the particle thus resembles a random walk on the line where the particle moves from the *i*-th position (0 < i < n) to position i - 1 with probability $p_{i,i-1} \ge 1/2$. This implies that

$$t(i) \le \frac{t(i-1) + t(i+1)}{2} + 1.$$

Replace the obtained inequalities by equations

$$\begin{aligned} x(0) &= 0, \\ x(i) &= \frac{x(i-1) + x(i+1)}{2} + 1 \\ x(n) &= x(n-1) + 1. \end{aligned}$$

This resolves to x(1) = 2n - 1, x(2) = 4n - 4 and in general $x(i) = 2in - i^2$. Therefore, $t(i) \le x(i) \le x(n) = n^2$, as desired.

By Markov's inequality, a random variable can take a value 2 times larger than its expectation with probability at most 1/2. Thus, the probability that the particle will make more than $2 \cdot t(i)$ steps to reach position 0 from position i, is smaller than 1/2. Hence, with probability at least 1/2 the process will terminate in at most $2n^2$ steps, as claimed.

23.1.2 Schöning's algorithm for 3-SAT

Can one design a similar algorithm also for 3-SAT? In the algorithm for 2-SAT above the randomness was only used to flip the bits—the initial assignment can be chosen arbitrarily: one could always start, say, with a fixed assignment (1, 1, ..., 1). But what if we choose this initial assignment at random? If a formula is satisfiable, then we will "catch" a satisfying assignment with probability at least 2^{-n} . Interestingly, the success probability can be substantially increased to about $(3/4)^n$ via the following simple algorithm proposed by Schöning (1999):

- 1. Pick an initial assignment $a \in \{0,1\}^n$ uniformly at random. The assignment a can be obtained as a result of n independent experiments, where at the *i*-th experiment we flip a coin to determine the *i*-th bit of a.
- 2. If a satisfies all clauses of F, then stop with the answer "F is satisfiable."
- 3. If F is not satisfied by a, then pick any of its unsatisfied clauses C, choose one of C's literals uniformly at random, flip its value, and go to step (2).
- 4. Repeat (3) n times.

For a satisfiable 3-CNF F, let p(F) be the probability that Schöning's algorithm finds a satisfying assignment, and let $p(n) = \min p(F)$ where the minimum is over all satisfiable 3-CNFs in n variables. So, p(n) lower bounds the success probability of the above algorithm.

It is clear that $p(n) \ge (1/2)^n$: any fixed satisfying assignment a^* will be "caught" in Step (1) with probability 2^{-n} . It turns out that p(n) is much

23.1 The satisfiability problem

larger—it is at least about $p = (3/4)^n$. Thus, the probability that after, say, $t = 30(4/3)^n$ re-starts we will not have found a satisfying assignment is at most $(1-p)^t \le e^{-pt} = e^{-30}$, an error probability with which everybody can live quite well.

Theorem 23.2 (Schöning 1999). There is an absolute constant c > 0 such that

$$p(n) \ge \frac{c}{n} \left(\frac{3}{4}\right)^n.$$

Proof. Let F be a satisfiable 3-CNF in n variables, and fix some (unknown for us) assignment a^* satisfying F. Let $dist(a, a^*) = |\{i : a_i \neq a_i^*\}|$ be the Hamming distance between a and a^* . Since we choose our initial assignment a at random,

$$\Pr\left[\operatorname{dist}(a, a^*) = j\right] = \binom{n}{j} 2^{-n} \quad \text{for each } j = 0, 1, \dots, n.$$

Hence, if q_j is the probability that the algorithm finds a^* when started with an assignment a of Hamming distance j from a^* , then the probability q that the algorithm finds a^* is

$$q = \sum_{j=0}^{n} \binom{n}{j} 2^{-n} q_j.$$

To lower bound this sum, we concentrate on the value j = n/3. As in the case of 2-CNFs, the progress of the above algorithm can be represented by a particle moving between the integers $0, 1, \ldots, n$ on the real line. The position of the particle indicates how many variables in the current solution have "incorrect values," i.e., values different from those in a^* . If C is a clause not satisfied by a current assignment, then $C(a^*) = 1$ implies that in Step (3) a "right" variable of C (that is, one on which a differs from a^*) will be picked with probability at least 1/3. That is, the particle will move from position i to position i - 1 with probability at least 1/3, and will move to position i + 1 with probability at most 2/3. We have to estimate the probability $q_{n/3}$ that the particle reaches position 0, if started in position n/3.

