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The celebrated theorem due to P. Turán (1941) states: if a graph G has
n vertices and has no k-clique then it has at most (1 − 1/(k − 1)) n2/2 edges
(see Theorem 4.8). Its dual form states (see Exercise 4.8):

If G has n vertices and nk/2 edges, then α(G) ≥ n/(k + 1).

This dual form of Turán’s theorem also follows from Theorem 18.4: fixing the
total number of edges, the sum

∑n
i=1 1/(di + 1) is minimized when the di’s

are as nearly equal as possible, and, by Theorem 1.8, 1
2

∑n
i=1 di is exactly the

number of edges in G.

18.5 Crossings and incidences

Given a set P of n points and a set L of m lines in the plane, the point-line
incidence graph is a bipartite n × m graph with parts P and L, where p ∈ P
and l ∈ L are adjacent iff the point p lies on the line l (see Fig. 18.1). How
many edges can such a graph have?
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Fig. 18.1 We have four points and three lines. The number of incidences (edges in the
point-line incidence graph on the right) is 7.

Since any two points can lie on at most one common line, and two lines
intersect in at most one point, each point-line incidence graph is C4-free, that
is, contains no cycles on four vertices. We already know (see Exercise 2.6)
that the number of edges in such graphs cannot exceed either nm1/2 + m
or mn1/2 + n. For n = m this is about n3/2. Szemerédi and Trotter (1983)
obtained a much better upper bound which, for n = m, is about n4/3 ≪ n3/2.
We will derive this theorem from another (seemingly unrelated) result about
the number of crossings when a graph is drawn on the plane.

18.5.1 Crossing number

Given a graph G, the crossing number of the graph, denoted cr(G), is the min-
imum number of edge-crossings possible amongst all drawings of the graph
with edges as straight line segments and vertices as points in the plane. Thus
a graph G is planar if and only if cr(G) = 0. A natural question is: given a
graph with e edges and n vertices, how large is its crossing number?
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The well-known Euler’s polyhedron formula states that if a finite, con-
nected, planar graph is drawn in the plane without any edge intersections,
and n is the number of vertices, e is the number of edges and f is the num-
ber of faces (regions bounded by edges, including the outer, infinitely-large
region), then n − e + f = 2. If e ≥ 3 then every face is adjacent to at least
three edges, whereas every edge is adjacent to exactly two faces. By double
counting the edge-face incidences, we get 3f ≤ 2e. Eliminating f , we conclude
that e ≤ 3n − 6 for all planar graphs.

If a graph G can be drawn with only cr(G) crossings, then we can delete
one of the crossings by removing an edge associated with that crossing, and
so we can remove all the crossings by deleting at most cr(G) edges, leaving
at least e − cr(G) edges (and v vertices). Since the graph obtained is planar,
we obtain the following lower bound on the crossing number of any graph G:

cr(G) ≥ e − 3n + 6 > e − 3n . (18.3)

By applying this inequality to random induced subgraphs of G, Ajtai,
Chvátal, Newborn, and Szemerédi (1982), and Leighton (1984) were able to
improve this lower bound.

Theorem 18.5 (The crossing number inequality). Let G be a graph with n
vertices and e ≥ 4n. Then

cr(G) ≥ e3

64n2
.

Proof. Let G be embedded in the plane and suppose the crossing number
of the drawing is x. Independently select vertices of G with probability p,
and let H be the (induced) subgraph of edges between selected vertices. By
the linearity of expectation, H is expected to have pn vertices and p2e edges.
(The events that each edge ends up in H are not quite independent, but
the great thing about linearity of expectation is that it works even without
assuming any independence.) Observe that each crossing involves two edges
and four vertices. Thus, the probability that the crossing survives in this
drawing is only p4. By one last application of linearity of expectation, the
expected number of crossings of this drawing that survive for H is p4x. This
particular drawing may not be the optimal one for H , so we end up with an
inequality E [cr(H)] ≤ p4x. By (18.3), the number of crossings in any graph
H is always at least the number of edges minus three times the number of
vertices of H . Consequently

p4x ≥ E [cr(H)] ≥ p2e − 3pn .

Taking p := 4n/e gives the desired lower bound on x = cr(G). ⊓⊔
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18.5.2 The Szemerédi–Trotter theorem

From the above result on crossing numbers one deduces a short proof of the
Szemerédi–Trotter theorem in combinatorial geometry. It gives an almost
tight upper bound on the number of incidences, that is, on the number of
point-line pairs such that the point lies on the line.

