$$
a+a^{\prime}=b+b^{\prime}=\left(c_{1}+c_{1}^{\prime}\right) a^{1}+\left(c_{2}+c_{2}^{\prime}\right) a^{2}+\cdots+\left(c_{k}+c_{k}^{\prime}\right) a^{k}
$$

Since vectors c and c^{\prime} differ in at least three coordinates, we have on the right-hand side the sum of at least three vectors, say $a^{i_{1}}+\cdots+a^{i_{l}}$, with $l \geq 3$. But then in the equation (17.5) we can replace these three (or more) vectors $a^{i_{1}}, \ldots, a^{i_{l}}$ by two vectors a, a^{\prime}, which contradicts the minimality of k.

The same argument also implies that no two distinct vectors $c, c^{\prime} \in C$ can lead to one and the same vector $b \in B$, that is, $c \neq c^{\prime} \in C$ implies $\sum_{i} c_{i} a^{i} \neq \sum_{i} c_{i}^{\prime} a^{i}$. This means that $|B|=|C|$.

This, together with Claim 17.15, implies

$$
|A| \cdot|C|=|A| \cdot|B|=\sum_{b \in B}|b+A|=\left|\bigcup_{b \in B}(b+A)\right| \leq|\operatorname{span} A| .
$$

Hence, $\log _{2}|C| \leq \log _{2}(1 / \alpha)$ which, together with Claim 17.14, yields the desired upper bound (17.4) on k.

17.6 Expander codes

If $C \subseteq\{0,1\}^{n}$ is a linear code with a $k \times n$ generator matrix G, then the encoding of messages $w \in\{0,1\}^{k}$ is very easy: just encode w by the codeword $x=w^{\top} G$. However, the decoding-that is, given a vector $y \in\{0,1\}^{n}$ find a codeword $x \in C$ closest to y-is in general linear codes a very difficult problem (it is "NP-hard").

We now show how using expander graphs one can construct linear codes for which decoding is almost trivial - it can be done in linear time! Moreover, if the expansion of the graph is good enough then the resulting codes achieve very good rate $\left(\log _{2}|C|\right) / n$ and minimal distance (both these parameters are then absolute positive constants).

Let $G=(L \cup R, E)$ be a bipartite graph with $|L|=n,|R|=m$ and $E \subseteq L \times R$. Each such graph defines a linear code $C \subseteq\{0,1\}^{n}$ as follows. Associate with each vertex $u \in L$ a boolean variable x_{u}. Given a vector $x \in\{0,1\}^{n}$, say that a vertex $v \in R$ is satisfied by this vector if

$$
\sum_{u \in \Gamma(v)} x_{u} \bmod 2=0
$$

where $\Gamma(v)=\{u \in L: u v \in E\}$ is the set of all neighbors of v on the left side (see Fig. 17.1). The code defined by the graph G is the set of vectors

$$
C=\left\{x \in\{0,1\}^{n}: \text { all vertices in } R \text { are satisfied by } x\right\} .
$$

Fig. 17.1 Vertex v_{2} is satisfied whereas v_{1} is not satisfied by the vector $x=(1010)$.

That is, C is just the set of all solutions of m linear equations in n variables. Therefore, C is linear and $|C| \geq 2^{n-m}$.

Let $\operatorname{dist}(C)$ be the minimal Hamming distance between two different vectors in C. A graph $G=(L \cup R, E)$ is left d-regular if each vertex in L has degree d. Such a graph is an (α, c)-expander if every subset $I \subseteq L$ with $|I| \leq \alpha n$ has $|\Gamma(I)|>c|I|$ neighbors on the right side.

