Proof. Take any $x, y \in C_{n}, x \neq y$. If these two vectors have been obtained from the i-th rows of H and $-H$ respectively, then they disagree in all n coordinates. Otherwise, there are two different rows u and v in H such that x is obtained (by changing -1 s to 0 s) from u or $-u$, and y from v or $-v$. In all cases, x and y differ in $n / 2$ coordinates, because $\pm u$ and $\pm v$ are orthogonal.

Hadamard matrices can also be used to construct combinatorial designs with good parameters. Recall that a (v, k, λ) design is a k-uniform family of subsets (also called blocks) of a v-element set such that every pair of distinct points is contained in exactly λ of these subsets; if the number of blocks is the same as the number v of points, then the design is symmetric (see Chap. 12).

By Theorem 14.9, we have that, if there is a Hadamard matrix of order n, then $n=2$ or n is divisible by 4 . It is conjectured that Hadamard matrices exist for all orders that are divisible by 4 .

Theorem 14.11. Every Hadamard matrix of order $4 n$ gives a symmetric ($4 n-1,2 n-1, n-1$) design.

Proof. Let H be a Hadamard matrix of order $4 n$, and assume that it is normalized, i.e., the first row and the first column consist entirely of 1s. Form a $(4 n-1) \times(4 n-1) 0-1$ matrix M by deleting the first column and the first row in H, and changing -1 s to 0 s. This is the incidence matrix of a symmetric ($4 n-1,2 n-1, n-1$) design, because by Theorem 14.9 , each row of M has $2 n-1$ ones and any two columns of M have exactly $n-1$ ones in common.

14.4 Matrix rank and Ramsey graphs

A matrix $A=\left(a_{i j}\right)$ is lower co-triangular if $a_{i i}=0$ and $a_{i j} \neq 0$ for all $1 \leq j<i \leq n$. That is, such a matrix has zeroes on the diagonal and nonzero entries below the diagonal; the entries above the diagonal may be arbitrary.

Lemma 14.12. Let p be a prime number, and A an $n \times n$ lower co-triangular matrix over \mathbb{F}_{p} of rank r. Then

$$
n \leq\binom{ r+p-2}{p-1}+1 \leq(r+p)^{p-1}
$$

Proof. Let $r=\operatorname{rk}_{\mathbb{F}_{p}}(A)$ and $A=B \cdot C$ be the corresponding decomposition of A. For $i=1, \ldots, n$ consider the polynomials $f_{i}(x)=1-g_{i}(x)^{p-1}$ in r variables $x=\left(x_{1}, \ldots, x_{r}\right)$ over \mathbb{F}_{p}, where $g_{i}(x)$ is the scalar product of x with the i-th row of B. Let c_{1}, \ldots, c_{n} be the columns of C. Then $g_{i}\left(c_{i}\right)=0$ and $g_{i}\left(c_{j}\right) \neq 0$ for every $i>j$. Since p is a prime, Fermat's Little Theorem (see Exercise 1.15) implies that $a^{p-1}=1$ for every $a \neq 0$ in \mathbb{F}_{p}. Hence, $f_{i}\left(c_{i}\right) \neq 0$
and $g_{i}\left(c_{j}\right)=0$ for every $i>j$. By Lemma 13.11, the polynomials f_{1}, \ldots, f_{n} are linear independent elements of a vector space V of all polynomials over \mathbb{F}_{p} of degree $p-1$, all of whose monomials $\prod_{i=1}^{r} x_{i}^{t_{i}}$ satisfy $\sum_{i=1}^{r} t_{i}=p-1$ and $t_{i} \geq 0$. By Proposition 1.5, the number of such monomials is $\binom{r+(p-1)-1}{p-1}$. Since the polynomials can also have a constant term (which accounts for the " +1 " in the final equation), we have that

$$
n \leq \operatorname{dim} V \leq\binom{ r+p-2}{p-1}+1 \leq(r+p)^{p-1}
$$

Let R be a ring and $A=\left(a_{i j}\right)$ an $n \times n$ matrix with entries from R. The $\operatorname{rank} \operatorname{rk}_{R}(A)$ of A over R is defined as the minimum number r for which there exists an $n \times r$ matrix B and an $r \times n$ matrix C over R such that $A=B \cdot C$; if all entries of A are zeroes then $\operatorname{rk}_{R}(A)=0$. If $R=\mathbb{F}$ is a field, then $\operatorname{rk}_{R}(A)$ is the usual rank over \mathbb{F}, that is, the largest number of linear independent rows.

By Lemma 14.12, lower co-triangular matrices over $R=\mathbb{Z}_{m}$ have large rank, if m is a prime number. But what about $R=\mathbb{Z}_{m}$ for non-prime m, say, for $m=6$? In this case R is no longer a field-it is just a ring (division is not defined). Still one can extend the notion of rank also to rings.

