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Proof. Take any x, y ∈ Cn, x 6= y. If these two vectors have been obtained
from the i-th rows of H and −H respectively, then they disagree in all n
coordinates. Otherwise, there are two different rows u and v in H such that
x is obtained (by changing −1s to 0s) from u or −u, and y from v or −v. In all
cases, x and y differ in n/2 coordinates, because ±u and ±v are orthogonal.

⊓⊔

Hadamard matrices can also be used to construct combinatorial designs
with good parameters. Recall that a (v, k, λ) design is a k-uniform family of
subsets (also called blocks) of a v-element set such that every pair of distinct
points is contained in exactly λ of these subsets; if the number of blocks is the
same as the number v of points, then the design is symmetric (see Chap. 12).

By Theorem 14.9, we have that, if there is a Hadamard matrix of order n,
then n = 2 or n is divisible by 4. It is conjectured that Hadamard matrices
exist for all orders that are divisible by 4.

Theorem 14.11. Every Hadamard matrix of order 4n gives a symmetric
(4n − 1, 2n − 1, n − 1) design.

Proof. Let H be a Hadamard matrix of order 4n, and assume that it is
normalized, i.e., the first row and the first column consist entirely of 1s. Form
a (4n − 1) × (4n − 1) 0-1 matrix M by deleting the first column and the first
row in H , and changing −1s to 0s. This is the incidence matrix of a symmetric
(4n − 1, 2n − 1, n − 1) design, because by Theorem 14.9, each row of M has
2n−1 ones and any two columns of M have exactly n−1 ones in common. ⊓⊔

14.4 Matrix rank and Ramsey graphs

A matrix A = (aij) is lower co-triangular if aii = 0 and aij 6= 0 for all
1 ≤ j < i ≤ n. That is, such a matrix has zeroes on the diagonal and nonzero
entries below the diagonal; the entries above the diagonal may be arbitrary.

Lemma 14.12. Let p be a prime number, and A an n×n lower co-triangular
matrix over Fp of rank r. Then

n ≤
(

r + p − 2

p − 1

)
+ 1 ≤ (r + p)p−1 .

Proof. Let r = rkFp(A) and A = B · C be the corresponding decomposition
of A. For i = 1, . . . , n consider the polynomials fi(x) = 1 − gi(x)p−1 in r
variables x = (x1, . . . , xr) over Fp, where gi(x) is the scalar product of x with
the i-th row of B. Let c1, . . . , cn be the columns of C. Then gi(ci) = 0 and
gi(cj) 6= 0 for every i > j. Since p is a prime, Fermat’s Little Theorem (see
Exercise 1.15) implies that ap−1 = 1 for every a 6= 0 in Fp. Hence, fi(ci) 6= 0
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and gi(cj) = 0 for every i > j. By Lemma 13.11, the polynomials f1, . . . , fn

are linear independent elements of a vector space V of all polynomials over
Fp of degree p − 1, all of whose monomials

∏r
i=1 xti

i satisfy
∑r

i=1 ti = p − 1

and ti ≥ 0. By Proposition 1.5, the number of such monomials is
(

r+(p−1)−1
p−1

)
.

Since the polynomials can also have a constant term (which accounts for the
“+1” in the final equation), we have that

n ≤ dim V ≤
(

r + p − 2

p − 1

)
+ 1 ≤ (r + p)p−1 . ⊓⊔

Let R be a ring and A = (aij) an n × n matrix with entries from R. The
rank rkR(A) of A over R is defined as the minimum number r for which there
exists an n × r matrix B and an r × n matrix C over R such that A = B · C;
if all entries of A are zeroes then rkR(A) = 0. If R = F is a field, then rkR(A)
is the usual rank over F, that is, the largest number of linear independent
rows.

By Lemma 14.12, lower co-triangular matrices over R = Zm have large
rank, if m is a prime number. But what about R = Zm for non-prime m, say,
for m = 6? In this case R is no longer a field—it is just a ring (division is not
defined). Still one can extend the notion of rank also to rings.

