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for some proper subgroup H of G. Since, by Lagrange’s theorem, the order
|H | of any subgroup H of G divides the order |G| of the group G, we have
|H | ≤ |G|/p. Therefore,

3|A| ≤ |G| + |H | ≤ (1 + 1/p)|G|,

and the desired result follows. ⊓⊔

What about the lower bounds for α(G)?
We have already seen that for G = Zn with even n, we have an equality

α(G) = |G|/2. If G = Z is the group of integers, then

α(S) > |S|/3

for any finite subset S ⊆ Z \ {0} (we have proved this fact in Sect. 18.2 using
the probabilistic argument). For other Abelian groups the situation is not so
clear.

The following naive argument shows that in this case also

α(G) ≥
√

|G| − 1.

To show this, let A be a maximal sum-free subset. If a 6∈ A, then A∪{a} is not
sum-free by the assumption, so we can write a = s1 + s2 for some s1, s2 ∈ A.
Therefore |G \ A| ≤ |A|2, from which the desired inequality |A| ≥

√
|G| − 1

follows.
Better lower bounds can be derived using an improvement of Theo-

rem 25.10, also due to Kneser, which states that with the same hypotheses,
either |A + B| ≥ |A| + |B| or |A + B| ≥ |A| + |B| − |H | for some proper sub-
group H such that H + A + B = A + H (see, for example, Street (1972) for
the proof). Here we only mention that the best know lower bound for an ar-
bitrary finite Abelian group G is α(G) ≥ 2|G|/7. More information about the
properties of sum-free sets can be found, for example, in Nathanson (1996).

25.4 Sum-product sets

For every A ⊂ R we let A+A = {a+b : a, b ∈ A} and A·A = {ab : a, b ∈ A}.
An old conjecture of Erdős states that, for every ǫ > 0, every sufficiently large
finite set A ⊂ R satisfies

max{|A + A|, |A · A|} ≥ |A|2−ǫ .

That is, this conjecture asserts that every set of numbers A must have either
a large sum-set A + A or a large product set A · A. The conjecture is central
to our understanding of the interplay between the additive and multiplicative
properties of a set of numbers.
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Erdős and Szemerédi (1983) were the first to prove that there exists δ >
0 so that max{|A + A|, |A · A|} ≥ |A|1+δ for all sufficiently large sets A.
This parameter δ has been steadily improved by a number of authors. One
highlight in this sequence is a proof by Elekes (1997) that δ may be taken
arbitrarily close to 1/4. His argument utilizes a clever application of the
Szemerédi–Trotter theorem on point-line incidences (see Theorem 18.7).

Recall that the Szemerédi–Trotter theorem asserts the following: If 2 ≤
k ≤

√
N and if we take any set of N points in the plane, then it is not

possible to draw more than O(N2/k3) lines so that each of them contains at
least k of the points.

Theorem 25.13 (Elekes 1997). There is an absolute constant ǫ > 0 such
that, for every set A of non-negative real numbers,

max{|A + A|, |A · A|} ≥ ǫ|A|5/4 .

Proof. Let n = |A|, and consider the following n2 straight lines

fa,b(x) := a(x − b) = ax − ab for a, b ∈ A.

Observe that, for every a, b ∈ A, the function maps at least n elements
b + c with c ∈ A to some elements fa,b(b + c) = a · c of A · A. From a
geometric point of view, this means that the graph of each of these m = n2

lines fa,b(x) contains k = n or more points of P := (A + A) × (A · A). By
applying the Szemerédi–Trotter theorem to P with k = n and N = |P |, we
get n2 = O(|P |2/n3), that is

|A + A| · |A · A| = |P | = Ω(n5/2) . ⊓⊔

In the case of finite fields we have the following result.

Theorem 25.14 (Garaev 2007). Let p be a prime number, and A ⊆ Fp \{0}.
Then the number of elements in at least one of the sets A + A or A · A is at
least an absolute constant times

min

{√
p|A|, |A|2√

p

}
.

In particular, if |A| ≈ p2/3 then this minimum is about |A|5/4.

Proof (due to Solymosi 2009). His idea is a very clever application of the
expander mixing lemma (Lemma 15.5). As in Sect. 15.2.1, consider a graph
G whose vertices are n = p(p − 1) pairs (a, b) of elements of a finite field
Zp with a 6= 0, and two vertices (a, b) and (c, d) are joined by an edge iff
ac = b + d (all operations modulo p). We already know that this graph is
(p−1)-regular and that the second largest eigenvalue λ of its incidence matrix
is smaller than

√
3p (see Lemma 15.6). So, if we define S, T ⊆ V by
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S = (A · A) × (−A) and T = (A−1) × (A + A)

then the expander mixing lemma (Lemma 15.2) tells us that

e(S, T ) ≤ (p − 1)|S||T |
p(p − 1)

+ λ
√

|S||T | =
|S||T |

p
+ λ
√

|S||T |

<
|A · A||A + A||A|2

p
+
√

3p|A · A||A + A||A|2 ,

where the second inequality used λ <
√

3p. But for every a, b, c ∈ A there is an
edge between vertices (ab, −c) ∈ S and (b−1, a+c) ∈ T , so that e(S, T ) ≥ |A|3.
Thus, if we set N := |A + A||A · A|, then rearranging the resulting inequality

|A|3 ≤ e(S, T ) ≤ N |A|2
p

+ |A|
√

3pN

=
√

N

(√
N |A|2

p
+ |A|

√
3p

)

gives

√
N >

(√
N

p|A| +

√
3p

|A|2

)−1

.

Now, since (x + y)−1 ≥ 1
2 min{x−1, y−1} for positive x and y, we find that

√
N ≥ ǫ · min

{
p|A|√

N
,

|A|2
p1/2

}

with ǫ = 1/2
√

3, which in turn implies

√
N ≥ ǫ · min

{√
p|A|, |A|2√

p

}
.

To finish the proof, we need only use the two-term arithmetic-geometric mean
inequality:

max{|A + A|, |A · A|} ≥ |A · A| + |A + A|
2

≥
√

|A · A||A + A| =
√

N .

⊓⊔