Theorem 18.6 (Szemerédi–Trotter 1983). Let P be a set of n distinct points
in the plane, and let L be a set of m distinct lines. Then the number of
incidences between P and the lines in L is at most 4(mn)2/3 + m + 4n.

The original proof of this theorem was somewhat complicated, using a
combinatorial technique known as cell decomposition. Later, Székely (1997)
discovered a much simpler proof using crossing numbers of graphs.

Proof (due to Székely 1997). Let x = |{(p, l) ∈ P ×L : p ∈ l}| be the number
of incidences. Let G be the graph whose vertex set is P and whose vertices
are adjacent if they are consecutive on some line in L. A line l ∈ L which
is incident to kl points in P will thus contain kl − 1 line segments between
points in P . Since the sum of all the kl over all lines l ∈ L is exactly the total
number x of incidences, the graph G has x − m edges. Clearly cr(G) < m2

since two lines cross at no more than one point. By the result on crossing
numbers, we deduce

m2 >
(x − m)3

64n2
− n

(we put “−n” just to eliminate the condition e ≥ 4n) and therefore x ≤
4(mn)2/3 + m + 4n. ⊓⊔

To see that the theorem is tight up to a constant factor, take the grid
P = [k] × [4k2] together with the set L of all straight lines y = ax + b with
slope a ∈ [k] and intercept b ∈ [2k2]. Then for x ∈ [k] one has ax + b ≤
ak + b ≤ k2 + 2k2 < 4k2. So, for each x = 1, . . . , k each line contains a point
(x, y) of P . We get a total of roughly 2k4 incidences, as compared to the
upper bound of roughly 4k4.

In applications the following corollary of this theorem is often used (we
will also use it in Sect. 25.4). We will say that a function f “is at most about”
another function g if f = O(g).

Theorem 18.7. For n points in the plane, the number of lines, each contain-
ing at least k of them, is at most about n2/k3 + n/k.

Proof. Let P be a set of n points, and L a set of m lines, each of which contains
at least k points of P . Then these lines generate at least mk incidences and
so, by Theorem 18.6, we have that m(k −1) ≤ 4(mn)2/3 +4n. If n ≤ (nm)2/3

then the right-hand side is at most 8(mn)2/3, from which m = O(n2/k3)
follows. If n ≥ (nm)2/3 then the right hand side is at most 8n, from which
m = O(n/k) follows. ⊓⊔
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The importance of Theorem 18.7 lies in the fact that the exponent of k
in the denominator is strictly larger than 2. A bound of m ≤

(
n
2

)
/
(

k
2

)
, which

is about n2/k2, is trivial by just double-counting the pairs of points. (Prove
this!)

The so-called Two Extremities Theorem says that finite collections of
points in the plane fall into one of two extremes: one where a large frac-
tion of points lie on a single line, and one where a large number of lines are
needed to connect all the points.

Theorem 18.8 (Beck 1983). Given any n points in the plane, at least one
of the following statements is true:

1. There is a line which contains at least Ω(n) of the points.
2. There exist at least Ω(n2) lines, each of which contains at least two of the

points.

Proof. Consider a set P of n points in the plane. Let t be a positive integer.
Let us say that a pair of points x, y in the set P is t-connected if the (unique)
line connecting x and y contains between 2t and 2t+1−1 points of P (including
x and y). By Theorem 18.7, the number of such lines is at most about n2/23t+
n/2t. Since each such line connects together at most about 22t pairs of points
of P , we thus see that at most about n2/2t + n2t pairs of points can be
t-connected.

Now, let C be a large constant. By summing the geometric series, we see
that the number of pairs of points which are t-connected for some t satisfying
C ≤ 2t ≤ n/C is at most about n2/C. On the other hand, the total number
of pairs is

(
n
2

)
.

Thus if we choose constant C to be large enough, we can find at least,
say, n2/4 pairs of points which are not t-connected for any C ≤ 2t ≤ n/C.
The lines that connect these pairs either pass through fewer than C points,
or pass through more than n/C points. If the latter case holds for even one
of these pairs, then we have the first conclusion of Beck’s theorem. Thus
we may assume that all of the n2/4 pairs are connected by lines which pass
through fewer than C points. But each such line can connect at most C2

pairs of points. Thus there must be at least n2/4C2 lines connecting at least
two points of P . ⊓⊔

More about combinatorial problems in geometry as well as their cute so-
lutions can be found in a beautiful book by Matoušek (2002).