Let R be a ring and A = (aij) an n × n matrix with entries from R. The
rank rkR(A) of A over R is defined as the minimum number r for which there
exists an n × r matrix B and an r × n matrix C over R such that A = B · C;
if all entries of A are zeroes then rkR(A) = 0. If R = F is a field, then rkR(A)
is the usual rank over F, that is, the largest number of linear independent
rows.

It turns out that explicit low rank matrices over the ring R = Z6 of integers
modulo 6 would give us explicit graphs with good Ramsey properties, that
is, graphs without any large clique or large independent set.

Let A = (aij) be an n × n lower co-triangular matrix over Z6. Associate
with A the graph GA = (V, E) with V = {1, . . . , n}, where two vertices i > j
are adjacent iff aij is odd.

Lemma 14.13 (Grolmusz 2000). If r = rkZ6(A) then the graph GA contains
neither a clique on r + 2 vertices nor an independent set of size

(
r+1

2

)
+ 2.

Proof. It is clear that rkFp(A) ≤ r for p ∈ {2, 3}. Let S ⊆ V be a clique in
GA of size |S| = s, and B = (bij) be the corresponding s × s submatrix of
A; hence, bii = 0 and bij ∈ {1, 3, 5} for all i > j. Then B mod 2 is a lower
co-triangular matrix over F2, and Lemma 14.12 (with p = 2) implies that
|S| ≤ r + 1.

Now let T ⊆ V be an independent set in GA of size |T | = t, and C = (cij)
be the corresponding t × t submatrix of A; hence, cii = 0 and cij ∈ {2, 4}
for all i > j. Then C mod 3 is a lower co-triangular matrix over F3, and
Lemma 14.12 (with p = 3) implies that |T | ≤

(
r+1

2

)
+ 1. ⊓⊔



14.5 Lower bounds for boolean formulas 203

In Sect. 13.7 (Theorem 13.15) we have shown how to construct explicit
n-vertex graphs with no clique or independent set larger than

t := 2c
√

ln n ln ln n

for an absolute constant c. Grolmusz (2000) constructed a co-triangular n×n
matrix A over R = Z6 with rkZ6(A) ≤ t. Together with Lemma 14.13, this
gives an alternative construction of a graph GA with no clique or independent
set larger than t.

14.5 Lower bounds for boolean formulas

Boolean formulas (or De Morgan formulas) are defined inductively as follows:

- Every boolean variable xi and its negation xi is a formula of size 1 (these
formulas are called leaves).

- If F1 and F2 are formulas of size l1 and l2, then both F1 ∧ F2 and F1 ∨ F2

are formulas of size l1 + l2.

Note that the size of F is exactly the number of leaves in F .
Often one uses an equivalent definition of a formula as a circuit with And,

Or, and Not gates, whose underlying graph is a tree. That is, now negation is
allowed not only at the leaves. But using De Morgan rules ¬(x∨y) = ¬x∧¬y
and ¬(x∧y) = ¬x∨¬y one can move all negations to leaves without increasing
the formula size.

Given a boolean function f , how it can be shown that it is hard, i.e., that
it cannot be computed by a formula of small size? Easy counting shows that
almost all boolean functions in n variables require formulas of size exponential
in n. Still, for a concrete boolean function f , the largest remains the lower
bound n3−o(1) proved by Håstad (1993).

The main difficulty here is that we allow negated variables xi as leaves.
It is therefore natural to look at what happens if we forbid this and require
that our formulas are monotone in that they do not have negated leaves. Of
course, not every boolean function f(x1, . . . , xn) can be computed by such
a formula – the function itself must be also monotone: if f(x1, . . . , xn) = 1
and xi ≤ yi for all i, then f(y1, . . . , yn) = 1. Under this restriction progress
is substantial: we are able to prove that some explicit monotone functions
require monotone formulas of super-polynomial size.

14.5.1 Reduction to set-covering

Let A and B be two disjoint subsets of {0, 1}n. A boolean formula F separates
A and B if F (a) = 1 for all a ∈ A and F (b) = 0 for all b ∈ B. A rectangle is
a subset R ⊆ A × B of the form R = S × T for some S ⊆ A and T ⊆ B. A


