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Example 10.13 (Maximum weight traveling salesman problem). We are given
a complete directed graph with non-negative weights on edges, and we must
find a maximum weight Hamiltonian cycle, that is, a cycle that visits every
vertex exactly once. This problem is very hard: it is a so-called “NP-hard”
problem. On the other hand, using Theorem 10.8 and Lemma 10.10 we can
show that the greedy algorithm can find a Hamiltonian cycle whose weight
is at least one third of the maximum possible weight of a Hamiltonian cycle.

The ground-set X of our family F in this case consists of the directed edges
of the complete graph. A set is independent if its edges form a collection of
vertex-disjoint paths or a Hamiltonian cycle. It is enough to show that F is
3-extendible.

To show this, let A+x and B be any two members of F , where A ⊂ B and
x = (u, v) is an edge not in B. First remove from B the edges (if any) out of
u and into v. There can be at most two such edges, and neither of them can
belong to A since otherwise A+(u, v) would not belong to F . If we add (u, v)
to B then every vertex has in-degree and out-degree at most one. Hence, the
only reason why the resulting set may not belong to F is that there may be
a non-Hamiltonian cycle which uses (u, v). But then there must be an edge
in the cycle, not in A, that we can remove to break it: if all edges, except for
(u, v), of the cycle belong to A, then A + (u, v) contains a non-Hamiltonian
cycle and could not belong to F . Therefore we need to remove at most three
edges in total.

10.4 The Kruskal–Katona theorem

A neighbor of a binary vector v is a vector which can be obtained from v by
flipping one of its 1-entries to 0. A shadow of a set A ⊆ {0, 1}n of vectors
is the set ∂(A) of all its neighbors. A set A is k-regular if every vector in A
contains exactly k 1-entries. Note that in this case ∂(A) is (k − 1)-regular.

A basic question concerning shadows is the following one: What can one
say about |∂(A)| in terms of the total number |A| of vectors in a k-regular
set A?

In general one cannot improve on the trivial upper bound |∂(A)| ≤ k|A|.
But what about lower bounds? The question is non-trivial because one and
the same vector with k − 1 ones may be a neighbor of up to n − k + 1 vectors
in A. Easy counting shows that

|∂(A)| ≥ k

n − k + 1
|A| =

|A|(
n
k

)
(

n

k − 1

)
.

This can be shown by estimating the number N of pairs (u, v) of vectors
such that v ∈ A and u is a neighbor of v. Since every v ∈ A has exactly
k neighbors, we have that N = k|A|. On the other hand, every vector u
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with k − 1 ones can be a neighbor of at most n − k + 1 vectors of A. Hence,
k|A| = N ≤ (n − k + 1)|∂(A)|, and the desired lower bound on |∂(A)| follows.

Best possible lower bounds on |∂(A)| were obtained by Kruskal (1963) and
Katona (1966). The idea, again, is to show that the minimum of |∂(A)| over
all sets A with |A| = m is achieved by sets of a very special structure, and use
the Pascal identity for binomial coefficients

(
x
k

)
= x(x − 1) · · · (x − k + 1)/k!:

for every real number x ≥ k

(
x

k − 1

)
+

(
x

k

)
=

(
x + 1

k

)
. (10.1)

In Proposition 1.3 we gave a combinatorial proof of this identity in the case
when x is a natural number. The case when x is not necessarily an integer
can be shown by a simple algebraic manipulation:

(
x

k − 1

)
+

(
x

k

)
=

x!

(x − (k − 1))!(k − 1)!
+

x!

(x − k)!k!

=
kx! + (x + 1 − k)x!

(x + 1 − k)!k!
=

(
x + 1

k

)
.

The following lemma allows us to restrict our attention to sets with a very
special structure. For a set of vectors A ⊆ {0, 1}n, let A0 and A1 denote the
sets of vectors in A starting, respectively, with 0 and 1. Hence, A = A0 ∪ A1.
Let also ei denote the vector in {0, 1}n with exactly one 1-entry in the i-th
position.

Proposition 10.14. For every set B ⊆ {0, 1}n there is a set A ⊆ {0, 1}n of
the same size such that |∂(B)| ≥ |∂(A)| and

∂(A0) + e1 ⊆ A1 . (10.2)

That is, if we take a vector v in A with v1 = 0, flip any of its 1s to 0 and
at the same time flip its first bit to 1, then the obtained vector will again
belong to A.

