10.3 Matroids and approximation

Given a family \mathcal{F} of subsets of some finite set X, called the ground-set, and a weight function assigning each element $x \in X$ a non-negative real number $w(x)$, the optimization problem for \mathcal{F} is to find a member $A \in \mathcal{F}$ whose weight $w(A)=\sum_{x \in A} w(x)$ is maximal. For example, given a graph $G=(V, E)$ with non-negative weights on edges, we might wish to find a matching (a set of vertex-disjoint edges) of maximal weight. In this case $X=E$ is the set of edges, and members of \mathcal{F} are matchings. As it happens in many other situations, the resulting family is hereditary, that is, $A \in \mathcal{F}$ and $B \subseteq A$ implies $B \in \mathcal{F}$.

In general, some optimization problems are extremely hard-the so-called "NP-hard problems." In such situations one is satisfied with an "approximative" solution, namely, with a member $A \in \mathcal{F}$ whose weight is at least $1 / k$ times the weight of an optimal solution, for some real constant $k \geq 1$.

One of the simplest algorithms to solve an optimization problem is the greedy algorithm. It first sorts the elements $x_{1}, x_{2}, \ldots, x_{n}$ of X by weight, heaviest first. Then it starts with $A=\emptyset$ and in the i-th step adds the element x_{i} to the current set A if and only if the result still belongs to \mathcal{F}. A basic question is: for what families \mathcal{F} can this trivial algorithm find a good enough solution?

Namely, say that a family \mathcal{F} is greedy k-approximative if, for every weight function, the weight of the solution given by the greedy algorithm is at least $1 / k$ times the weight of an optimal solution. Note that being greedy 1-approximative means that for such families the greedy algorithm always finds an optimal solution.

Given a real number $k \geq 1$, what families are greedy k-approximative?
In the case $k=1$ (when greedy is optimal) a surprisingly tight answer was given by introducing a notion of "matroid." This notion was motivated by the following "exchange property" in linear spaces: If A, B are two sets of linearly independent vectors, and if $|B|>|A|$, then there is a vector $b \in B \backslash A$ such that the set $A \cup\{b\}$ is linearly independent.

Now let \mathcal{F} be a family of subsets of some finite set X; we call members of \mathcal{F} independent sets. A k-matroid is a hereditary family \mathcal{F} satisfying the following k-exchange property: For every two independent sets $A, B \in \mathcal{F}$, if $|B|>k|A|$ then there exists $b \in B \backslash A$ such that* $A+b$ is independent (belongs to \mathcal{F}). Matroids are k-matroids for $k=1$.

Matroids have several equivalent definitions. One of them is in terms of maximum independent sets. Let \mathcal{F} be a family of subsets of X (whose members we again call independent sets), and $Y \subseteq X$. An independent set $A \in \mathcal{F}$ is a maximum independent subset of Y (or a basis of Y in \mathcal{F}) if $A \subseteq Y$ and $A+x \notin \mathcal{F}$ for all $x \in Y \backslash A$. A family is k-balanced if for every subset $Y \subseteq X$

[^0]and any two of its maximum independent subsets $A, B \subseteq Y$ we have that $|B| \leq k|A|$.

Lemma 10.7. A hereditary family is k-balanced if and only if it is a k matroid.

Proof. (\Leftarrow) Let $Y \subseteq X$, and let $A, B \subseteq Y$ be two sets in \mathcal{F} that are maximum independent subsets of Y. Suppose that $|B|>k|A|$. Then by the k-exchange property, we can add some element b of $B \backslash A$ to A and keep the result $A+b$ in \mathcal{F}. But since A and B are both subsets of Y, the set $A+b$ is also a subset of Y and thus A is not maximum independent in Y, a contradiction.
(\Rightarrow) We will show that if \mathcal{F} does not satisfy the k-exchange property, then it is not k-balanced. Let A and B be two independent sets such that $|B|>k|A|$ but no element of $B \backslash A$ can be added to A to get a result in \mathcal{F}. We let Y be $A \cup B$. Now A is a maximum independent set in Y, since we cannot add any of the other elements of Y to it. The set B may not be a maximum independent set in Y, but if it isn't there is some subset B^{\prime} of Y that contains it and is maximum independent in Y. Since this set is at least as big as B, it is strictly bigger than $k|A|$ and we have a violation of the k-balancedness property.

