
326 23 Random Walks

the particle thus resembles a random walk on the line where the particle
moves from the i-th position (0 < i < n) to position i − 1 with probability
pi,i−1 ≥ 1/2. This implies that

t(i) ≤ t(i − 1) + t(i + 1)

2
+ 1.

Replace the obtained inequalities by equations

x(0) = 0,

x(i) =
x(i − 1) + x(i + 1)

2
+ 1,

x(n) = x(n − 1) + 1.

This resolves to x(1) = 2n − 1, x(2) = 4n − 4 and in general x(i) = 2in − i2.
Therefore, t(i) ≤ x(i) ≤ x(n) = n2, as desired.

By Markov’s inequality, a random variable can take a value 2 times larger
than its expectation with probability at most 1/2. Thus, the probability that
the particle will make more than 2·t(i) steps to reach position 0 from position
i, is smaller than 1/2. Hence, with probability at least 1/2 the process will
terminate in at most 2n2 steps, as claimed. ⊓⊔

23.1.2 Schöning’s algorithm for 3-SAT

Can one design a similar algorithm also for 3-SAT? In the algorithm for
2-SAT above the randomness was only used to flip the bits—the initial as-
signment can be chosen arbitrarily: one could always start, say, with a fixed
assignment (1, 1, . . . , 1). But what if we choose this initial assignment at ran-
dom? If a formula is satisfiable, then we will “catch” a satisfying assignment
with probability at least 2−n. Interestingly, the success probability can be
substantially increased to about (3/4)n via the following simple algorithm
proposed by Schöning (1999):

1. Pick an initial assignment a ∈ {0, 1}n uniformly at random. The assign-
ment a can be obtained as a result of n independent experiments, where
at the i-th experiment we flip a coin to determine the i-th bit of a.

2. If a satisfies all clauses of F , then stop with the answer “F is satisfiable.”
3. If F is not satisfied by a, then pick any of its unsatisfied clauses C, choose

one of C’s literals uniformly at random, flip its value, and go to step (2).
4. Repeat (3) n times.

For a satisfiable 3-CNF F , let p(F) be the probability that Schöning’s
algorithm finds a satisfying assignment, and let p(n) = min p(F) where the
minimum is over all satisfiable 3-CNFs in n variables. So, p(n) lower bounds
the success probability of the above algorithm.

It is clear that p(n) ≥ (1/2)n: any fixed satisfying assignment a∗ will be
“caught” in Step (1) with probability 2−n. It turns out that p(n) is much

23.1 The satisfiability problem 327

larger—it is at least about p = (3/4)n. Thus, the probability that after, say,
t = 30(4/3)n re-starts we will not have found a satisfying assignment is at
most (1 − p)t ≤ e−pt = e−30, an error probability with which everybody can
live quite well.

Theorem 23.2 (Schöning 1999). There is an absolute constant c > 0 such
that

p(n) ≥ c

n

(
3

4

)n

.

Proof. Let F be a satisfiable 3-CNF in n variables, and fix some (unknown
for us) assignment a∗ satisfying F . Let dist(a, a∗) = |{i : ai 6= a∗

i }| be the
Hamming distance between a and a∗. Since we choose our initial assignment
a at random,

Pr [dist(a, a∗) = j] =

(
n

j

)
2−n for each j = 0, 1, . . . , n.

Hence, if qj is the probability that the algorithm finds a∗ when started with
an assignment a of Hamming distance j from a∗, then the probability q that
the algorithm finds a∗ is

q =
n∑

j=0

(
n

j

)
2−nqj .

To lower bound this sum, we concentrate on the value j = n/3. As in the
case of 2-CNFs, the progress of the above algorithm can be represented by a
particle moving between the integers 0, 1, . . . , n on the real line. The position
of the particle indicates how many variables in the current solution have
“incorrect values,” i.e., values different from those in a∗. If C is a clause not
satisfied by a current assignment, then C(a∗) = 1 implies that in Step (3) a
“right” variable of C (that is, one on which a differs from a∗) will be picked
with probability at least 1/3. That is, the particle will move from position i
to position i − 1 with probability at least 1/3, and will move to position i + 1
with probability at most 2/3. We have to estimate the probability qn/3 that
the particle reaches position 0, if started in position n/3.

Let A be the event that, during n steps, the particle moves n/3 times to
the right and 2n/3 times to the left. Then

qn/3 ≥ Pr [A] =

(
n

n/3

)(
1

3

)2n/3(
2

3

)n/3

.

Now we use the estimate
(

n

αn

)
≥ 1

O(
√

n)
2n·H(α) =

1

Θ(
√

n)

[(1

α

)α(1

1 − α

)1−α
]n

,

328 23 Random Walks

where H(α) = −α log2 α − (1 − α) log2(1 − α) is the binary entropy function
(see Exercise 1.16). Therefore, setting α = 1/3,

q ≥
(

n

n/3

)
qn/32−n

≥
(

n

n/3

)2(
1

3

)2n/3(
2

3

)n/3

2−n

≥ 1

Θ(n)

[
32/3

(3

2

)4/3(1

3

)2/3(2

3

)1/3

2−1

]n

=
1

Θ(n)

(3

4

)n

. ⊓⊔

23.2 Random walks in linear spaces

Let V be a linear space over F2 of dimension d, and let v be a random vector
in V . Starting with v, let us “walk” over V by adding independent copies of
v. (Being an independent copy of v does not mean being identical to v, but
rather having the same distribution.) What is the probability that we will
reach a particular vector v ∈ V ? More formally, define

v(r) = v1 ⊕ v2 ⊕ · · · ⊕ vr,

where v1, v2, . . . , vr are independent copies of v. What can be said about the
distribution of v(r) as r → ∞? It turns out that, if Pr [v = 0] > 0 and v is
not concentrated in some proper subspace of V , then the distribution of v(r)

converges to a uniform distribution, as r → ∞. That is, we will reach each
vector of V with almost the same probability!

Lemma 23.3 (Razborov 1988). Let V be a d-dimensional linear space over
F2. Let b1, . . . , bd be a basis of V and

p = min {Pr [v = 0] , Pr [v = b1] , . . . , Pr [v = bd]} .

Then, for every vector u ∈ V and for all r ≥ 1,

∣∣∣Pr
[
v(r) = u

]
− 2−d

∣∣∣ ≤ e−2pr.

Proof. Let 〈x, y〉 = x1y1 ⊕· · ·⊕xnyn be the scalar product of vectors x, y over
F2; hence 〈x, y〉 = 1 if and only if the vectors x and y have an odd number
of 1s in common. For a vector w ∈ V , let pw = Pr [v = w] and set

∆v :=
∑

w∈V

pw(−1)〈w,v〉. (23.1)