Lemma 17.16. If $C \subseteq\{0,1\}^{n}$ is a code of a left d-regular (α, c)-expander with $c>d / 2$, then

$$
\operatorname{dist}(C)>\alpha n
$$

Proof. Assume that $\operatorname{dist}(C) \leq \alpha n$. Then C must contain a vector x with at most αn ones. Hence, if we take the set $I=\left\{u \in L: x_{u}=1\right\}$, then $|I| \leq$ $\operatorname{dist}(C) \leq \alpha n$. Since G is an $(\alpha, d / 2)$-expander, this implies $|\Gamma(I)|>d|I| / 2$.

We claim that there must exist a vertex $v_{0} \in \Gamma(I)$ with exactly one neighbor in I, that is, $\left|\Gamma\left(v_{0}\right) \cap I\right|=1$. Indeed, otherwise every vertex $v \in \Gamma(I)$ would have at least two neighbors in I. Therefore the number of edges leaving I would be at least $2 \cdot \Gamma(I)>2 \cdot(d|I| / 2)=d|I|$, contradicting the left d-regularity of G.

Since $x_{u}=0$ for all $u \notin I$, this implies that exactly one of the bits x_{u} of x with $u \in \Gamma\left(v_{0}\right)$ is equal to 1 . So, $\sum_{u \in \Gamma\left(v_{0}\right)} x_{u}=1$, and the vertex v_{0} cannot be satisfied by the vector x, a contradiction with $x \in C$.

By Lemma 17.16, expander codes can correct relatively many errors, up to $\alpha n / 2$. Much more important, however, is that the decoding algorithm for such codes is very efficient. The decoding problem is the following one: given a vector $y \in\{0,1\}^{n}$ of Hamming distance $\leq \alpha n / 2$ from some (unknown) codeword $x \in C$, find this codeword x. The decoding algorithm for expander codes is amazingly simple:

While there exists a variable such that most of its neighbors are not satisfied by the current vector, fip it.

Lemma 17.17 (Sipser-Spielman 1996). If C is a code of a left d-regular (α, c)-expander with $c>\frac{3}{4} d$, then the algorithm solves the decoding problem in a linear number of steps.

Proof. Let $y \in\{0,1\}^{n}$ be a vector of Hamming distance $\leq \alpha n / 2$ from some (unknown) codeword $x \in C$. Our goal is to find this codeword x. Let

$$
I=\left\{u \in L: y_{u} \neq x_{u}\right\}
$$

be the set of errors in y. If I is empty, we are done. Otherwise, assume that $|I| \leq \alpha n$. We need this assumption to guarantee the expansion, and we will prove later that this assumption holds throughout the running of the algorithm.

Partition the set $\Gamma(I)=S \cup U$ into the set S of neighbors satisfied by y and the set U of neighbors not satisfied by y. Since $c>3 d / 4$, we have that

$$
\begin{equation*}
|U|+|S|=|\Gamma(I)|>\frac{3}{4} d|I| . \tag{17.6}
\end{equation*}
$$

Now, count the edges between I and $\Gamma(I)$. At least $|U|$ of these edges must leave U. Moreover, at least $2|S|$ of them must leave S because every vertex $v \in S$ must have at least two neighbors in I : If v had only one such neighbor, then y would not satisfy the vertex v since $y \neq x, x$ satisfies v and y coincides with x outside I. Since the total number of edges between I and $\Gamma(I)$ is $d|I|$, this implies $|U|+2|S| \leq d|I|$. Combining this with (17.6) we get that

$$
d|I|-|U| \geq 2|S|>2\left(\frac{3}{4} d|I|-|U|\right)
$$

and therefore

$$
\begin{equation*}
|U|>\frac{1}{2} d|I| . \tag{17.7}
\end{equation*}
$$

So, more than $d|I| / 2$ neighbors of the $|I|$ vertices in I are unsatisfied. Therefore there is a variable in I that has more than $d / 2$ unsatisfied neighbors. We have therefore shown the following claim:

If $I \neq \emptyset$ and $|I| \leq \alpha n$ then there is a variable with $>d / 2$ unsatisfied neighbors.

