the particle thus resembles a random walk on the line where the particle moves from the i-th position $(0<i<n)$ to position $i-1$ with probability $p_{i, i-1} \geq 1 / 2$. This implies that

$$
t(i) \leq \frac{t(i-1)+t(i+1)}{2}+1
$$

Replace the obtained inequalities by equations

$$
\begin{aligned}
& x(0)=0 \\
& x(i)=\frac{x(i-1)+x(i+1)}{2}+1, \\
& x(n)=x(n-1)+1 .
\end{aligned}
$$

This resolves to $x(1)=2 n-1, x(2)=4 n-4$ and in general $x(i)=2 i n-i^{2}$. Therefore, $t(i) \leq x(i) \leq x(n)=n^{2}$, as desired.

By Markov's inequality, a random variable can take a value 2 times larger than its expectation with probability at most $1 / 2$. Thus, the probability that the particle will make more than $2 \cdot t(i)$ steps to reach position 0 from position i, is smaller than $1 / 2$. Hence, with probability at least $1 / 2$ the process will terminate in at most $2 n^{2}$ steps, as claimed.

23.1.2 Schöning's algorithm for 3-SAT

Can one design a similar algorithm also for 3-SAT? In the algorithm for 2-SAT above the randomness was only used to flip the bits-the initial assignment can be chosen arbitrarily: one could always start, say, with a fixed assignment $(1,1, \ldots, 1)$. But what if we choose this initial assignment at random? If a formula is satisfiable, then we will "catch" a satisfying assignment with probability at least 2^{-n}. Interestingly, the success probability can be substantially increased to about $(3 / 4)^{n}$ via the following simple algorithm proposed by Schöning (1999):

1. Pick an initial assignment $a \in\{0,1\}^{n}$ uniformly at random. The assignment a can be obtained as a result of n independent experiments, where at the i-th experiment we flip a coin to determine the i-th bit of a.
2. If a satisfies all clauses of F, then stop with the answer " F is satisfiable."
3. If F is not satisfied by a, then pick any of its unsatisfied clauses C, choose one of C 's literals uniformly at random, flip its value, and go to step (2).
4. Repeat (3) n times.

For a satisfiable 3-CNF F, let $p(F)$ be the probability that Schöning's algorithm finds a satisfying assignment, and let $p(n)=\min p(F)$ where the minimum is over all satisfiable 3-CNFs in n variables. So, $p(n)$ lower bounds the success probability of the above algorithm.

It is clear that $p(n) \geq(1 / 2)^{n}$: any fixed satisfying assignment a^{*} will be "caught" in Step (1) with probability 2^{-n}. It turns out that $p(n)$ is much
larger-it is at least about $p=(3 / 4)^{n}$. Thus, the probability that after, say, $t=30(4 / 3)^{n}$ re-starts we will not have found a satisfying assignment is at most $(1-p)^{t} \leq \mathrm{e}^{-p t}=\mathrm{e}^{-30}$, an error probability with which everybody can live quite well.

Theorem 23.2 (Schöning 1999). There is an absolute constant $c>0$ such that

$$
p(n) \geq \frac{c}{n}\left(\frac{3}{4}\right)^{n}
$$

Proof. Let F be a satisfiable 3-CNF in n variables, and fix some (unknown for us) assignment a^{*} satisfying F. Let $\operatorname{dist}\left(a, a^{*}\right)=\left|\left\{i: a_{i} \neq a_{i}^{*}\right\}\right|$ be the Hamming distance between a and a^{*}. Since we choose our initial assignment a at random,

$$
\operatorname{Pr}\left[\operatorname{dist}\left(a, a^{*}\right)=j\right]=\binom{n}{j} 2^{-n} \quad \text { for each } j=0,1, \ldots, n
$$

Hence, if q_{j} is the probability that the algorithm finds a^{*} when started with an assignment a of Hamming distance j from a^{*}, then the probability q that the algorithm finds a^{*} is

$$
q=\sum_{j=0}^{n}\binom{n}{j} 2^{-n} q_{j}
$$

To lower bound this sum, we concentrate on the value $j=n / 3$. As in the case of 2-CNFs, the progress of the above algorithm can be represented by a particle moving between the integers $0,1, \ldots, n$ on the real line. The position of the particle indicates how many variables in the current solution have "incorrect values," i.e., values different from those in a^{*}. If C is a clause not satisfied by a current assignment, then $C\left(a^{*}\right)=1$ implies that in Step (3) a "right" variable of C (that is, one on which a differs from a^{*}) will be picked with probability at least $1 / 3$. That is, the particle will move from position i to position $i-1$ with probability at least $1 / 3$, and will move to position $i+1$ with probability at most $2 / 3$. We have to estimate the probability $q_{n / 3}$ that the particle reaches position 0 , if started in position $n / 3$.