For $k=1$, the (\Leftarrow) direction of the following theorem was proved by Rado (1942), and the (\Rightarrow) direction by Edmonds (1971).

Theorem 10.8. A hereditary family is greedy k-approximative if and only if it is a k-matroid.

Proof. (\Leftarrow) Let \mathcal{F} be a k-matroid over some ground-set X. Fix an arbitrary weight function, and order the elements of the ground-set X according to their weight, $w\left(x_{1}\right) \geq w\left(x_{2}\right) \geq \ldots \geq w\left(x_{n}\right)$. Let A be the solution given by the greedy algorithm, and B an optimal solution. Our goal is to show that $w(B) / w(A) \leq k$.

Let $Y_{i}:=\left\{x_{1}, \ldots, x_{i}\right\}$ be the set of the first i elements considered by the greedy algorithm. The main property of the greedy algorithm is given by the following simple claim.

Claim 10.9. For every i, the set $A \cap Y_{i}$ is a maximum independent subset of Y_{i}.

Proof. Suppose that the independent set $A \cap Y_{i}$ is not a maximum independent subset of Y_{i}. Then there must exist an element $x_{j} \in Y_{i} \backslash A$ (an element not chosen by the algorithm) such that the set $A \cap Y_{i}+x_{j}$ is independent. But then $A \cap Y_{j-1}+x_{j}$ (as a subset of an independent set) is also independent, and should have been chosen by the algorithm, a contradiction.

Now let $A_{i}:=A \cap Y_{i}$. Since $A_{i} \backslash A_{i-1}$ is either empty or is equal to $\left\{x_{i}\right\}$,

$$
\begin{aligned}
w(A) & =w\left(x_{1}\right)\left|A_{1}\right|+\sum_{i=2}^{n} w\left(x_{i}\right)\left(\left|A_{i}\right|-\left|A_{i-1}\right|\right) \\
& =\sum_{i=1}^{n-1}\left(w\left(x_{i}\right)-w\left(x_{i+1}\right)\right)\left|A_{i}\right|+w\left(x_{n}\right)\left|A_{n}\right|
\end{aligned}
$$

Similarly, letting $B_{i}:=B \cap Y_{i}$, we get

$$
w(B)=\sum_{i=1}^{n-1}\left(w\left(x_{i}\right)-w\left(x_{i+1}\right)\right)\left|B_{i}\right|+w\left(x_{n}\right)\left|B_{n}\right| .
$$

Using the inequality $(a+b) /(x+y) \leq \max \{a / x, b / y\}$ we obtain that $w(B) / w(A)$ does not exceed $\left|B_{i}\right| /\left|A_{i}\right|$ for some i. By Claim 10.9, the set A_{i} is a maximum independent subset of Y_{i}. Since B_{i} is also a (not necessarily maximum) independent subset of Y_{i}, the k-balancedness property implies that $\left|B_{i}\right| \leq k\left|A_{i}\right|$. Hence, $w(B) / w(A) \leq\left|B_{i}\right| /\left|A_{i}\right| \leq k$, as desired.
(\Rightarrow) We will prove that if our family \mathcal{F} fails to satisfy the k-exchange property, then there is some weight function on which the greedy algorithm fails to approximate an optimal solution by a factor of $1 / k$.

