graph is H-free if it does not contain H as a
subgraph. (Recall that a subgraph is obtained by deleting edges and vertices.)
A typical question in graph theory is the following one:
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How many edges can a H-free graph with n vertices have?

That is, one is interested in the maximum number ex(n, H) of edges in a
H-free graph on n vertices. The graph H itself is then called a “forbidden

subgraph.”
Let us consider the case when forbidden subgraphs are cycles. Recall that
a cycle Cj of length k (or a k-cycle) is a sequence vg,v1, ..., v such that

v = vo and each subsequent pair v; and v;41 is joined by an edge.

If H = (3, a triangle, then ex(n,C3) > n?/4 for every even n > 2: a
complete bipartite » x r graph K, , with r = n/2 has no triangles but has
r? = n?/4 edges. We will show later that this is already optimal: any n-vertex
graph with more than n?/4 edges must contain a triangle (see Theorem 4.7).

Interestingly, ex(n, Cy4) is much smaller, smaller than n?/2.

Theorem 2.4 (Reiman 1958). If G = (V, E) on n vertices has no 4-cycles,
then n
|E| < Z(l +Vvin —3).

Proof. Let G = (V, E) be a Cy-free graph with vertex-set V= {1,...,n}, and
di,ds,...,d, be the degrees of its vertices. We now count in two ways the
number of elements in the following set S. The set S consists of all (ordered)
pairs (u, {v,w}) such that v # w and w is adjacent to both v and w in G.
That is, we count all occurrences of “cherries”
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subset of its d,, neighbors. Thus, summing over u, we find S| = >"_, (d;).
On the other hand, the Cy-freeness of GG implies that no pair of vertices v # w
can have more than one common neighbor. Thus, summing over all pairs we

obtain that |S| < (}). Altogether this gives

>(3)=(5)

idfgn(n—1)+2di. (2.4)
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in GG. For each vertex u, we have ( ) possibilities to choose a 2-element

or

Now, we use the Cauchy—Schwarz inequality
n 2 n n
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with z; = d; and y; = 1, and obtain
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and hence by (2.4)
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Euler’s theorem gives Y7 | d; = 2|E|. Invoking this fact, we obtain

4|EB* <n?(n —1)+ 2n|E|
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Solving the corresponding quadratic equation yields the desired upper bound
on |E|. O

Ezample 2.5 (Construction of dense Cy-free graphs). The following construc-
tion shows that the bound of Theorem 2.4 is optimal up to a constant factor.

Let p be a prime number and take V' = (Z, \ {0}) x Z,, that is, vertices
are pairs (a,b) of elements of a finite field with a # 0. We define a graph G
on these vertices, where (a,b) and (¢, d) are joined by an edge iff ac = b+ d
(all operations modulo p). For each vertex (a,b), there are p — 1 solutions of
the equation ax = b+ y: pick any = € Z, \ {0}, and y is uniquely determined.
Thus, G is a (p — 1)-regular graph on n = p(p — 1) vertices (some edges are
loops). The number of edges in it is n(p — 1)/2 = 2(n/2).

To verify that the graph is Cy-free, take any two its vertices (a,b) and
(¢,d). The unique solution (x,y) of the system

ar=b+y
cx=d+y

- r=(b-d)(a—c)?
is given by 2 —wla+c)—b—d
which is only defined when a # ¢, and has x # 0 only when b # d. Hence, if
a # c and b # d, then the vertices (a, b) and (¢, d) have precisely one common
neighbor, and have no common neighbors at all, if a = cor b = d.

2.3 Graphs with no induced 4-cycles

Recall that an induced subgraph is obtained by deleting vertices together with
all the edges incident to them (see Fig. 2.1).

Theorem 2.4 says that a graph cannot have many edges, unless it contains
Cy as a (not necessarily induced) subgraph. But what about graphs that
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Fig. 2.1 Graph G contains several copies of C4 as a subgraph, but none of them as an
induced subgraph.

do not contain Cy as an induced subgraph? Let us call such graphs weakly
Cy-free.

Note that such graphs can already have many more edges. In particular,
the complete graph K, is weakly Cy-free: in any 4-cycle there are edges in K,
between non-neighboring vertices of Cy. Interestingly, any(!) dense enough
weakly Cy-free graph must contain large complete subgraphs.

Let w(G) denote the maximum number of vertices in a complete subgraph
of G. In particular, w(G) < 3 for every Cy-free graph. In contrast, for weakly
Cy-free graphs we have the following result, due to Gyarfas, Hubenko and
Solymosi (2002).