Proof. For 1 < j ≤ n, the j-th shift of B is the set sj(B) of vectors defined as
follows. First, we include in sj(B) all vectors v ∈ B1. For the vectors v ∈ B0

we look whether vj = 1. If yes, we include in sj(B) the vector v ⊕ e1 ⊕ ej

(obtained from vector v by flipping its 1-st and j-th bits), but only if this
vector does not already belong to B; if v ⊕ e1 ⊕ ej belongs to B, we include
in sj(B) the vector v itself. This last requirement ensures that |sj(B)| = |B|
for every 1 < j ≤ n. For example, if

B =

1 0 1 0
1 1 0 1
0 1 1 0
0 1 0 1

then s2(B) =

1 0 1 0
1 1 0 1
0 1 1 0
1 0 0 1
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We claim that the shifting operation preserves the neighborhood. Namely, for
every 1 < j ≤ n,

∂(sj(B)) ⊆ sj(∂(B)) .

The following diagram sketches the proof idea:

(0 . . . 1 . . . 1 . . .)
shift−−−→ (1 . . . 0 . . . 1 . . .)

↓ neighbor ↓ neighbor

(0 . . . 1 . . . 0 . . .)
shift−−−→ (1 . . . 0 . . . 0 . . .)

If we repeatedly apply the shift operators sj, j = 2, . . . , n to B, the number
of vectors containing 1 in the first position increases, so that after a finite
number of applications the shifts must therefore cease to make any change.
We have then obtained a new set A of the same size as B, with sj(A) = A
for each j ≥ 2, and with |∂(B)| ≥ |∂(A)|. We claim that A satisfies (10.2).

To show this, take a vector u ∈ ∂(A0). Then u+ej belongs to A0 for some
j ≥ 2, and hence, u + e1 belongs to sj(A) = A. ⊓⊔

We first state and prove a slightly weaker but much more handy version
of the Kruskal–Katona theorem.

Theorem 10.15. If A ⊆ {0, 1}n is k-regular, and if

|A| ≥
(

x

k

)
= x(x − 1) · · · (x − k + 1)/k!

for some real number x ≥ k, then

|∂(A)| ≥
(

x

k − 1

)
. (10.3)

Note that this is the best possible: If A ⊆ {0, 1}n is the set of all
(

n
k

)

vectors with exactly k ones, then |∂(A)| =
(

n
k−1

)
.

Proof (due to Lovász 1979). By Proposition 10.14, we can assume that A
satisfies (10.2). Consider the set

A0 := {(0, w) : (1, w) ∈ A}

obtained from A1 by flipping the first bit from 1 to 0. Note that |A0| = |A1|.
Observe also that

|∂(A)| ≥ |A0| + |∂(A0)| . (10.4)

Indeed, vectors in the set A0 are neighbors of A by the definition of this set.
Moreover, each neighbor of A0 plus the unit vector e1 is also a neighbor of A.

We now argue by double induction on k and m = |A|. For k = 1 and m
arbitrary, (10.3) holds trivially.
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For the induction step, we first use the fact that A has a special structure—
namely, satisfies (10.2)—to show that |A0| cannot be smaller than

(
x−1
k−1

)
. To

show this, assume the opposite. Then

|A0| = |A| − |A1| = |A| − |A0| >

(
x

k

)
−
(

x − 1

k − 1

)
=

(
x − 1

k

)
,

and so, by induction, |∂(A0)| ≥
(

x−1
k−1

)
. But then (10.2) implies that

|A0| = |A1| ≥
(

x − 1

k − 1

)
,

a contradiction. Hence, |A0| ≥
(

x−1
k−1

)
.

Since A0 is (k−1)-regular, the induction hypothesis yields |∂(A0)| ≥
(

x−1
k−2

)
.

Together with (10.4) this implies

|∂(A)| ≥ |A0| + |∂(A0)| ≥
(

x − 1

k − 1

)
+

(
x − 1

k − 2

)
=

(
x

k − 1

)
,

as desired. ⊓⊔
To state the Kruskal–Katona theorem in its original form, we write m =

|A| in k-cascade form:

m =

(
ak

k

)
+

(
ak−1

k − 1

)
+ · · · +

(
as

s

)
(10.5)

where ak > ak−1 > . . . > as ≥ s ≥ 1 are integers. Such a representation of m
can be obtained as follows. Let ak be the maximal integer for which

(
ak

k

)
≤ m.

Then choose ak−1 as the largest integer for which
(

ak−1

k−1

)
≤ m −

(
ak

k

)
. If

ak−1 ≥ ak, then we would have m ≥
(

ak

k

)
+
(

ak

k−1

)
=
(

1+ak

k

)
, contradicting the

maximality of ak. Therefore ak−1 < ak. Continuing this process we eventually
reach a stage where the choice of as for some s ≥ 2 actually gives an equality,

(
as

s

)
= m −

(
ak

k

)
−
(

ak−1

k − 1

)
− · · · −

(
as+1

s + 1

)
,

or we get right down to choosing a1 as the integer such that

(
a1

1

)
≤ m −

(
ak

k

)
− · · · −

(
a2

2

)
<

(
a1 + 1

1

)

in which case we have

0 ≤ m −
(

ak

k

)
− · · · −

(
a1

1

)
< 1 ,

so that
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m =

(
ak

k

)
+ · · · +

(
a1

1

)
.

