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that this occurs every time is at most 2−100. So, if the algorithm does not
prove that f 6= 0, we can be pretty certain that actually f = 0. Not 100%
certain, but if we lose the bet, we would know that an experiment that had
only two possible outcomes ended with the one that had probability 2−100.
This should compensate for our trouble: we found a needle in a haystack!

As our next example, consider the following situation. We have two friends,
Alice and Bob. Alice maintains a large database of information. Bob main-
tains a second copy of the database. Periodically, they must compare their
databases for consistency. Because the transmission between Alice and Bob
is expensive, they would like to discover the presence of inconsistency with-
out transmitting the entire database between them. Denote Alice’s data by
the sequence a = a0 · · · an−1 and Bob’s data by the sequence b = b0 · · · bn−1

where ai, bi ∈ {0, 1}. It is clear that any deterministic consistency check that
transmits fewer than n bits will fail (just because an adversary can modify the
unsent bits). Using randomness it is possible to design a strategy that detects
an inconsistency with high probability (at least 1 − n−1) while transmitting
many fewer than n bits, namely only O(log n) bits.

Think of the strings a and b as (strings of coefficients of) univariate polyno-
mials over the field Fp where p is a prime such that n2 < p < 2n2 (theorems
regarding the density of primes guarantee the existence of such p). That is,
consider polynomials

A(x) = a0 + a1x + . . . + an−1xn−1 (mod p),

B(x) = b0 + b1x + . . . + bn−1xn−1 (mod p).

In order to detect whether a = b, Alice and Bob use the following strategy:

Alice picks uniformly at random a number r in F and sends to Bob the
numbers r and A(r). Bob responds with 1 if A(r) = B(r) and with 0
otherwise. The number of bits transmitted is 1 + 2 log p = O(log n).

If a = b then A(r) = B(r) for all r, so the output is always 1. If a 6= b we
have two distinct polynomials A(x) and B(x) of degree at most n − 1. By
Lemma 16.4, the probability of error is

Pr [A(r) = B(r)] ≤ n − 1

|F| =
n − 1

p
≤ 1

n
.

16.2 Solution of Kakeya’s problem in finite fields

A famous unsolved problem in mathematics is the Kakeya conjecture in geo-
metric measure theory. This conjecture is descended from the following ques-
tion asked in 1917 by Japanese mathematician Soichi Kakeya: What is the
smallest set in the plane in which one can rotate a needle around completely?
He likened this to a samurai turning his lance around in a small toilet. For
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Fig. 16.1 As the middle (flexible) point moves around the smaller circle, the needle
rotates through 360◦.

instance, one can rotate a unit needle inside a unit disk, which has area π/4.
By using a deltoid one requires only π/8 area (see Fig. 16.1).

The Kakeya conjecture in more dimensions states that any subset of Rn

that contains a unit line segment in every direction has Hausdorff dimension
equal to n. This conjecture remains open in dimensions three and higher, and
gets more difficult as the dimension increases.

To approach this question, Wolff (1999) proposed a simpler finite field
analogue of the Kakeya conjecture. If Fn is a vector space over a finite field
F, define a Kakeya set to be a subset K ⊆ Fn which contains a line in every
direction, namely for any v ∈ Fn there exists a vector w ∈ Fn such that the
line {w + tv : t ∈ F} is contained in K; here, vector w is the origin and
vector v the direction of the line. The finite field Kakeya conjecture stated
that there exists a constant c > 0 depending only on the dimension n such
that every Kakeya set K ⊆ Fn has cardinality |K| ≥ c|F|n.

This finite field version of the conjecture has had a significant influence
on the subject, in particular inspiring work on the sum-product phenomenon
in finite fields, which has since proved to have many applications in number
theory and computer science. Modulo minor technicalities, the progress on
the finite field Kakeya conjecture was, however, essentially the same as that
of the original “Euclidean” Kakeya conjecture.

Recently Dvir (2009) used a surprisingly simple application of the polyno-
mial method to prove the finite field Kakeya conjecture.

Lemma 16.5. Let f ∈ F[x1, . . . , xn] be a polynomial of degree at most q − 1
over a finite field with q = |F| elements. If f vanishes on a Kakeya set K,
then f is the zero polynomial.

Proof. The argument is similar to that in the proof of Lemma 16.2. Suppose
for a contradiction that f is nonzero. We can write f =

∑d
i=0 fi, where

0 ≤ d ≤ q − 1 is the degree of f and fi is the i-th homogeneous component;
thus fd is nonzero. Since f vanishes on K, d cannot be zero. Hence, fd is a
nonzero polynomial.
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Let v ∈ Fn \ {0} be an arbitrary direction. As K is a Kakeya set, K
contains a line {w + tv : t ∈ F} for some w ∈ Fn, thus f(w + tv) = 0 for
all t ∈ F. The left-hand side is a polynomial gw,v(t) in t of degree at most
q − 1, and must be the zero polynomial by the factor theorem, that is, all its
coefficients are zero. In particular, the coefficient of td, which is fd(v), must
be zero. Since v was arbitrary, it follows that the polynomial fd(x) vanishes
on all points in Fn. But since dqn−1 ≤ (q − 1)qn−1 < qn, Lemma 16.2 implies
that fd must be a zero polynomial. ⊓⊔

Theorem 16.6 (Dvir 2009). Let K ⊂ Fn be a Kakeya set. Then

|K| ≥
(|F | + n − 1

n

)
≥ |F|n

n!
.

Proof. Let q = |F| and suppose that |K| <
(

n+q−1
n

)
. Then, by Lemma 16.1,

there exists a nonzero polynomial f ∈ F[x1, . . . , xn] of degree at most q − 1
that vanishes on K, which contradicts Lemma 16.5. ⊓⊔

16.3 Combinatorial Nullstellensatz

The following special case of Hilbert’s Nullstellensatz has found numerous
applications in combinatorics.

Theorem 16.7 (Nullstellensatz). Let f ∈ F[x1, . . . , xn], and let S1, . . . , Sn

be nonempty subsets of F. If f(x) = 0 for all x ∈ S1 × · · · × Sn, then there
are polynomials h1, . . . , hn ∈ F[x1, . . . , xn] such that deg(hi) ≤ deg(f) − |Si|
and

f(x1, . . . , xn) =

n∑

i=1

hi(x1, . . . , xn)
∏

s∈Si

(xi − s) .

Proof (due to Alon 1999). Define di = |Si| − 1 for all i, and consider polyno-
mials

gi(xi) =
∏

s∈Si

(xi − s) = xdi+1
i −

di∑

j=0

aijxj
i .

Observe that if xi ∈ Si then gi(xi) = 0, that is,

xdi+1
i =

di∑

j=0

aijxj
i . (16.1)

Let f be the polynomial obtained by writing f as a linear combination of
monomials and replacing, repeatedly, each occurrence of xti

i (1 ≤ i ≤ n),
where ti > di, by a linear combination of smaller powers of xi, using the
relations (16.1). The resulting polynomial f is clearly of degree at most di in