Theorem 2.6. If an n-vertex graph G = (V, E) is weakly Cy-free, then

E 2
w(G) > 0.4%

The proof of Theorem 2.6 is based on a simple fact, relating the average
degree with the minimum degree, as well as on two facts concerning indepen-
dent sets in weakly Cy-free graphs.

For a graph G = (V, E), let e(G) = |E| denote the number of its edges,
dmin(G) the smallest degree of its vertices, and day.(G) = 2e(G)/|V] the
average degree. Note that, by Euler’s theorem, dave(G) is indeed the sum of
all degrees divided by the total number of vertices.

Proposition 2.7. Every graph G has an induced subgraph H with
1
dave(H) Z dave(G) and dmin(H) Z 5 dave(G) .

Proof. We remove vertices one-by-one. To avoid the danger of ending up with
the empty graph, let us remove a vertex v € V if this does not decrease the
average degree daye(G). Thus, we should have

2e(Q)
4

2(e(G) — d(v))
daver :—ZdaveG:
(G- = 24T @)
which is equivalent to d(v) < dave(G)/2. So, when we stick, each vertex in
the resulting graph H has minimum degree at least daye(G)/2. O
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Fig. 2.2 (a) If v and v were non-adjacent, we would have an induced 4-cycle
{zi,zj,u,v}. (b) If y and z were non-adjacent, then (S \ {x:}) U {y,z} would be a
larger independent set.

Recall that a set of vertices in a graph is independent if no two of its
vertices are adjacent. Let a(G) denote the largest number of vertices in such
a set.

Proposition 2.8. For every weakly Cy-free graph G on n vertices, we have

n
2

Proof. Fix an independent set S = {x1,...,2,} with @ = a(G). Let A4; be

the set of neighbors of z; in G, and B; the set of vertices whose only neighbor

in S is ;. Consider the family F consisting of all a sets {z;} U B; and (5)

sets A; N A;. We claim that:

(i)  each member of F forms a clique in G, and
(ii) the members of F cover all vertices of G.

The sets A; N A; are cliques because G is weakly Cy-free: Any two vertices
u# v € A;NA; must be joined by an edge, for otherwise {z;, x;, u, v} would
form a copy of Cy as an induced subgraph. The sets {x;} U B; are cliques
because S is a maximal independent set: Otherwise we could replace z; in
S by any two vertices from B;. By the same reason (S being a mazimal
independent set), the members of F must cover all vertices of G: If some
vertex v were not covered, then S U {v} would be a larger independent set.
Claims (i) and (ii), together with the averaging principle, imply that
n n n

= . O
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Proposition 2.9. Let G be a weakly Cy-free graph on n vertices, and d =
dmin(G). Then, for every t < a(G),

W(@) > d-t—n

-G
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Proof. Take an independent set S = {x1,...,2;} of size t and let A; be the
set of neighbors of x; in G. Let m be the maximum of |4; N A;| over all
1 <i<j <t Wealready know that each A; N A; must form a clique; hence,
w(G) > m. On the other hand, by the Bonferroni inequality (Exercise 1.37)
we have that

t

4
n> UAZ- ztde|AmAj| > td — <2>m,
=1 1<J
from which the desired lower bound on w(G) follows. O

Now we are able to prove Theorem 2.6.

Proof of Theorem 2.6. Let a be the average degree of G; hence, a = 2|E|/n.
By Proposition 2.7, we know that G has an induced subgraph of average
degree > a and minimum degree > a/2. So, we may assume w.l.o.g. that the
graph G itself has these two properties. We now consider the two possible
cases.

If «(G) > 4n/a, then we apply Proposition 2.9 with* ¢ = 4n/a and obtain

W(G) > (a/2)~tfn: n

SO

If o(G) < 4n/a, then we apply Proposition 2.8 and obtain

n n
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In both cases we obtain
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2.4 Zarankiewicz’s problem

At most how many 1s can an n x n 0-1 matrix contain if it has no a x b
submatrix whose entries are all 1s? Zarankiewicz (1951) raised the problem
of the estimation of this number for a = b = 3 and n = 4,5, 6 and the general
problem became known as Zarankiewicz’s problem.

It is worth reformulating this problem in terms of bipartite graphs. A bi-
partite graph with parts of size n is a triple G = (V, Vi, E), where V; and
V5 are disjoint n-element sets of vertices (or nodes), and E C V; x Vs, is the
set of edges. We say that the graph contains an a x b clique if there exist an

* For simplicity, we ignore ceilings and floors.