Suppose there are two sets A and B in \mathcal{F}, with $|B|>k|A|$, such that no element of $B \backslash A$ can be added to A while keeping the result in \mathcal{F}. Let $m=|A|$. Take any two positive numbers a and b such that $0<a-b \leq 1 / k$. Define the weight function as follows: elements in A have weight $m+a$, elements in $B \backslash A$ have weight $m+b$, and other elements have weight 0 . Then the greedy algorithm tries elements of weight $m+a$ first, gets all m of them, but then is stuck because no element of weight $m+b$ fits; hence, the total score of the greedy algorithm is $m(m+a)$. But the optimum is at least the total weight $(m+b)|B| \geq(m+b)(k m+1)$ of elements in B. Thus, the greedy algorithm can $(1 / k)$-approximate this particular optimization problem only if $(m+b)(k m+1) \leq k m(m+a)$, or equivalently, if $k(a-b) \geq 1+b / m$. But this is impossible because $a-b \leq 1 / k$ and $b>0$.

When trying to show that a given family is a k-matroid, the following somewhat easier to verify property, suggested by Mestre (2006), is often useful. We say that a family \mathcal{F} is k-extendible if for every sets $A \subset B \in \mathcal{F}$ and for every element $x \notin B$ the following holds: If the set $A+x$ is independent then the set $B+x$ can be made independent by removing from B at most k elements not in A, that is, there exists $Y \subseteq B \backslash A$ such that $|Y| \leq k$ and the set $B \backslash Y+x$ is independent.

Lemma 10.10. Every k-extendible hereditary family is a k-matroid.
Proof. Given two independent sets A and B with $|B|>k|A|$, we need to find an element $z \in B \backslash A$ such that the set $A+z$ is independent. If $A \subset B$ then we are done since all subsets of B are independent. Suppose now that $A \nsubseteq B$. The idea is to pick an element $x \in A \backslash B$ and apply the k-extendibility
property to the sets $C:=A \cap B$ and $D:=B$ to find a subset $Y \subseteq D \backslash C=B \backslash A$ with at most k elements such that the set $B^{\prime}=B \backslash Y+x$ is independent. If A is still not a subset of B^{\prime}, then repeat the same procedure. Since, due to the condition $Y \subseteq B \backslash A$, at any step none of the already added elements of A are removed, after at most $|A \backslash B|$ steps we will obtain an independent set B^{\prime} such that $A \subseteq B^{\prime}$. From $|B|>k|A|$, we have that $|B \backslash A|>k|A \backslash B|$. Since in each step at most k elements of B are removed, at least one element $z \in B \backslash A$ must remain in B^{\prime}, that is, A is a proper subset of B^{\prime}. But then the set $A+z$ is independent, because B^{\prime} is such, and we are done.

In the case of matroids $(k=1)$ we also have the converse.
Lemma 10.11. Every matroid is 1-extendible.
Proof. Let \mathcal{F} be a matroid. Given sets $A \subset B \in \mathcal{F}$ and an element $x \notin B$ such that the set $A+x$ is independent, we need to find an element $y \in B \backslash A$ such that $B-y+x$ is independent. If necessary, we can repeatedly apply the matroid property to add elements of $B \backslash A$ to A until we get a subset A^{\prime} such that $A \subseteq A^{\prime} \subset B, A^{\prime}+x \in \mathcal{F}$ and $\left|A^{\prime}+x\right|=|B|$. Since $x \notin B$, this implies that $B \backslash A^{\prime}$ consists of just one element y. But then $B-y+x=A^{\prime}+x$ belongs to \mathcal{F}, as desired.

It can be shown (see Exercise 10.12) that for $k \geq 2$ the converse of Lemma 10.10 does not hold, that is, not every k-matroid is k-extendible. Still, together with Theorem 10.8, Lemma 10.10 gives us a handy tool to show that some unrelated optimization problems can be approximated quite well by using the trivial greedy algorithm.

Example 10.12 (Maximum weight f-matching). Given a graph $G=(V, E)$ with non-negative weights on edges and degree constraints $f: V \rightarrow \mathbb{N}$ for vertices, an f-matching is a set of edges M such that for all $v \in V$ the number $\operatorname{deg}_{M}(v)$ of edges in M incident to v is at most $f(v)$. The corresponding optimization problem is to find an f-matching of maximal weight.