Let A be the event that, during n steps, the particle moves n/3 times to the right and 2n/3 times to the left. Then

$$q_{n/3} \ge \Pr[A] = \binom{n}{n/3} \left(\frac{1}{3}\right)^{2n/3} \left(\frac{2}{3}\right)^{n/3}$$

Now we use the estimate

$$\binom{n}{\alpha n} \geq \frac{1}{O(\sqrt{n})} 2^{n \cdot H(\alpha)} = \frac{1}{\Theta(\sqrt{n})} \left[\left(\frac{1}{\alpha}\right)^{\alpha} \left(\frac{1}{1-\alpha}\right)^{1-\alpha} \right]^n,$$

where $H(\alpha) = -\alpha \log_2 \alpha - (1 - \alpha) \log_2 (1 - \alpha)$ is the binary entropy function (see Exercise 1.16). Therefore, setting $\alpha = 1/3$,

$$q \ge \binom{n}{n/3} q_{n/3} 2^{-n}$$

$$\ge \binom{n}{n/3}^2 \left(\frac{1}{3}\right)^{2n/3} \left(\frac{2}{3}\right)^{n/3} 2^{-n}$$

$$\ge \frac{1}{\Theta(n)} \left[3^{2/3} \left(\frac{3}{2}\right)^{4/3} \left(\frac{1}{3}\right)^{2/3} \left(\frac{2}{3}\right)^{1/3} 2^{-1}\right]^n$$

$$= \frac{1}{\Theta(n)} \left(\frac{3}{4}\right)^n.$$

23.2 Random walks in linear spaces

Let V be a linear space over \mathbb{F}_2 of dimension d, and let v be a random vector in V. Starting with v, let us "walk" over V by adding independent copies of v. (Being an independent copy of v does not mean being identical to v, but rather having the same distribution.) What is the probability that we will reach a particular vector $v \in V$? More formally, define

$$\boldsymbol{v}^{(r)} = \boldsymbol{v}_1 \oplus \boldsymbol{v}_2 \oplus \cdots \oplus \boldsymbol{v}_r,$$

where v_1, v_2, \ldots, v_r are independent copies of v. What can be said about the distribution of $v^{(r)}$ as $r \to \infty$? It turns out that, if $\Pr[v=0] > 0$ and v is not concentrated in some proper subspace of V, then the distribution of $v^{(r)}$ converges to a uniform distribution, as $r \to \infty$. That is, we will reach each vector of V with almost the same probability!

Lemma 23.3 (Razborov 1988). Let V be a d-dimensional linear space over \mathbb{F}_2 . Let b_1, \ldots, b_d be a basis of V and

$$p = \min \left\{ \Pr \left[\boldsymbol{v} = 0 \right], \Pr \left[\boldsymbol{v} = b_1 \right], \dots, \Pr \left[\boldsymbol{v} = b_d \right] \right\}.$$

Then, for every vector $u \in V$ and for all $r \geq 1$,

$$\left|\Pr\left[\boldsymbol{v}^{(r)}=u\right]-2^{-d}\right| \le e^{-2pr}.$$

Proof. Let $\langle x, y \rangle = x_1 y_1 \oplus \cdots \oplus x_n y_n$ be the scalar product of vectors x, y over \mathbb{F}_2 ; hence $\langle x, y \rangle = 1$ if and only if the vectors x and y have an odd number of 1s in common. For a vector $w \in V$, let $p_w = \Pr[v = w]$ and set

$$\Delta_v := \sum_{w \in V} p_w(-1)^{\langle w, v \rangle}.$$
(23.1)