10.3 Matroids and approximation

Given a family \mathcal{F} of subsets of some finite set X, called the *ground-set*, and a weight function assigning each element $x \in X$ a non-negative real number w(x), the *optimization problem* for \mathcal{F} is to find a member $A \in \mathcal{F}$ whose weight $w(A) = \sum_{x \in A} w(x)$ is maximal. For example, given a graph G = (V, E) with non-negative weights on edges, we might wish to find a matching (a set of vertex-disjoint edges) of maximal weight. In this case X = E is the set of edges, and members of \mathcal{F} are matchings. As it happens in many other situations, the resulting family is *hereditary*, that is, $A \in \mathcal{F}$ and $B \subseteq A$ implies $B \in \mathcal{F}$.

In general, some optimization problems are extremely hard—the so-called "NP-hard problems." In such situations one is satisfied with an "approximative" solution, namely, with a member $A \in \mathcal{F}$ whose weight is at least 1/k times the weight of an optimal solution, for some real constant $k \geq 1$.

One of the simplest algorithms to solve an optimization problem is the greedy algorithm. It first sorts the elements x_1, x_2, \ldots, x_n of X by weight, heaviest first. Then it starts with $A = \emptyset$ and in the *i*-th step adds the element x_i to the current set A if and only if the result still belongs to \mathcal{F} . A basic question is: for what families \mathcal{F} can this trivial algorithm find a good enough solution?

Namely, say that a family \mathcal{F} is greedy k-approximative if, for every weight function, the weight of the solution given by the greedy algorithm is at least 1/k times the weight of an optimal solution. Note that being greedy 1-approximative means that for such families the greedy algorithm always finds an optimal solution.

Given a real number $k \ge 1$, what families are greedy k-approximative?

In the case k = 1 (when greedy is optimal) a surprisingly tight answer was given by introducing a notion of "matroid." This notion was motivated by the following "exchange property" in linear spaces: If A, B are two sets of linearly independent vectors, and if |B| > |A|, then there is a vector $b \in B \setminus A$ such that the set $A \cup \{b\}$ is linearly independent.

Now let \mathcal{F} be a family of subsets of some finite set X; we call members of \mathcal{F} independent sets. A *k*-matroid is a hereditary family \mathcal{F} satisfying the following *k*-exchange property: For every two independent sets $A, B \in \mathcal{F}$, if |B| > k|A| then there exists $b \in B \setminus A$ such that^{*} A + b is independent (belongs to \mathcal{F}). Matroids are *k*-matroids for k = 1.

Matroids have several equivalent definitions. One of them is in terms of maximum independent sets. Let \mathcal{F} be a family of subsets of X (whose members we again call independent sets), and $Y \subseteq X$. An independent set $A \in \mathcal{F}$ is a maximum independent subset of Y (or a basis of Y in \mathcal{F}) if $A \subseteq Y$ and $A + x \notin \mathcal{F}$ for all $x \in Y \setminus A$. A family is k-balanced if for every subset $Y \subseteq X$

^{*} Here and in what follows, A + b will stand for the set $A \cup \{b\}$.

and any two of its maximum independent subsets $A, B \subseteq Y$ we have that $|B| \leq k|A|$.

Lemma 10.7. A hereditary family is k-balanced if and only if it is a kmatroid.

Proof. (\Leftarrow) Let $Y \subseteq X$, and let $A, B \subseteq Y$ be two sets in \mathcal{F} that are maximum independent subsets of Y. Suppose that |B| > k|A|. Then by the k-exchange property, we can add some element b of $B \setminus A$ to A and keep the result A + b in \mathcal{F} . But since A and B are both subsets of Y, the set A + b is also a subset of Y and thus A is not maximum independent in Y, a contradiction.

 (\Rightarrow) We will show that if \mathcal{F} does *not* satisfy the k-exchange property, then it is not k-balanced. Let A and B be two independent sets such that |B| > k|A| but no element of $B \setminus A$ can be added to A to get a result in \mathcal{F} . We let Y be $A \cup B$. Now A is a maximum independent set in Y, since we cannot add any of the other elements of Y to it. The set B may not be a maximum independent set in Y, but if it isn't there is some subset B' of Y that contains it and is maximum independent in Y. Since this set is at least as big as B, it is strictly bigger than k|A| and we have a violation of the k-balancedness property.

For k = 1, the (\Leftarrow) direction of the following theorem was proved by Rado (1942), and the (\Rightarrow) direction by Edmonds (1971).

Theorem 10.8. A hereditary family is greedy k-approximative if and only if it is a k-matroid.

Proof. (\Leftarrow) Let \mathcal{F} be a k-matroid over some ground-set X. Fix an arbitrary weight function, and order the elements of the ground-set X according to their weight, $w(x_1) \ge w(x_2) \ge \ldots \ge w(x_n)$. Let A be the solution given by the greedy algorithm, and B an optimal solution. Our goal is to show that $w(B)/w(A) \le k$.