18.6 Far away strings

The Hamming distance between two binary strings is the number dist(x, y)
of positions in which these strings differ. How many binary strings can we
find such that each two of them lie at Hamming distance at least n/2? In
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Sect. 14.3 we used Hadamard matrices to construct such a set consisting of
2n strings (see Theorem 14.10). But what if we relax the condition and only
require the pairwise distance be at least, say, n/4? It turns out that then
much larger sets exist.

To show this, we will use the following Chernoff’s inequality: If X is
the sum of n independent and uniformly distributed 0-1 variables, then
Pr [X ≤ n/2 − a] ≤ e−2a2/n.

Theorem 18.9. There exists a set of en/16 binary strings of length n such
that any pair is at Hamming distance at least n/4 from each other.

Proof. Consider a random string in {0, 1}n generated by picking each bit
randomly and independently. For any two such strings x and y, let Xi be the
indicator random variable for the event that xi 6= yi. Then E [Xi] = 1/2, and
dist(x, y) = X1+· · ·+Xn. By the linearity of expectation, E [dist(x, y)] = n/2.
Using Chernoff’s inequality, we have that

Pr [dist(x, y) ≤ n/2 − a] ≤ e−2a2/n .

Now generate M := en/16 strings at random and independently. Set a := n/4.
By the union bound, the probability that any pair of these strings lies at
distance at most n/4, is at most

(
M
2

)
e−2a2/n < M2e−n/8 = 1 , implying that

the desired set of strings exists. ⊓⊔

This result has an interesting interpretation in the Euclidean setting. Re-
call that a unit vector is a vector x ∈ Rn such that ‖x‖ = 1, where
‖x‖ =

√
x2

1 + · · · + x2
n is the norm of x. The set of all unit vectors forms

the unit sphere. The Euclidean distance between two vectors x, y ∈ Rn is the
norm ‖x − y‖ of their difference.

Corollary 18.10. The unit sphere in Rn contains a set of en/16 points, each
two of which are at Euclidean distance at least one from each other.

Proof. Let P ⊆ {0, 1}n be the set of binary strings guaranteed by Theo-
rem 18.9. Associate with each binary string u = (u1, . . . , un) a unit vector
xu ∈ Rn whose i-th coordinate is defined by xu(i) := 1√

n
(−1)ui . Then, for

any two vectors u, v ∈ P and for any coordinate i, we have that

(
xu(i) − xv(i)

)2

=
1

n

(
(−1)ui − (−1)vi

)2

=

{
0 if ui = vi,
4
n if ui 6= vi.

Hence,

‖xu − xv‖2 =
n∑

i=1

(
xu(i) − xv(i)

)2

=
4

n
· dist(x, y) ≥ 1 ,

as desired. ⊓⊔
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18.7 Low degree polynomials

In this section we consider polynomials f(x1, . . . , xn) on n variables over the
field F2. Such a polynomial has degree at most d if it can be written in the
form

f(x1, . . . , xn) = a0 +
m∑

i=1

∏

j∈Si

xj ,

where a0 ∈ {0, 1} and S1, . . . , Sm are subsets of {1, . . . , n} of size at most d;
here and throughout the section the sum is modulo 2.

If f1, . . . , fm are polynomials of degree at most d, then their product can
have degree up to dm. The following result says that the product can still be
approximated quite well by a polynomial of relatively small degree.

Lemma 18.11 (Razborov 1987). Let f =
∏m

i=1 fi, where f1, . . . , fm are poly-
nomials of degree at most d over F2. Then, for any r ≥ 1, there exists a
polynomial g of degree at most dr such that g differs from f on at most 2n−r

inputs.