Let A be the event that, during n steps, the particle moves $n / 3$ times to the right and $2 n / 3$ times to the left. Then

$$
q_{n / 3} \geq \operatorname{Pr}[A]=\binom{n}{n / 3}\left(\frac{1}{3}\right)^{2 n / 3}\left(\frac{2}{3}\right)^{n / 3}
$$

Now we use the estimate

$$
\binom{n}{\alpha n} \geq \frac{1}{O(\sqrt{n})} 2^{n \cdot H(\alpha)}=\frac{1}{\Theta(\sqrt{n})}\left[\left(\frac{1}{\alpha}\right)^{\alpha}\left(\frac{1}{1-\alpha}\right)^{1-\alpha}\right]^{n},
$$

where $H(\alpha)=-\alpha \log _{2} \alpha-(1-\alpha) \log _{2}(1-\alpha)$ is the binary entropy function (see Exercise 1.16). Therefore, setting $\alpha=1 / 3$,

$$
\begin{aligned}
q & \geq\binom{ n}{n / 3} q_{n / 3} 2^{-n} \\
& \geq\binom{ n}{n / 3}^{2}\left(\frac{1}{3}\right)^{2 n / 3}\left(\frac{2}{3}\right)^{n / 3} 2^{-n} \\
& \geq \frac{1}{\Theta(n)}\left[3^{2 / 3}\left(\frac{3}{2}\right)^{4 / 3}\left(\frac{1}{3}\right)^{2 / 3}\left(\frac{2}{3}\right)^{1 / 3} 2^{-1}\right]^{n} \\
& =\frac{1}{\Theta(n)}\left(\frac{3}{4}\right)^{n}
\end{aligned}
$$

23.2 Random walks in linear spaces

Let V be a linear space over \mathbb{F}_{2} of dimension d, and let \boldsymbol{v} be a random vector in V. Starting with \boldsymbol{v}, let us "walk" over V by adding independent copies of \boldsymbol{v}. (Being an independent copy of \boldsymbol{v} does not mean being identical to \boldsymbol{v}, but rather having the same distribution.) What is the probability that we will reach a particular vector $v \in V$? More formally, define

$$
\boldsymbol{v}^{(r)}=\boldsymbol{v}_{1} \oplus \boldsymbol{v}_{2} \oplus \cdots \oplus \boldsymbol{v}_{r}
$$

where $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}$ are independent copies of \boldsymbol{v}. What can be said about the distribution of $\boldsymbol{v}^{(r)}$ as $r \rightarrow \infty$? It turns out that, if $\operatorname{Pr}[\boldsymbol{v}=0]>0$ and \boldsymbol{v} is not concentrated in some proper subspace of V, then the distribution of $\boldsymbol{v}^{(r)}$ converges to a uniform distribution, as $r \rightarrow \infty$. That is, we will reach each vector of V with almost the same probability!

Lemma 23.3 (Razborov 1988). Let V be a d-dimensional linear space over \mathbb{F}_{2}. Let b_{1}, \ldots, b_{d} be a basis of V and

$$
p=\min \left\{\operatorname{Pr}[\boldsymbol{v}=0], \operatorname{Pr}\left[\boldsymbol{v}=b_{1}\right], \ldots, \operatorname{Pr}\left[\boldsymbol{v}=b_{d}\right]\right\}
$$

Then, for every vector $u \in V$ and for all $r \geq 1$,

$$
\left|\operatorname{Pr}\left[\boldsymbol{v}^{(r)}=u\right]-2^{-d}\right| \leq \mathrm{e}^{-2 p r}
$$

Proof. Let $\langle x, y\rangle=x_{1} y_{1} \oplus \cdots \oplus x_{n} y_{n}$ be the scalar product of vectors x, y over \mathbb{F}_{2}; hence $\langle x, y\rangle=1$ if and only if the vectors x and y have an odd number of 1 s in common. For a vector $w \in V$, let $p_{w}=\operatorname{Pr}[\boldsymbol{v}=w]$ and set

$$
\begin{equation*}
\Delta_{v}:=\sum_{w \in V} p_{w}(-1)^{\langle w, v\rangle} \tag{23.1}
\end{equation*}
$$