Let $Y_i := \{x_1, \ldots, x_i\}$ be the set of the first *i* elements considered by the greedy algorithm. The main property of the greedy algorithm is given by the following simple claim.

Claim 10.9. For every *i*, the set $A \cap Y_i$ is a maximum independent subset of Y_i .

Proof. Suppose that the independent set $A \cap Y_i$ is not a maximum independent subset of Y_i . Then there must exist an element $x_j \in Y_i \setminus A$ (an element *not* chosen by the algorithm) such that the set $A \cap Y_i + x_j$ is independent. But then $A \cap Y_{j-1} + x_j$ (as a subset of an independent set) is also independent, and should have been chosen by the algorithm, a contradiction. \Box

Now let $A_i := A \cap Y_i$. Since $A_i \setminus A_{i-1}$ is either empty or is equal to $\{x_i\}$,

138

10.3 Matroids and approximation

$$w(A) = w(x_1)|A_1| + \sum_{i=2}^n w(x_i)(|A_i| - |A_{i-1}|)$$

=
$$\sum_{i=1}^{n-1} (w(x_i) - w(x_{i+1}))|A_i| + w(x_n)|A_n|$$

Similarly, letting $B_i := B \cap Y_i$, we get

$$w(B) = \sum_{i=1}^{n-1} (w(x_i) - w(x_{i+1}))|B_i| + w(x_n)|B_n|.$$

Using the inequality $(a + b)/(x + y) \leq \max\{a/x, b/y\}$ we obtain that w(B)/w(A) does not exceed $|B_i|/|A_i|$ for some *i*. By Claim 10.9, the set A_i is a maximum independent subset of Y_i . Since B_i is also a (not necessarily maximum) independent subset of Y_i , the *k*-balancedness property implies that $|B_i| \leq k|A_i|$. Hence, $w(B)/w(A) \leq |B_i|/|A_i| \leq k$, as desired.

 (\Rightarrow) We will prove that if our family \mathcal{F} fails to satisfy the *k*-exchange property, then there is some weight function on which the greedy algorithm fails to approximate an optimal solution by a factor of 1/k.

Suppose there are two sets A and B in \mathcal{F} , with |B| > k|A|, such that no element of $B \setminus A$ can be added to A while keeping the result in \mathcal{F} . Let m = |A|. Take any two positive numbers a and b such that $0 < a - b \leq 1/k$. Define the weight function as follows: elements in A have weight m + a, elements in $B \setminus A$ have weight m + b, and other elements have weight 0. Then the greedy algorithm tries elements of weight m + a first, gets all m of them, but then is stuck because no element of weight m + b fits; hence, the total score of the greedy algorithm is m(m + a). But the optimum is at least the total weight $(m + b)|B| \geq (m + b)(km + 1)$ of elements in B. Thus, the greedy algorithm can (1/k)-approximate this particular optimization problem only if $(m + b)(km + 1) \leq km(m + a)$, or equivalently, if $k(a - b) \geq 1 + b/m$. But this is impossible because $a - b \leq 1/k$ and b > 0.

When trying to show that a given family is a k-matroid, the following somewhat easier to verify property, suggested by Mestre (2006), is often useful. We say that a family \mathcal{F} is k-extendible if for every sets $A \subset B \in \mathcal{F}$ and for every element $x \notin B$ the following holds: If the set A + x is independent then the set B + x can be made independent by removing from B at most kelements not in A, that is, there exists $Y \subseteq B \setminus A$ such that $|Y| \leq k$ and the set $B \setminus Y + x$ is independent.

Lemma 10.10. Every k-extendible hereditary family is a k-matroid.

Proof. Given two independent sets A and B with |B| > k|A|, we need to find an element $z \in B \setminus A$ such that the set A + z is independent. If $A \subset B$ then we are done since all subsets of B are independent. Suppose now that $A \not\subseteq B$. The idea is to pick an element $x \in A \setminus B$ and apply the k-extendibility

property to the sets $C := A \cap B$ and D := B to find a subset $Y \subseteq D \setminus C = B \setminus A$ with at most k elements such that the set $B' = B \setminus Y + x$ is independent. If A is still not a subset of B', then repeat the same procedure. Since, due to the condition $Y \subseteq B \setminus A$, at any step none of the already added elements of A are removed, after at most $|A \setminus B|$ steps we will obtain an independent set B' such that $A \subseteq B'$. From |B| > k|A|, we have that $|B \setminus A| > k|A \setminus B|$. Since in each step at most k elements of B are removed, at least one element $z \in B \setminus A$ must remain in B', that is, A is a proper subset of B'. But then the set A + z is independent, because B' is such, and we are done. \Box

In the case of matroids (k = 1) we also have the converse.

Lemma 10.11. Every matroid is 1-extendible.