Proof. Let S be a random subset of {1, . . . , m}, that is, we choose S randomly
from the family of all 2m subsets with probability 2−m. Let S1, . . . , Sr be
independent copies of S. Consider a (random) function of the form

g =

r∏

j=1

hj , where hj = 1 −
∑

i∈Sj

(1 − fi) . (18.4)

We claim that, for every (fixed) input a ∈ {0, 1}n,

Pr [g(a) 6= f(a)] ≤ 2−r . (18.5)

Indeed, if f(a) = 1 then all fi(a) = 1, and hence, g(a) = 1 with probability
1. Suppose now that f(a) = 0. Then fi0 (a) = 0 for at least one i0. Since
each of the sets S1, . . . , Sr contains i0 with probability 1/2, we have that
Pr [hj(a) = 1] ≤ 1/2 for all j = 1, . . . , r (consult Exercise 18.11 for this
conclusion). Hence,

Pr [g(a) = 0] = 1 − Pr [h1(a) = . . . = hr(a) = 1] ≥ 1 − 2−r ,

as claimed.
For an input vector a ∈ {0, 1}n, let Xa denote the indicator random vari-

able for the event that g(a) 6= f(a), and let X be the sum of Xa over all a.
By (18.5) and the linearity of expectation, the expected number of inputs on
which g differs from f is

E [X ] =
∑

a

E [Xa] =
∑

a

Pr [Xa = 1] ≤ 2n−r .



18.8 Maximum satisfiability 263

By the pigeonhole principle of expectation, there must be a point in the
probability space for which this holds. This point is a polynomial of the form
(18.4); it has degree at most dr and differs from f on at most 2n−r inputs. ⊓⊔

Razborov used this lemma to prove that the majority function cannot
be computed by constant-depth polynomial-size circuits with unbounded
fanin And, Or and Parity gates. The majority function is a boolean func-
tion Majn(x1, . . . , xn) which outputs 1 if and only if x1 + · · · + xn ≥ n/2.

Theorem 18.12 (Razborov 1987). Every unbounded fanin depth-c circuit

with And, Or and Parity gates computing Majn requires 2Ω(n1/2c) gates.

The idea is as follows. If f can be computed by a depth-c circuit of size
ℓ then, by Lemma 18.11, there exists a polynomial g of degree at most rc

such that g differs from f on at most ℓ · 2n−r inputs. The desired lower
bound is then obtained by showing that the majority function cannot be
approximated sufficiently well by such polynomials (see Lemma 13.8). Taking
r to be about n1/(2c) and making necessary computations this leads to a lower

bound ℓ ≥ 2Ω(n1/(2c)). This final step requires some routine calculations, and
we omit it.

18.8 Maximum satisfiability

In most of the above applications it was enough to take a uniform distribution,
that is, every object had the same probability of appearing. In this section
we will consider the situation where the distribution essentially depends on
the specific properties of a given family of objects.

An And-Or formula or a CNF (or simply, a formula) over a set of variables
x1, . . . , xn is an And of an arbitrary number of clauses, where a clause is an
Or of an arbitrary number of literals, each literal being either a variable xi

or a negated variable xi. For example:

F = (x1 ∨ x3)(x1 ∨ x2 ∨ x3)(x2)(x1 ∨ x2) .

An assignment is a mapping which assigns each variable one of the values 0
or 1. We can look at such assignments as binary vectors v = (v1, . . . , vn) ∈
{0, 1}n, where vi is the value assigned to xi. If y is a literal, then we say that
v satisfies y if either y = xi and vi = 1, or y = xi and vi = 0. An assignment
satisfies a clause if it satisfies at least one of its literals. An assignment sat-
isfies a formula if it satisfies each of its clauses. For the formula above, the
assignment v = (1, 0, 0) is satisfying. A formula is satisfiable if at least one
assignment satisfies it. A formula F is k-satisfiable if any subset of k clauses
of F is satisfiable.

It is an interesting “Helly-type” phenomenon, first established by Lieberher
and Specker (1981), which says that if a formula is 3-satisfiable then at least
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2/3 of its clauses are simultaneously satisfiable. For 2-satisfiable formulas this
fraction is 2/(1 +

√
5) > 0.618 (the inverse of the golden ratio). The original

proof of these facts was rather involved. Yannakakis (1994) has found a very
simple proof of these bounds using the probabilistic method.

Theorem 18.13 (Yannakakis 1994). If F is a 3-satisfiable formula then at
least a 2/3 fraction of its clauses are simultaneously satisfiable.

Proof. Given a 3-satisfiable formula F , define a random assignment v =
(v1, . . . , vn), where each bit vi takes its value independently from other bits
and with probability

Pr [vi = 1] =





2/3 if F contains a unary clause (xi);
1/3 if F contains a unary clause (xi);
1/2 otherwise.