Let R be a ring and $A=\left(a_{i j}\right)$ an $n \times n$ matrix with entries from R. The $\operatorname{rank} \operatorname{rk}_{R}(A)$ of A over R is defined as the minimum number r for which there exists an $n \times r$ matrix B and an $r \times n$ matrix C over R such that $A=B \cdot C$; if all entries of A are zeroes then $\operatorname{rk}_{R}(A)=0$. If $R=\mathbb{F}$ is a field, then $\operatorname{rk}_{R}(A)$ is the usual rank over \mathbb{F}, that is, the largest number of linear independent rows.

It turns out that explicit low rank matrices over the ring $R=\mathbb{Z}_{6}$ of integers modulo 6 would give us explicit graphs with good Ramsey properties, that is, graphs without any large clique or large independent set.

Let $A=\left(a_{i j}\right)$ be an $n \times n$ lower co-triangular matrix over \mathbb{Z}_{6}. Associate with A the graph $G_{A}=(V, E)$ with $V=\{1, \ldots, n\}$, where two vertices $i>j$ are adjacent iff $a_{i j}$ is odd.

Lemma 14.13 (Grolmusz 2000). If $r=\operatorname{rk}_{\mathbb{Z}_{6}}(A)$ then the graph G_{A} contains neither a clique on $r+2$ vertices nor an independent set of size $\binom{r+1}{2}+2$.

Proof. It is clear that $\operatorname{rk}_{\mathbb{F}_{p}}(A) \leq r$ for $p \in\{2,3\}$. Let $S \subseteq V$ be a clique in G_{A} of size $|S|=s$, and $B=\left(b_{i j}\right)$ be the corresponding $s \times s$ submatrix of A; hence, $b_{i i}=0$ and $b_{i j} \in\{1,3,5\}$ for all $i>j$. Then $B \bmod 2$ is a lower co-triangular matrix over \mathbb{F}_{2}, and Lemma 14.12 (with $p=2$) implies that $|S| \leq r+1$.

Now let $T \subseteq V$ be an independent set in G_{A} of size $|T|=t$, and $C=\left(c_{i j}\right)$ be the corresponding $t \times t$ submatrix of A; hence, $c_{i i}=0$ and $c_{i j} \in\{2,4\}$ for all $i>j$. Then $C \bmod 3$ is a lower co-triangular matrix over \mathbb{F}_{3}, and Lemma 14.12 (with $p=3$) implies that $|T| \leq\binom{ r+1}{2}+1$.

In Sect. 13.7 (Theorem 13.15) we have shown how to construct explicit n-vertex graphs with no clique or independent set larger than

$$
t:=2^{c \sqrt{\ln n \ln \ln n}}
$$

for an absolute constant c. Grolmusz (2000) constructed a co-triangular $n \times n$ matrix A over $R=\mathbb{Z}_{6}$ with $\mathrm{rk}_{\mathbb{Z}_{6}}(A) \leq t$. Together with Lemma 14.13, this gives an alternative construction of a graph G_{A} with no clique or independent set larger than t.

14.5 Lower bounds for boolean formulas

Boolean formulas (or De Morgan formulas) are defined inductively as follows:

- Every boolean variable x_{i} and its negation \bar{x}_{i} is a formula of size 1 (these formulas are called leaves).
- If F_{1} and F_{2} are formulas of size l_{1} and l_{2}, then both $F_{1} \wedge F_{2}$ and $F_{1} \vee F_{2}$ are formulas of size $l_{1}+l_{2}$.

Note that the size of F is exactly the number of leaves in F.
Often one uses an equivalent definition of a formula as a circuit with And, Or, and Not gates, whose underlying graph is a tree. That is, now negation is allowed not only at the leaves. But using De Morgan rules $\neg(x \vee y)=\neg x \wedge \neg y$ and $\neg(x \wedge y)=\neg x \vee \neg y$ one can move all negations to leaves without increasing the formula size.

Given a boolean function f, how it can be shown that it is hard, i.e., that it cannot be computed by a formula of small size? Easy counting shows that almost all boolean functions in n variables require formulas of size exponential in n. Still, for a concrete boolean function f, the largest remains the lower bound $n^{3-o(1)}$ proved by Håstad (1993).

The main difficulty here is that we allow negated variables \bar{x}_{i} as leaves. It is therefore natural to look at what happens if we forbid this and require that our formulas are monotone in that they do not have negated leaves. Of course, not every boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ can be computed by such a formula - the function itself must be also monotone: if $f\left(x_{1}, \ldots, x_{n}\right)=1$ and $x_{i} \leq y_{i}$ for all i, then $f\left(y_{1}, \ldots, y_{n}\right)=1$. Under this restriction progress is substantial: we are able to prove that some explicit monotone functions require monotone formulas of super-polynomial size.

14.5.1 Reduction to set-covering

Let A and B be two disjoint subsets of $\{0,1\}^{n}$. A boolean formula F separates A and B if $F(a)=1$ for all $a \in A$ and $F(b)=0$ for all $b \in B$. A rectangle is a subset $R \subseteq A \times B$ of the form $R=S \times T$ for some $S \subseteq A$ and $T \subseteq B$. A

