
17.6 Expander codes 245

a + a′ = b + b′ = (c1 + c′
1)a1 + (c2 + c′

2)a2 + · · · + (ck + c′
k)ak.

Since vectors c and c′ differ in at least three coordinates, we have on the
right-hand side the sum of at least three vectors, say ai1 + · · · + ail , with
l ≥ 3. But then in the equation (17.5) we can replace these three (or more)
vectors ai1 , . . . , ail by two vectors a, a′, which contradicts the minimality of k.

⊓⊔
The same argument also implies that no two distinct vectors c, c′ ∈ C

can lead to one and the same vector b ∈ B, that is, c 6= c′ ∈ C implies∑
i cia

i 6= ∑
i c′

ia
i. This means that |B| = |C|.

This, together with Claim 17.15, implies

|A| · |C| = |A| · |B| =
∑

b∈B

|b + A| = |
⋃

b∈B

(b + A)| ≤ |span A|.

Hence, log2 |C| ≤ log2(1/α) which, together with Claim 17.14, yields the
desired upper bound (17.4) on k. ⊓⊔

17.6 Expander codes

If C ⊆ {0, 1}n is a linear code with a k × n generator matrix G, then the
encoding of messages w ∈ {0, 1}k is very easy: just encode w by the codeword
x = w⊤G. However, the decoding—that is, given a vector y ∈ {0, 1}n find
a codeword x ∈ C closest to y—is in general linear codes a very difficult
problem (it is “NP-hard”).

We now show how using expander graphs one can construct linear codes
for which decoding is almost trivial—it can be done in linear time! Moreover,
if the expansion of the graph is good enough then the resulting codes achieve
very good rate (log2 |C|)/n and minimal distance (both these parameters are
then absolute positive constants).

Let G = (L ∪ R, E) be a bipartite graph with |L| = n, |R| = m and
E ⊆ L × R. Each such graph defines a linear code C ⊆ {0, 1}n as follows.
Associate with each vertex u ∈ L a boolean variable xu. Given a vector
x ∈ {0, 1}n, say that a vertex v ∈ R is satisfied by this vector if

∑

u∈Γ (v)

xu mod 2 = 0 ,

where Γ (v) = {u ∈ L : uv ∈ E} is the set of all neighbors of v on the left
side (see Fig. 17.1). The code defined by the graph G is the set of vectors

C = {x ∈ {0, 1}n : all vertices in R are satisfied by x} .

246 17 Combinatorics of Codes

.

.

.

..
.......
.
.
.
.
.
........
.
.
.
.

.

.

.

..
.......
.
.
.
.
.
........
..
.
.

.

.

.

..
.......
.
.
.
.
.
........
..
.
.

.

.

.

..
.......
.
.
.
.
.
........
..
.
.

.

.

.

..
.......
.
.
.
.
.
........
.
.
.
.

.

.

.

..
.......
.
.
.
.
.
........
..
.
.

.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
....
.....
.

..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
.

......
.......
.......
......
.......
......
.......
.......
......
.......
......
.......
.......
......
.......
......
.......
.......
......
.......
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

0

R

v1

L

v2
1

1

0

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

Fig. 17.1 Vertex v2 is satisfied whereas v1 is not satisfied by the vector x = (1010).

That is, C is just the set of all solutions of m linear equations in n variables.
Therefore, C is linear and |C| ≥ 2n−m.

Let dist(C) be the minimal Hamming distance between two different vec-
tors in C. A graph G = (L ∪ R, E) is left d-regular if each vertex in L has
degree d. Such a graph is an (α, c)-expander if every subset I ⊆ L with
|I| ≤ αn has |Γ (I)| > c|I| neighbors on the right side.

Lemma 17.16. If C ⊆ {0, 1}n is a code of a left d-regular (α, c)-expander
with c > d/2, then

dist(C) > αn .

Proof. Assume that dist(C) ≤ αn. Then C must contain a vector x with at
most αn ones. Hence, if we take the set I = {u ∈ L : xu = 1}, then |I| ≤
dist(C) ≤ αn. Since G is an (α, d/2)-expander, this implies |Γ (I)| > d|I|/2.

We claim that there must exist a vertex v0 ∈ Γ (I) with exactly one neigh-
bor in I, that is, |Γ (v0) ∩ I| = 1. Indeed, otherwise every vertex v ∈ Γ (I)
would have at least two neighbors in I. Therefore the number of edges leav-
ing I would be at least 2 · Γ (I) > 2 · (d|I|/2) = d|I|, contradicting the left
d-regularity of G.

Since xu = 0 for all u 6∈ I, this implies that exactly one of the bits xu of x
with u ∈ Γ (v0) is equal to 1. So,

∑
u∈Γ (v0) xu = 1, and the vertex v0 cannot

be satisfied by the vector x, a contradiction with x ∈ C. ⊓⊔

By Lemma 17.16, expander codes can correct relatively many errors, up
to αn/2. Much more important, however, is that the decoding algorithm for
such codes is very efficient. The decoding problem is the following one: given
a vector y ∈ {0, 1}n of Hamming distance ≤ αn/2 from some (unknown)
codeword x ∈ C, find this codeword x. The decoding algorithm for expander
codes is amazingly simple:

While there exists a variable such that most of its neighbors are not satisfied
by the current vector, flip it.