Note that this definition is consistent since it is impossible to have the unary
clauses (xi) and (xi) in the same 3-satisfiable formula. Simple (but crucial)
observation is that each singular literal y ∈ {xi, xi}, which appears in the
formula F , is falsified with probability ≤ 2/3 (independent of whether this
literal forms a unary clause or not). To see this, let y = xi and p = Pr [vi = 0].
We have three possibilities:

- either (xi) is a unary clause of F , and in this case p = 1 − 2/3 = 1/3;
- or F contains a unary clause (xi), and in this case p = 1 − 1/3 = 2/3;
- or neither xi nor xi appears in a unary clause, in which case p = 1/2.

Using this observation, we can prove the following fact.

Claim 18.14. Every clause is satisfied by v with probability at least 2/3.

For unary clauses the claim is trivial. On the other hand, if C contains
three or more literals, then, by the above observation, each of these literals
can be falsified with probability at most 2/3, and hence, the clause is satisfied
with probability at least 1 − (2/3)3 = 0.7037... > 2/3; for longer clauses the
probabilities are even better.

It remains to consider binary clauses. Assume w.l.o.g. that C = (x1 ∨ x2).
If at least one of x1 and x2 is satisfied with probability 1/2 then the clause
C is satisfied with probability 1 − Pr [v1 = 0] · Pr [v2 = 0] ≥ 1 − 1

2 · 2
3 = 2

3 .
Thus, the only bad case would be when both literals x1 and x2 are satisfied
only with probability 1/3. But this is impossible because it would mean that
the formula F contains the clauses (x1 ∨x2), (x1), (x2), which contradicts the
fact that F is 3-satisfiable.

We now conclude the proof of the theorem in a standard manner. Suppose
that F consists of the clauses C1, . . . , Cm. Let Xi denote the indicator random
variable for the event “the i-th clause Ci is satisfied by v”. Then X =

∑m
i=1 Xi

is the total number of satisfied clauses of F . By Claim 18.14, Pr [Xi = 1] ≥
2/3 for each i, and by the linearity of expectation, E [X ] =

∑m
i=1 E [Xi] ≥ 2m

3 .
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By the pigeonhole property of the expectation, at least one assignment v must
satisfy so many clauses of F , as desired. ⊓⊔

It is worth mentioning that, for large values of k, the right fraction for all
k-satisfiable formulas is 3/4. Namely, Trevisan (2004) has proved that, if rk

stands for the largest real such that in any k-satisfiable formula at least an rk-
th fraction of its clauses are satisfied simultaneously, then limk→∞ rk = 3/4.

18.9 Hash functions

A set V of vectors of length t over an alphabet A = {1, . . . , n} is called k-
separated if for every k distinct vectors there is a coordinate in which they
are all distinct. How many vectors can such a set have?

This question is equivalent to the question about the maximum size
N = N(n, k, t) of a domain for which there exists a family of (n, k) hash
functions with t members, that is, a family of t partial functions f1, . . . , ft

mapping a domain of size N into a set of size n so that every subset of k
elements of the domain is mapped in a one-to-one fashion by at least one
of the functions. To see this equivalence, it is enough to consider the set of
vectors (f1(x), . . . , ft(x)) for each point x of the domain.

The problem of estimating N(n, k, t), which is motivated by the numerous
applications of perfect hashing in theoretical computer science, has received
a considerable amount of attention. The interesting case is when the number
t of hash functions is much bigger than the size n of the target set (and, of
course, n ≥ k). The following are the best known estimates for N(n, k, t):

1

k − 1
log

1

1 − g(n, k)
.

1

t
log N(n, k, t) (18.6)

and
1

t
log N(n, k, t) . min

1≤r≤k−1
g(n, r) log

n − r + 1

k − r
, (18.7)

where

g(n, k) :=
(n)k

nk
=

n(n − 1) · · · (n − k + 1)

nk
.

In particular, (18.7) implies that

N(n, k, t) ≤
(

n

k

)t

.

The lower bound (18.6), proved by Fredman and Komlós (1984), can be
derived using a probabilistic argument (the deletion method) discussed in
Chap. 20: one chooses an appropriate number of vectors randomly, shows
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that the expected number of non-separated k-tuples is small, and omits a
vector from each such “bad” k-tuple. The proof of the upper bound (18.7)
was much more difficult. For r = k−1, a slightly weaker version of this bound
was proved in Fredman and Komlós (1984), and then extended to (18.7) by
Körner and Marton (1988). All these proofs rely on certain techniques from
information theory.