This implies that as long as there are errors and $|I| \leq \alpha n$ holds, some variable will be flipped by the algorithm. Since we flip a vertex with more unsatisfied neighbors than satisfied ones, $|U|$ decreases with every step (flipping x_{u} can only affect the satisfiability of neighbors of u). We deduce that if the distance $|I|$ of the actual vector y from x does not exceed $\alpha n / 2$ throughout the run of the algorithm, then the algorithm will halt with the codeword x after a linear number of iterations.

To show that $|I|$ can never exceed αn, recall that $|I| \leq \alpha n / 2$, and hence,

$$
\begin{equation*}
|U| \leq|\Gamma(I)| \leq \frac{1}{2} \alpha d n \tag{17.8}
\end{equation*}
$$

hold in the beginning. Moreover, $|U|$ decreases after each iteration. Hence, if at some step we had that $|I|>\alpha n$, then (17.7) would imply $|U|>\alpha d n / 2$, contradicting (17.8).

In general, every linear code $C \subseteq\{0,1\}^{n}$ is defined by its parity-check matrix H such that $x \in C$ iff $H x=\mathbf{0}$. Note that, if C is a code defined by a bipartite graph G, then H is just the transpose of the adjacency matrix of G. If G is left d-regular, then every row of H has exactly d ones. If G is an (α, c)-expander, then every subset I of $|I| \leq \alpha n$ columns of H has ones in at least $c|I|$ rows. The decoding algorithm above is, given a vector $y \in\{0,1\}^{n}$ such that $H y \neq \mathbf{0}$, to flip its i-th bit provided that vector $H\left(y \oplus e_{i}\right)$ has fewer ones than vector $H y$.

17.7 Expansion of random graphs

Explicit constructions of bipartite left d-regular (α, c)-expanders with $\alpha=$ $\Omega(1)$ and $c>3 d / 4$ are known. These constructions are however too involved to be presented here. Instead of that, we will show that random bipartite left-regular graphs have good expansion properties.

Let $d \geq 3$ be a constant. We construct a random bipartite left d-regular $n \times n$ graph $G_{n, d}=(L \cup R, E)$ as follows: For each vertex $u \in L$ choose its d neighbors independently at random, each with the same probability $1 / n$. The graph obtained may have multi-edges, that is, some pairs of vertices may be joined by several edges.

Theorem 17.18. For every constant $d \geq 3$, there is a constant $\alpha>0$ such that for all sufficiently large n, the graph $G_{n, d}$ is an $(\alpha, d-2)$ expander with probability at least $1 / 2$.

Proof. Set (with foresight) $\alpha:=1 /\left(\mathrm{e}^{3} d^{4}\right)$. Fix any $s \leq \alpha n$, and take any set $S \subseteq L$ of size $|S|=s$. We want to upper bound the probability that S does not expand by $d-2$. This means that the $d s$ neighbors (including multiplicities) of the vertices in S hit fewer than $(d-2) s$ distinct vertices on the right side, that is, some $2 s$ of these $d s$ neighbors land on previously picked vertices. Each neighbor lands on a previously picked vertex with probability at most $d s / n$, so

$$
\operatorname{Pr}[S \text { does not expand by }(d-2)] \leq\binom{ d s}{2 s}\left(\frac{d s}{n}\right)^{2 s}
$$

By the union bound, the probability that at least one subset S of size s does not expand by $(d-2)$ is at most

$$
\binom{n}{s}\binom{d s}{2 s}\left(\frac{d s}{n}\right)^{2 s} \leq\left(\frac{\mathrm{e} n}{s}\right)^{s}\left(\frac{\mathrm{e} d s}{2 s}\right)^{2 s}\left(\frac{d s}{n}\right)^{2 s} \leq\left(\frac{\mathrm{e}^{3} d^{4}}{4 n}\right)^{s} \leq\left(\frac{1}{4}\right)^{s}
$$

by the choice of α. Thus, the probability that some set S of size $|S| \leq \alpha n$ does not expand by $(d-2)$ does not exceed

