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19.4 The k-SAT problem

Let x1, . . . , xn be boolean variables. A literal is a boolean variable xi or its
negation xi. A k-CNF formula (conjunctive normal form) is an And of clauses,
each being an Or of k literals. Such a CNF formula ϕ is satisfiable if these
exists a truth assignment a ∈ {0, 1}n for which ϕ(a) = 1.

The k-SAT problem is, given a k-CNF, to decide whether it is satisfiable or
not; here k ≥ 3 is assumed to be a fixed constant. Of course, this question can
always be solved in 2n trials: just test all 2n possible assignments one by one.
This dummy strategy will, however, take a huge amount of time on formulas
with, say, n = 100 variables. Are there any quicker algorithms working, say
in time nc for some constant c? To show that no such algorithm exists is one
of the central problems (if not the central) of the whole of computer science,
and is known under the name “P vs. NP problem.”

On the other hand, the Lovász Local Lemma gives us a tool to quickly
recognize some satisfiable CNFs by just looking at their structure!

We say that two clauses overlap if they have a common variable xi, regard-
less of whether the variable is negated or not in the clauses. In this case we
also say that the clauses share the variable xi.

Lemma 19.8. Let ϕ be a k-CNF formula. If each of its clauses overlaps with
at most 2k−2 clauses, then ϕ is satisfiable.

Note that the total number n of variables is irrelevant here!

Proof. Consider a random experiment where the variables in ϕ are assigned
truth values by independent tosses of a fair coin. Let Ai be the event that
the i-th clause of ϕ is not satisfied. For this event to happen, all k literals
in Ci must receive a “wrong” value. Hence, p = Pr[Ai] = 2−k. Further, each
Ai is mutually independent of the set of all Aj such that the i-th clause Ci

and the j-th clause Cj of ϕ do not overlap. Hence, the dependency graph of
the events Ai has degree d ≤ 2k/4. Since 4dp ≤ 42k−22−k = 1, Lemma 19.1
applies and ϕ will be satisfied with non-zero probability. ⊓⊔

This lemma is “non-constructive:” it gives no clue on how to find a satis-
fying assignment in a reasonable (polynomial) time.

Beck (1991) achieved a breakthrough by proving that a polynomial-time
algorithm exists which finds a satisfying assignment to every k-CNF formula
in which each clause has a neighbourhood of at most 2k/48 other clauses.
His approach was deterministic and used the nonconstructive version of the
Lovász Local Lemma as a key ingredient, basically proving that even after
truncating clauses to a 48th of their size (a step used to simplify the formula
and make it fall apart into small components), a solution remains guaranteed
and can then be looked for by exhaustive enumeration. Alon (1991) simplified
Beck’s algorithm and analysis by introducing randomness and presented an
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algorithm that works up to neighbourhoods of 2k/8 in size. Czumaj and Schei-
deler (2000) later demonstrated that a variant of the method can be made to
work for the non-uniform case where clause sizes vary. Srinivasan (2008) im-
proved the bound of what was polynomial-time feasible to essentially 2k/4 by
a more accurate analysis. Finally, Moser (2009) published a polynomial-time
algorithm that can cope with neighbourhood size up to 2k−5 neighbours,
which is asymptotically optimal with a constant gap. Recently, Moser and
Tardos (2010) gave a randomized algorithm for the general (non-symmetric)
version of the Lovász Local Lemma.

Theorem 19.9 (Moser 2009). There is a constant c such that, given a k-CNF
formula ϕ with m clauses, none of which overlaps with more than r = 2k−c

other clauses, one can find a satisfying assignment for ϕ in expected time
polynomial in m.

We are not going to prove this theorem in full detail. We rather give a
coarse, intuitive and convincing argument that this “must” hold.

Moser’s algorithm Solve(ϕ) is a randomized algorithm consisting of recur-
sive calls of (also recursive) procedures Fix(C) for clauses C of ϕ: Pick a
random assignment a ∈ {0, 1}n; while there is an unsatisfied clause C, call
Fix(C). The procedure Fix(C) itself is the following recursive procedure:

Step 1: Replace the variables of C with new random values.
Step 2: While there is a clause D that shares a variable with C that is not
satisfied, call Fix(D).

First, observe that, if Fix(C) terminates, then every clause A that was
satisfied before Fix(C) is called will remain satisfied after Fix(C) is called.
This holds because each flipping of the variables in a clause C can only affect
the values of clauses that share a common variable with C. So, if the value
of A is turned from true to false at some moment of the execution of Fix(C),
then Fix(A) is called.

By this observation, Solve makes at most m calls to Fix, if Fix(C) always
terminates. So we need to show all the Fix(C) terminate. Suppose the al-
gorithm makes at least s Fix calls including all the recursive ones. We will
show that s is bounded by O(m log m), and thus the algorithm terminates in
almost linear expected time.

This can be proved (at least at an intuitive level) by Kolmogorov com-
plexity arguments. An extensive account concerning these arguments can be
found in the book by Li and Vitányi (2008). Here we just describe this argu-
ment on an informal level.