A short and simple probabilistic proof of (18.7), which requires no information-
theoretic tools, was found by Nilli (1994) (c/o Noga Alon). We only present
the key lemma of this proof.

Lemma 18.15. Let U be a set of m vectors of length t over the alphabet B ∪
{∗}, where B = {1, . . . , b}, and let xv denote the number of non-∗ coordinates
of v ∈ U . Let x =

∑
xv/m be the average value of xv. If for every d distinct

vectors in U there is a coordinate in which they all are different from ∗ and
are all distinct, then

m ≤ (d − 1)

(
b

d − 1

)x

.

Proof. For every coordinate i, choose randomly and independently a subset
Di of cardinality d − 1 of B. Call a vector v ∈ U consistent if for every
i, vi ∈ Di ∪ {∗}. Since each set Di has size d − 1, the assumption clearly
implies that for any choice of the sets Di there are no more than d − 1
consistent vectors. On the other hand, for a fixed vector v and its coordinate
i, Pr [vi ∈ Di] = (d − 1)/b. So, each vector v is consistent with probability(
(d − 1)/b

)xv
and, by the linearity of expectation, the expected number of

consistent vectors in U is

∑

v∈U

(
d − 1

b

)xv

≥ m

(
d − 1

b

)x

,

where the inequality follows from Jensen’s inequality (see Proposition 1.12),
since the function g(z) =

(
(d − 1)/b

)z
is convex. ⊓⊔

18.10 Discrepancy

Let X1, . . . , Xk be n-element sets, and X = X1 × · · · × Xk. A subset Ti

of X is called a cylinder in the i-th dimension if membership in Ti does
not depend on the i-th coordinate. That is, (x1, . . . , xi, . . . , xk) ∈ Ti implies
that (x1, . . . , x′

i, . . . , xk) ∈ Ti for all x′
i ∈ Xi. A subset T ⊆ X is a cylinder

intersection if it is an intersection T = T1 ∩T2 ∩· · ·∩Tk, where Ti is a cylinder
in the i-th dimension. The discrepancy of a function f : X → {−1, 1} on a set
T is the absolute value of the sum of the values of f on points in T , divided
by the total number |X | of points:
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discT (f) =
1

|X |

∣∣∣∣∣
∑

x∈T

f(x)

∣∣∣∣∣ .

The discrepancy of f is the maximum disc(f) = maxT discT (f) over all cylin-
der intersections T ⊆ X .

The importance of this measure stems from the fact that functions with
small discrepancy have large multi-party communication complexity. (We will
discuss this in Sect. 27.4 devoted to multi-party games.) However, this fact
alone does not give immediate lower bounds for the multi-party communica-
tion complexity, because disc(f) is very hard to estimate. Fortunately, the
discrepancy can be bounded from above using the following more tractable
measure.

.  .  .

.  .  .

b

a a

b

a

b

k1

1 k2

2

Fig. 18.2 A cube

A k-dimensional cube is defined to be a multi-set D = {a1, b1} × · · · ×
{ak, bk}, where ai, bi ∈ Xi (not necessarily distinct) for all i. Being a multi-
set means that one element can occur several times. Thus, for example, the
cube D = {a1, a1} × · · · × {ak, ak} has 2k elements.

Given a function f : X → {−1, 1} and a cube D ⊆ X , define the sign of f
on D to be the value

f(D) =
∏

x∈D

f(x) .

Hence, f(D) = 1 if and only if f(x) = −1 for an even number of vectors
x ∈ D. We choose a cube D at random according to the uniform distribution.
This can be done by choosing ai, bi ∈ Xi for each i according to the uniform
distribution. Let

E(f) := E [f(D)] = E

[ ∏

x∈D

f(x)

]

be the expected value of the sign of a random cube D. To stress the fact that
the expectation is taken over a particular random object (this time, over D)
we will also write ED [f(D)] instead of E [f(D)].

Example 18.16. The difference between the measures disc(f) and E(f) can
best be seen in the case when k = 2. In this case X = X1 × X2 is just a grid,
and each function f : X → {−1, 1} is just a ±1 matrix Mf . Cylinder inter-
sections T ⊆ X in this case correspond to submatrices of Mf , and discT (f)
is just the sum of all entries in T divided by |X |. Thus, to determine disc(f)



268 18 Linearity of Expectation

we must consider all submatrices of Mf . In contrast, to determine E(f) it is
enough to only consider all s × t submatrices with 1 ≤ s, t ≤ 2.