It can be shown by induction (do this!) that the representation (10.5) is
unique.

Theorem 10.16 (Kruskal–Katona Theorem). If A ⊆ {0, 1}n is k-regular,
and if

|A| =

(
ak

k

)
+

(
ak−1

k − 1

)
+ · · · +

(
as

s

)

then

|∂(A)| ≥
(

ak

k − 1

)
+

(
ak−1

k − 2

)
+ · · · +

(
as

s − 1

)
.

We leave the proof as an exercise. It is the same as that of Theorem 10.15
with

(
x
k

)
and

(
x

k−1

)
replaced by the corresponding sums of binomial coeffi-

cents.
The representation (10.5) of m = |A| in the k-cascade form seems some-

what magical. To interpret this representation, let us consider the so-called
colexicographic order (or colex order) of vectors in {0, 1}n. This order is de-
fined by letting u ≺ v iff there is an i such that ui = 0, vi = 1 and uj = vj for
all j > i. Note that the only difference from the more standard lexicographic
order is that we now scan the strings from right to left. For example, the
colex order of all

(
5
3

)
= 10 vectors in {0, 1}5 with exactly 3 ones is (with the

“smallest” vector on the top):

1 1 1 0 0
1 1 0 1 0
1 0 1 1 0
0 1 1 1 0
1 1 0 0 1
1 0 1 0 1
0 1 1 0 1
1 0 0 1 1
0 1 0 1 1
0 0 1 1 1

Let En
k denote the k-th slice of the binary n-cube, that is, the set of all vectors

in {0, 1}n with exactly k ones.

Proposition 10.17. If the m-th vector in the colex order of En
k contains 1s

in positions a1 + 1 < a2 + 1 < . . . < ak + 1 then

m =

(
ak

k

)
+

(
ak−1

k − 1

)
+ · · · +

(
a1

1

)
.

Proof. Let v be the m-th vector in the colex order of En
k . To reach v we must

skip all vectors whose k-th 1 appears before position ak + 1, and there are
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(
ak

k

)
of these. Some vectors with last (rightmost) 1 in position ak may also

precede v. These are the vectors whose first k−1 1s precede position ak−1 +1,
and there are

(
ak−1

k−1

)
of these. Arguing further in this way gives the result. ⊓⊔

By the same argument one can show that the shadow of the first m =∑k
i=1

(
ai

i

)
vectors in the colex order of En

k consists of the first ∂k(m) :=∑k
i=1

(
ai

i−1

)
vectors in the colex order of En

k−1. Thus, the Kruskal–Katona
theorem says that the shadow of a family of m vectors in En

k is minimized
by the set consisting of the first m vectors in the colex ordering on En

k−1.
Furthermore, the size of the shadow is ∂k(m).

10.5 Universal sets

The (n, k)-density of a set of vectors means that its projection on at least
one set of k coordinates gives the whole binary k-cube. We now consider a
stronger property – (n, k)-universality – where we require that the same holds
for all subsets of k coordinates.

Of course, the whole cube {0, 1}n is (n, k)-universal for every k ≤ n. This
is the trivial case. Do there exist smaller universal sets? Note that 2k is a
trivial lower bound.

Using the probabilistic argument it can be shown that there exist (n, k)-
universal sets of size only k2k log n (see Theorem 3.2).

This result tells us only that small universal sets exist, but gives us no
idea of how to construct them. In this section we will show how to construct
explicit sets in {0, 1}n which only have size n and are (n, k)-universal as long
as k2k <

√
n. The construction employs some nice combinatorial properties

of so-called Paley graphs.
In this section we introduce one property of (bipartite) graphs which is

equivalent to the universality property of 0-1 vectors. In the next section we
will describe an explicit construction of such graphs based on the famous
theorem of Weil (1948) regarding character sums.

By a bipartite graph with parts of size n we will mean a bipartite graph
G = (V1, V2, E) with |V1| = |V2| = n. We say that a node y ∈ V2 is a common
neighbor for a set of nodes A ⊆ V1 if y is joined to each node of A. Dually,
a node y ∈ V2 is a common non-neighbor for a set of nodes B ⊆ V1 if y is
joined to no node of B. Given two disjoint subsets A and B of V1, we denote
by v(A, B) the number of nodes in V2 which are common neighbors for A,
and at the same time are common non-neighbors for B. That is, v(A, B) is
the number of nodes in V2 joined to each node of A and to no node of B.

Definition 10.18. A bipartite graph G = (V1, V2, E) satisfies the isolated
neighbor condition for k if v(A, B) > 0 for any two disjoint subsets A, B ⊆ V1

such that |A| + |B| = k.


