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Proof. Let x1, . . . , xm be a subset of m = f(n) integers in [n] all of whose
sums are distinct. Let I1, . . . , Im be independent random variables, each tak-
ing values 0 and 1 with equal probability 1/2. Consider the random variable
X = I1x1 + · · · + Imxm. Then

E [X ] =
x1 + · · · + xm

2
and Var [X ] =

x2
1 + · · · + x2

m

4
≤ n2m

4
.

Setting Y := X − E [X ] and using Chebyshev’s inequality with t :=
2
√

Var [X ] ≤ n
√

m, after reversing the inequality we obtain

Pr [|Y | ≤ t] ≥ 1 − 1

4
= 0.75 .

On the other hand, due to the assumption that all sums of x1, . . . , xm are
distinct, the probability that X takes a particular value is either 0 or 2−m. In
particular, Pr [Y = s] ≤ 2−m for every integer s in the interval [−t, t]. Since
there are only 2t + 1 such integers, the union bound implies that

Pr [|Y | ≤ t] ≤ 2−m(2t + 1) .

Comparing the above inequalities and remembering that t ≤ n
√

m leads to
0.75 · 2m ≤ 2t + 1 ≤ 2n

√
m + 1, it follows that 2m/

√
m ≤ Cn for a constant

C, and the desired upper bound on m = f(n) follows. ⊓⊔

21.3 Prime factors

Number theory has its foundation in the Fundamental Theorem of Arithmetic,
which states that every integer x > 1 can be written uniquely in the form

x = pk1
1 pk2

2 · · · pkr
r ,

where the pi’s are primes and the ki’s are positive integers. Given x, we
are interested in the number r of prime factors of x, that is, in the number
of distinct primes pi in such a representation of x. This number of primes
dividing x is usually denoted by ν(x).

An important result in number theory, due to Hardy and Ramanujan
(1917) states that almost every integer number between 1 and n has about
ln ln n prime factors. “Almost all” here means all but o(n) numbers.

Theorem 21.3. Let α = α(n) be an arbitrarily slowly growing function.
Then almost all integers x in [n] satisfy |ν(x) − ln ln n| ≤ α

√
ln ln n.

Proof (due to Turán 1934). Throughout this proof, let p, q denote prime num-
bers. We need two well known results from number theory, namely,
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∑

p≤x

1

p
≤ ln ln x + O(1) , (21.4)

π(x) = (1 + o(1))
x

ln x
, (21.5)

where π(x) denotes the number of primes smaller than x.
We now choose x randomly from the set {1, . . . , n}. For prime p, let Xp

be the indicator random variable for the event that p divides x, and let
X =

∑
p≤x Xp; hence, X = ν(x).

Since x can be chosen in n different ways, and in ⌊n/p⌋ cases it will be
divisible by p, we have that

E [Xp] =
⌊n/p⌋

n
≤ 1

p
,

and by (21.4) we also have

E [X ] ≤
∑

p≤x

1

p
≤ ln ln n + O(1) .

Now we bound the variance

Var [X ] =
∑

p≤x

Var [Xp] +
∑

p6=q≤n

Cov (XpXq) ≤ E [X ] +
∑

p6=q≤n

Cov (XpXq) ,

since Var [Xp] ≤ E [Xp]. Observe that XpXq = 1 if and only if both p and q
divide x, which further implies that pq divides x. In view of this we have

Cov (XpXq) = E [XpXq] − E [Xp] E [Xq] =
⌊n/(pq)⌋

n
− ⌊n/p⌋

n
· ⌊n/q⌋

n

≤ 1

pq
−
(1

p
− 1

n

)(1

q
− 1

n

)

≤ 1

n

(1

p
+

1

q

)
.

Then by (21.5)

∑

p6=q≤n

Cov (XpXq) ≤ 2π(n)

n

∑

p≤n

1

p
= O

( ln ln n

ln n

)
→ 0 .

Applying Chebyshev’s inequality with t = α
√

ln ln n yields the desired result.
⊓⊔