The following result was proved in Chung (1990) and generalizes a similar
result from Babai et al. (1992).

Theorem 18.17. For every f : X → {−1, 1},

disc(f) ≤ E(f)1/2k

.

The theorem is very useful because E(f) is a much simpler object than
disc(f). For many functions f , it is relatively easy to compute E(f) exactly
(we will show this in the next section). In Chung and Tetali (1993), E(f) was
computed for some explicit functions, resulting in the highest known lower
bounds for the multi-party communication complexity of these functions.

Proof (due to Raz 2000). We will only prove the theorem for k = 2; the
general case is similar. So let X = X1 × X2 and f : X → {−1, 1} be a
given function. Our goal is to show that disc(f) ≤ E(f)1/4. To do this, pick
at random (uniformly and independently) an element x ∈ X . The proof
consists of showing two claims.

Claim 18.18. For all functions h : X → {−1, 1}, E(h) ≥ (Ex [h(x)])4.

Claim 18.19. There exists h such that
∣∣Ex [h(x)]

∣∣ ≥ disc(f) and E(h) =
E(f).

Together, these two claims imply the theorem (for k = 2):

E(f) = E(h) ≥ (Ex [h(x)])4 =
∣∣∣Ex [h(x)]

∣∣∣
4

≥ disc(f)4 .

In the proof of these two claims we will use two known facts about the mean
value of random variables:

E
[
ξ2
]

≥ E [ξ]2 for any random variable ξ; (18.8)

and
E [ξ · ξ′] = E [ξ] · E [ξ′] if ξ and ξ′ are independent. (18.9)

The first one is a consequence of the Cauchy–Schwarz inequality, and the
second is a basic property of expectation.

Proof of Claim 18.18. Take a random 2-dimensional cube D = {a, a′} ×
{b, b′}. Then
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E(h) = ED [h(D)] = ED

[ ∏

x∈D

h(x)

]

= Ea,a′Eb,b′ [h(a, b) · h(a, b′) · h(a′, b) · h(a′, b′)]

= Ea,a′

[
(Eb [h(a, b) · h(a′, b)])

2
]

by (18.9)

≥ (Ea,a′Eb [h(a, b) · h(a′, b)])
2

by (18.8)

=
(
EaEb

[
h(a, b)2

])2
Pr [a′] = Pr [a]

=
(

Ea (Eb [h(a, b)])
2
)2

by (18.9)

≥ (Ea,b [h(a, b)])4 by (18.8). ⊓⊔

Proof of Claim 18.19. Let T = A×B be a cylinder intersection (a submatrix
of X , since k = 2) for which disc(f) is attained. We prove the existence
of h by the probabilistic method. The idea is to define a random function
g : X1 × X2 → {−1, 1} such that the expected value E [g(x)] = Eg [g(x)] is
the characteristic function of T . For this, define g to be the product g(x) =
g1(x) ·g2(x) of two random functions, whose values are defined on the points
x = (a, b) ∈ X1 × X2 by:

g1(a, b) =

{
1 if a ∈ A;

set randomly to ±1 otherwise

and

g2(a, b) =

{
1 if b ∈ B;

set randomly to ±1 otherwise.

These function have the property that g1 depends only on the rows and
g2 only on the columns of the grid X1 × X2. That is, g1(a, b) = g1(a, b′)
and g2(a, b) = g2(a′, b) for all a, a′ ∈ X1 and b, b′ ∈ X2. Hence, for x ∈ T ,
g(x) = 1 with probability 1, while for x 6∈ T , g(x) = 1 with probability 1/2
and g(x) = −1 with probability 1/2; this is so because the functions g1, g2

are independent of each other, and x 6∈ T iff x 6∈ A×X2 or x 6∈ X1 ×B. Thus,
the expectation E [g(x)] takes the value 1 on all x ∈ T , and takes the value
1
2 + (− 1

2 ) = 0 on all x 6∈ T , i.e., E [g(x)] is the characteristic function of the
set T :

E [g(x)] =

{
1 if x ∈ T ;

0 if x 6∈ T .

Now let x be a random vector uniformly distributed in X = X1 × X2. Then

discT (f) =
∣∣Ex [f(x) · Eg [g(x)]]

∣∣ =
∣∣ExEg [f(x) · g(x)]

∣∣
=
∣∣EgEx [f(x) · g(x)]

∣∣ .

So there exists some choice of g = g1 · g2 such that