Lemma 17.17 (Sipser–Spielman 1996). If C is a code of a left d-regular
(α, c)-expander with c > 3

4 d, then the algorithm solves the decoding problem
in a linear number of steps.

17.6 Expander codes 247

Proof. Let y ∈ {0, 1}n be a vector of Hamming distance ≤ αn/2 from some
(unknown) codeword x ∈ C. Our goal is to find this codeword x. Let

I = {u ∈ L : yu 6= xu}

be the set of errors in y. If I is empty, we are done. Otherwise, assume
that |I| ≤ αn. We need this assumption to guarantee the expansion, and we
will prove later that this assumption holds throughout the running of the
algorithm.

Partition the set Γ (I) = S ∪ U into the set S of neighbors satisfied by y
and the set U of neighbors not satisfied by y. Since c > 3d/4, we have that

|U | + |S| = |Γ (I)| > 3
4 d|I| . (17.6)

Now, count the edges between I and Γ (I). At least |U | of these edges must
leave U . Moreover, at least 2|S| of them must leave S because every vertex
v ∈ S must have at least two neighbors in I: If v had only one such neighbor,
then y would not satisfy the vertex v since y 6= x, x satisfies v and y coincides
with x outside I. Since the total number of edges between I and Γ (I) is d|I|,
this implies |U | + 2|S| ≤ d|I|. Combining this with (17.6) we get that

d|I| − |U | ≥ 2|S| > 2 (3
4 d|I| − |U |)

and therefore
|U | > 1

2 d|I| . (17.7)

So, more than d|I|/2 neighbors of the |I| vertices in I are unsatisfied. There-
fore there is a variable in I that has more than d/2 unsatisfied neighbors. We
have therefore shown the following claim:

If I 6= ∅ and |I| ≤ αn then there is a variable with > d/2 unsatisfied
neighbors.

This implies that as long as there are errors and |I| ≤ αn holds, some variable
will be flipped by the algorithm. Since we flip a vertex with more unsatisfied
neighbors than satisfied ones, |U | decreases with every step (flipping xu can
only affect the satisfiability of neighbors of u). We deduce that if the distance
|I| of the actual vector y from x does not exceed αn/2 throughout the run
of the algorithm, then the algorithm will halt with the codeword x after a
linear number of iterations.

To show that |I| can never exceed αn, recall that |I| ≤ αn/2, and hence,

|U | ≤ |Γ (I)| ≤ 1
2 αdn (17.8)

hold in the beginning. Moreover, |U | decreases after each iteration. Hence, if
at some step we had that |I| > αn, then (17.7) would imply |U | > αdn/2,
contradicting (17.8). ⊓⊔

248 17 Combinatorics of Codes

In general, every linear code C ⊆ {0, 1}n is defined by its parity-check
matrix H such that x ∈ C iff Hx = 0. Note that, if C is a code defined by
a bipartite graph G, then H is just the transpose of the adjacency matrix of
G. If G is left d-regular, then every row of H has exactly d ones. If G is an
(α, c)-expander, then every subset I of |I| ≤ αn columns of H has ones in at
least c|I| rows. The decoding algorithm above is, given a vector y ∈ {0, 1}n

such that Hy 6= 0, to flip its i-th bit provided that vector H(y ⊕ei) has fewer
ones than vector Hy.

17.7 Expansion of random graphs

Explicit constructions of bipartite left d-regular (α, c)-expanders with α =
Ω(1) and c > 3d/4 are known. These constructions are however too involved
to be presented here. Instead of that, we will show that random bipartite
left-regular graphs have good expansion properties.

Let d ≥ 3 be a constant. We construct a random bipartite left d-regular
n × n graph Gn,d = (L ∪ R, E) as follows: For each vertex u ∈ L choose its
d neighbors independently at random, each with the same probability 1/n.
The graph obtained may have multi-edges, that is, some pairs of vertices may
be joined by several edges.

Theorem 17.18. For every constant d ≥ 3, there is a constant α > 0 such
that for all sufficiently large n, the graph Gn,d is an (α, d − 2) expander with
probability at least 1/2.

Proof. Set (with foresight) α := 1/(e3d4). Fix any s ≤ αn, and take any
set S ⊆ L of size |S| = s. We want to upper bound the probability that
S does not expand by d − 2. This means that the ds neighbors (including
multiplicities) of the vertices in S hit fewer than (d − 2)s distinct vertices on
the right side, that is, some 2s of these ds neighbors land on previously picked
vertices. Each neighbor lands on a previously picked vertex with probability
at most ds/n, so

Pr [S does not expand by (d − 2)] ≤
(

ds

2s

)(
ds

n

)2s

.

By the union bound, the probability that at least one subset S of size s does
not expand by (d − 2) is at most

(
n

s

)(
ds

2s

)(
ds

n

)2s

≤
(

en

s

)s(
eds

2s

)2s(
ds

n

)2s

≤
(

e3d4

4n

)s

≤
(

1

4

)s

,

by the choice of α. Thus, the probability that some set S of size |S| ≤ αn
does not expand by (d − 2) does not exceed

