Proof. Let x_{1}, \ldots, x_{m} be a subset of $m=f(n)$ integers in $[n]$ all of whose sums are distinct. Let I_{1}, \ldots, I_{m} be independent random variables, each taking values 0 and 1 with equal probability $1 / 2$. Consider the random variable $X=I_{1} x_{1}+\cdots+I_{m} x_{m}$. Then

$$
\mathrm{E}[X]=\frac{x_{1}+\cdots+x_{m}}{2} \text { and } \operatorname{Var}[X]=\frac{x_{1}^{2}+\cdots+x_{m}^{2}}{4} \leq \frac{n^{2} m}{4}
$$

Setting $Y:=X-\mathrm{E}[X]$ and using Chebyshev's inequality with $t:=$ $2 \sqrt{\operatorname{Var}[X]} \leq n \sqrt{m}$, after reversing the inequality we obtain

$$
\operatorname{Pr}[|Y| \leq t] \geq 1-\frac{1}{4}=0.75
$$

On the other hand, due to the assumption that all sums of x_{1}, \ldots, x_{m} are distinct, the probability that X takes a particular value is either 0 or 2^{-m}. In particular, $\operatorname{Pr}[Y=s] \leq 2^{-m}$ for every integer s in the interval $[-t, t]$. Since there are only $2 t+1$ such integers, the union bound implies that

$$
\operatorname{Pr}[|Y| \leq t] \leq 2^{-m}(2 t+1)
$$

Comparing the above inequalities and remembering that $t \leq n \sqrt{m}$ leads to $0.75 \cdot 2^{m} \leq 2 t+1 \leq 2 n \sqrt{m}+1$, it follows that $2^{m} / \sqrt{m} \leq C n$ for a constant C, and the desired upper bound on $m=f(n)$ follows.

21.3 Prime factors

Number theory has its foundation in the Fundamental Theorem of Arithmetic, which states that every integer $x>1$ can be written uniquely in the form

$$
x=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}
$$

where the p_{i} 's are primes and the k_{i} 's are positive integers. Given x, we are interested in the number r of prime factors of x, that is, in the number of distinct primes p_{i} in such a representation of x. This number of primes dividing x is usually denoted by $\nu(x)$.

An important result in number theory, due to Hardy and Ramanujan (1917) states that almost every integer number between 1 and n has about $\ln \ln n$ prime factors. "Almost all" here means all but $o(n)$ numbers.

Theorem 21.3. Let $\alpha=\alpha(n)$ be an arbitrarily slowly growing function. Then almost all integers x in $[n]$ satisfy $|\nu(x)-\ln \ln n| \leq \alpha \sqrt{\ln \ln n}$.
Proof (due to Turán 1934). Throughout this proof, let p, q denote prime numbers. We need two well known results from number theory, namely,

$$
\begin{align*}
& \sum_{p \leq x} \frac{1}{p} \leq \ln \ln x+O(1) \tag{21.4}\\
& \pi(x)=(1+o(1)) \frac{x}{\ln x} \tag{21.5}
\end{align*}
$$

where $\pi(x)$ denotes the number of primes smaller than x.
We now choose x randomly from the set $\{1, \ldots, n\}$. For prime p, let X_{p} be the indicator random variable for the event that p divides x, and let $X=\sum_{p \leq x} X_{p}$; hence, $X=\nu(x)$.

Since x can be chosen in n different ways, and in $\lfloor n / p\rfloor$ cases it will be divisible by p, we have that

$$
\mathrm{E}\left[X_{p}\right]=\frac{\lfloor n / p\rfloor}{n} \leq \frac{1}{p}
$$

and by (21.4) we also have

$$
\mathrm{E}[X] \leq \sum_{p \leq x} \frac{1}{p} \leq \ln \ln n+O(1)
$$

Now we bound the variance

$$
\operatorname{Var}[X]=\sum_{p \leq x} \operatorname{Var}\left[X_{p}\right]+\sum_{p \neq q \leq n} \operatorname{Cov}\left(X_{p} X_{q}\right) \leq \mathrm{E}[X]+\sum_{p \neq q \leq n} \operatorname{Cov}\left(X_{p} X_{q}\right)
$$

since $\operatorname{Var}\left[X_{p}\right] \leq \mathrm{E}\left[X_{p}\right]$. Observe that $X_{p} X_{q}=1$ if and only if both p and q divide x, which further implies that $p q$ divides x. In view of this we have

$$
\begin{aligned}
\operatorname{Cov}\left(X_{p} X_{q}\right) & =\mathrm{E}\left[X_{p} X_{q}\right]-\mathrm{E}\left[X_{p}\right] \mathrm{E}\left[X_{q}\right]=\frac{\lfloor n /(p q)\rfloor}{n}-\frac{\lfloor n / p\rfloor}{n} \cdot \frac{\lfloor n / q\rfloor}{n} \\
& \leq \frac{1}{p q}-\left(\frac{1}{p}-\frac{1}{n}\right)\left(\frac{1}{q}-\frac{1}{n}\right) \\
& \leq \frac{1}{n}\left(\frac{1}{p}+\frac{1}{q}\right)
\end{aligned}
$$

Then by (21.5)

$$
\sum_{p \neq q \leq n} \operatorname{Cov}\left(X_{p} X_{q}\right) \leq \frac{2 \pi(n)}{n} \sum_{p \leq n} \frac{1}{p}=O\left(\frac{\ln \ln n}{\ln n}\right) \rightarrow 0
$$

Applying Chebyshev's inequality with $t=\alpha \sqrt{\ln \ln n}$ yields the desired result.