In this case we have a family \mathcal{F} whose ground-set is the set $X=E$ of edges of G and f-matchings are independent sets (members of \mathcal{F}). Note that \mathcal{F} is already not a matroid when $f(v)=1$ for all $v \in V$: if $A=\{a, b\}$ and $B=\{\{c, a\},\{b, d\}\}$ are two matchings, then $|B|>|A|$ but no edge of B can be added to A. We claim that this family is 2 -extendible, and hence, is a 2-matroid.

To show this, let $A+x$ and B be any two f-matchings, where $A \subset B$ and $x=\{u, v\}$ is an edge not in B. If $B+x$ is an f-matching, we are done. If not, then $\operatorname{deg}_{B}(u)=f(u)$ or $\operatorname{deg}_{B}(v)=f(v)$ (or both). But we know that $\operatorname{deg}_{A}(u)<f(u)$ and $\operatorname{deg}_{A}(v)<f(v)$, for otherwise $A+x$ would not be an f-matching. Thus, we can remove at most two edges of B not in A so that the resulting graph plus the edge x forms a f-matching.

Example 10.13 (Maximum weight traveling salesman problem). We are given a complete directed graph with non-negative weights on edges, and we must find a maximum weight Hamiltonian cycle, that is, a cycle that visits every vertex exactly once. This problem is very hard: it is a so-called "NP-hard" problem. On the other hand, using Theorem 10.8 and Lemma 10.10 we can show that the greedy algorithm can find a Hamiltonian cycle whose weight is at least one third of the maximum possible weight of a Hamiltonian cycle.

The ground-set X of our family \mathcal{F} in this case consists of the directed edges of the complete graph. A set is independent if its edges form a collection of vertex-disjoint paths or a Hamiltonian cycle. It is enough to show that \mathcal{F} is 3 -extendible.

To show this, let $A+x$ and B be any two members of \mathcal{F}, where $A \subset B$ and $x=(u, v)$ is an edge not in B. First remove from B the edges (if any) out of u and into v. There can be at most two such edges, and neither of them can belong to A since otherwise $A+(u, v)$ would not belong to \mathcal{F}. If we add (u, v) to B then every vertex has in-degree and out-degree at most one. Hence, the only reason why the resulting set may not belong to \mathcal{F} is that there may be a non-Hamiltonian cycle which uses (u, v). But then there must be an edge in the cycle, not in A, that we can remove to break it: if all edges, except for (u, v), of the cycle belong to A, then $A+(u, v)$ contains a non-Hamiltonian cycle and could not belong to \mathcal{F}. Therefore we need to remove at most three edges in total.

10.4 The Kruskal-Katona theorem

A neighbor of a binary vector v is a vector which can be obtained from v by flipping one of its 1 -entries to 0 . A shadow of a set $A \subseteq\{0,1\}^{n}$ of vectors is the set $\partial(A)$ of all its neighbors. A set A is k-regular if every vector in A contains exactly $k 1$-entries. Note that in this case $\partial(A)$ is $(k-1)$-regular.

A basic question concerning shadows is the following one: What can one say about $|\partial(A)|$ in terms of the total number $|A|$ of vectors in a k-regular set A ?

In general one cannot improve on the trivial upper bound $|\partial(A)| \leq k|A|$. But what about lower bounds? The question is non-trivial because one and the same vector with $k-1$ ones may be a neighbor of up to $n-k+1$ vectors in A. Easy counting shows that

$$
|\partial(A)| \geq \frac{k}{n-k+1}|A|=\frac{|A|}{\binom{n}{k}}\binom{n}{k-1}
$$

This can be shown by estimating the number N of pairs (u, v) of vectors such that $v \in A$ and u is a neighbor of v. Since every $v \in A$ has exactly k neighbors, we have that $N=k|A|$. On the other hand, every vector u

[^0]: * Here and in what follows, $A+b$ will stand for the set $A \cup\{b\}$.