Proof. Let \mathcal{F} be a matroid. Given sets $A \subset B \in \mathcal{F}$ and an element $x \notin B$ such that the set A + x is independent, we need to find an element $y \in B \setminus A$ such that B - y + x is independent. If necessary, we can repeatedly apply the matroid property to add elements of $B \setminus A$ to A until we get a subset A' such that $A \subseteq A' \subset B$, $A' + x \in \mathcal{F}$ and |A' + x| = |B|. Since $x \notin B$, this implies that $B \setminus A'$ consists of just one element y. But then B - y + x = A' + x belongs to \mathcal{F} , as desired.

It can be shown (see Exercise 10.12) that for $k \geq 2$ the converse of Lemma 10.10 does not hold, that is, not every k-matroid is k-extendible. Still, together with Theorem 10.8, Lemma 10.10 gives us a handy tool to show that some unrelated optimization problems can be approximated quite well by using the trivial greedy algorithm.

Example 10.12 (Maximum weight f-matching). Given a graph G = (V, E) with non-negative weights on edges and degree constraints $f : V \to \mathbb{N}$ for vertices, an f-matching is a set of edges M such that for all $v \in V$ the number $\deg_M(v)$ of edges in M incident to v is at most f(v). The corresponding optimization problem is to find an f-matching of maximal weight.

In this case we have a family \mathcal{F} whose ground-set is the set X = E of edges of G and f-matchings are independent sets (members of \mathcal{F}). Note that \mathcal{F} is already not a matroid when f(v) = 1 for all $v \in V$: if $A = \{a, b\}$ and $B = \{\{c, a\}, \{b, d\}\}$ are two matchings, then |B| > |A| but no edge of B can be added to A. We claim that this family is 2-extendible, and hence, is a 2-matroid.

To show this, let A + x and B be any two f-matchings, where $A \subset B$ and $x = \{u, v\}$ is an edge not in B. If B + x is an f-matching, we are done. If not, then $\deg_B(u) = f(u)$ or $\deg_B(v) = f(v)$ (or both). But we know that $\deg_A(u) < f(u)$ and $\deg_A(v) < f(v)$, for otherwise A + x would not be an f-matching. Thus, we can remove at most two edges of B not in A so that the resulting graph plus the edge x forms a f-matching.

10.4 The Kruskal–Katona theorem

Example 10.13 (Maximum weight traveling salesman problem). We are given a complete directed graph with non-negative weights on edges, and we must find a maximum weight Hamiltonian cycle, that is, a cycle that visits every vertex exactly once. This problem is very hard: it is a so-called "NP-hard" problem. On the other hand, using Theorem 10.8 and Lemma 10.10 we can show that the greedy algorithm can find a Hamiltonian cycle whose weight is at least one third of the maximum possible weight of a Hamiltonian cycle.

The ground-set X of our family \mathcal{F} in this case consists of the directed edges of the complete graph. A set is independent if its edges form a collection of vertex-disjoint paths or a Hamiltonian cycle. It is enough to show that \mathcal{F} is 3-extendible.

To show this, let A + x and B be any two members of \mathcal{F} , where $A \subset B$ and x = (u, v) is an edge not in B. First remove from B the edges (if any) out of u and into v. There can be at most two such edges, and neither of them can belong to A since otherwise A + (u, v) would not belong to \mathcal{F} . If we add (u, v) to B then every vertex has in-degree and out-degree at most one. Hence, the only reason why the resulting set may not belong to \mathcal{F} is that there may be a non-Hamiltonian cycle which uses (u, v). But then there must be an edge in the cycle, not in A, that we can remove to break it: if all edges, except for (u, v), of the cycle belong to \mathcal{F} . Therefore we need to remove at most three edges in total.

10.4 The Kruskal–Katona theorem

A neighbor of a binary vector v is a vector which can be obtained from v by flipping one of its 1-entries to 0. A shadow of a set $A \subseteq \{0,1\}^n$ of vectors is the set $\partial(A)$ of all its neighbors. A set A is k-regular if every vector in Acontains exactly k 1-entries. Note that in this case $\partial(A)$ is (k-1)-regular.

A basic question concerning shadows is the following one: What can one say about $|\partial(A)|$ in terms of the total number |A| of vectors in a k-regular set A?

In general one cannot improve on the trivial upper bound $|\partial(A)| \leq k|A|$. But what about *lower* bounds? The question is non-trivial because one and the same vector with k-1 ones may be a neighbor of up to n-k+1 vectors in A. Easy counting shows that

$$|\partial(A)| \ge \frac{k}{n-k+1}|A| = \frac{|A|}{\binom{n}{k}}\binom{n}{k-1}.$$

This can be shown by estimating the number N of pairs (u, v) of vectors such that $v \in A$ and u is a neighbor of v. Since every $v \in A$ has exactly k neighbors, we have that N = k|A|. On the other hand, every vector u