The Kolmogorov complexity, K(x), of a string x is the length of the string’s
shortest description in some fixed universal description language. Such a de-
scription language can be based on any programming language. If P is a
program which outputs a string x, then P is a description of x. The length of
the description is just the length of P as a character string. In determining
the length of P , the lengths of any subroutines used in P must be accounted
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for. The length of any integer constant n which occurs in the program P is the
number of bits required to represent n, that is (roughly) log2 n. For example,
a huge string x = 010101 · · ·01 with 01 repeated 2100 times can be described
as a program “repeat 01 2100 times”, whose length (after binary encoding)
is only about 100 bits. In general, any string containing some repeating pat-
terns has small Kolmogorov complexity. On the other hand, random strings
are “resistant” against compression, and hence, have large Kolmogorov com-
plexity.

It is straightforward to compute upper bounds for K(x): simply compress
the string x with some method, implement the corresponding decompresser in
the chosen language, concatenate the decompresser to the compressed string,
and measure the resulting string’s length.

A string x is compressible by a number c if it has a description whose
length does not exceed |x| − c, that is, if K(x) ≤ |x| − c, where |x| is the
length of (number of symbols in) x. Otherwise x is incompressible by c. A
string incompressible by 1 is said to be simply incompressible or Kolmogorov
random; by the pigeonhole principle, incompressible strings must exist, since
there are 2n bit strings of length n but only 2n − 1 shorter strings, that is
strings of length n − 1 or less.

For the same reason, "most" strings are complex in the sense that they
cannot be significantly compressed: K(x) is not much smaller than |x|, the
length of x in bits. To make this precise, fix a value of n. There are 2n

binary strings of length n. Let x be a string chosen uniformly at random with
probability 2−n. It is easy to show that the probability that x is compressible
by c is negligible: it is 2−c+1 − 2−n. To see this, it is enough to observe that
the number of descriptions of length not exceeding n − c is given by the
geometric series: 1 + 2 + 22 + · · · + 2n−c = 2n−c+1 − 1, and there remain at
least 2n − 2n−c+1 + 1 binary strings of length n that are incompressible by c.

Now, the so-called incompressibility argument works as follows: In order
to show that some condition holds, assume it does not hold and use this
assumption to show that then some Kolmogorov random string x would have
a description much shorter than K(x).

After this short excursion into Kolmogorov complexity, let us return to
Moser’s algorithm. Fix a Kolmogorov random string x of length n+sk (where
n is the total number of variables) and assume the algorithm uses the first
n bits as the initial assignment a, and k bits each to replace the variables in
each Fix call. (If we choose the string x randomly then it will be Kolmogorov
random with high probability.) The random string x is used in Step 1 of
Fix(C) to replace the values of variables in C by “fresh” random values, and
each time next k bits of x are used.

If we know which clause is being fixed, we know the clause is violated so
we know all the bits of this clause and thus we learn k bits of x (recall that
assignments used by an algorithm are from the string x). We then replace
those bits with another part of x.
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So we can describe x by the list of clauses we fix plus the remaining n
bits of the final assignment. We can describe each clause C such that Fix(C)
is called by Solve using O(m log m) bits. The remaining fixed clauses can
be described by log2 r + α bits (for a constant α) because either it is one
of r clauses that intersects the previous clause or we indicate the end of a
recursive call (keeping track of the recursion stack). This is exactly the place
where the compression comes: Since the clause was not satisfied, we reveal k
bits of information about the string x, but since r ≤ 2k−c, we can describe
this information using only k − c bits. Since the string x was Kolmogorov
random, we must have

O(m log m) + s(log r + α) + n ≥ n + sk

or s(k− log r−α) ≤ O(m log m). Now, if r ≤ 2k−c for c > α, then k− log r−α
is a positive constant (not exceeding k, which is also a constant), implying
that s = O(m log m).

Exercises

19.1. Let A1, . . . , An be events, and suppose that each of them is mutually
independent of all the other events except for at most d of them. Let 0 < ǫ < 1,
and assume that

Pr[Ai] ≤ ǫ

n

(
1 − ǫ

n

)d

for all i = 1, . . . , n Prove that then Pr[∩iAi] ≥ 1 − ǫ.

19.2. Let F be a k-uniform k-regular family, i.e., each set has k points and
each point belongs to k sets. Let k ≥ 10. Show that then at least one 2-
coloring of points leaves no set of F monochromatic.

19.3. The van der Waerden number W (2, k) is the least number n such that
any coloring of {1, 2, . . . , n} in two colors gives a monochromatic arithmetic
progression with k terms. Prove that W (2, k) > 2k/(2ek). Hint: Assume that
n ≤ 2k/(2ek) and observe that one progression with k terms intersects at most nk

others.

19.4. (Erdős–Lovász 1975). Consider the colorings of real numbers in r colors.
Say that a set of numbers is multicolored if it contains elements of all r colors.
Fix a finite set X of real numbers, and let m be such that

4rm(m − 1)

(
1 − 1

r

)m

< 1.

Using Lemma 19.1 prove that then, for any set S of m numbers there is an
r-coloring under which every translate x+S := {x+y : y ∈ S}, with x ∈ X ,


