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10.3 Matroids and approximation

Given a family F of subsets of some finite set X , called the ground-set, and
a weight function assigning each element x ∈ X a non-negative real number
w(x), the optimization problem for F is to find a member A ∈ F whose weight
w(A) =

∑
x∈A w(x) is maximal. For example, given a graph G = (V, E) with

non-negative weights on edges, we might wish to find a matching (a set of
vertex-disjoint edges) of maximal weight. In this case X = E is the set
of edges, and members of F are matchings. As it happens in many other
situations, the resulting family is hereditary, that is, A ∈ F and B ⊆ A
implies B ∈ F .

In general, some optimization problems are extremely hard—the so-called
“NP-hard problems.” In such situations one is satisfied with an “approxima-
tive” solution, namely, with a member A ∈ F whose weight is at least 1/k
times the weight of an optimal solution, for some real constant k ≥ 1.

One of the simplest algorithms to solve an optimization problem is the
greedy algorithm. It first sorts the elements x1, x2, . . . , xn of X by weight,
heaviest first. Then it starts with A = ∅ and in the i-th step adds the element
xi to the current set A if and only if the result still belongs to F . A basic
question is: for what families F can this trivial algorithm find a good enough
solution?

Namely, say that a family F is greedy k-approximative if, for every weight
function, the weight of the solution given by the greedy algorithm is at
least 1/k times the weight of an optimal solution. Note that being greedy
1-approximative means that for such families the greedy algorithm always
finds an optimal solution.

Given a real number k ≥ 1, what families are greedy k-approximative?
In the case k = 1 (when greedy is optimal) a surprisingly tight answer

was given by introducing a notion of “matroid.” This notion was motivated
by the following “exchange property” in linear spaces: If A, B are two sets of
linearly independent vectors, and if |B| > |A|, then there is a vector b ∈ B \A
such that the set A ∪ {b} is linearly independent.

Now let F be a family of subsets of some finite set X ; we call members
of F independent sets. A k-matroid is a hereditary family F satisfying the
following k-exchange property: For every two independent sets A, B ∈ F , if
|B| > k|A| then there exists b ∈ B \ A such that∗ A + b is independent
(belongs to F). Matroids are k-matroids for k = 1.

Matroids have several equivalent definitions. One of them is in terms of
maximum independent sets. Let F be a family of subsets of X (whose mem-
bers we again call independent sets), and Y ⊆ X . An independent set A ∈ F
is a maximum independent subset of Y (or a basis of Y in F) if A ⊆ Y and
A + x 6∈ F for all x ∈ Y \ A. A family is k-balanced if for every subset Y ⊆ X

∗ Here and in what follows, A + b will stand for the set A ∪ {b}.
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and any two of its maximum independent subsets A, B ⊆ Y we have that
|B| ≤ k|A|.

Lemma 10.7. A hereditary family is k-balanced if and only if it is a k-
matroid.

Proof. (⇐) Let Y ⊆ X , and let A, B ⊆ Y be two sets in F that are maximum
independent subsets of Y . Suppose that |B| > k|A|. Then by the k-exchange
property, we can add some element b of B \ A to A and keep the result A + b
in F . But since A and B are both subsets of Y , the set A + b is also a subset
of Y and thus A is not maximum independent in Y , a contradiction.

(⇒) We will show that if F does not satisfy the k-exchange property,
then it is not k-balanced. Let A and B be two independent sets such that
|B| > k|A| but no element of B \ A can be added to A to get a result in F .
We let Y be A ∪ B. Now A is a maximum independent set in Y , since we
cannot add any of the other elements of Y to it. The set B may not be a
maximum independent set in Y , but if it isn’t there is some subset B′ of Y
that contains it and is maximum independent in Y . Since this set is at least
as big as B, it is strictly bigger than k|A| and we have a violation of the
k-balancedness property. ⊓⊔

For k = 1, the (⇐) direction of the following theorem was proved by Rado
(1942), and the (⇒) direction by Edmonds (1971).

Theorem 10.8. A hereditary family is greedy k-approximative if and only if
it is a k-matroid.

Proof. (⇐) Let F be a k-matroid over some ground-set X . Fix an arbitrary
weight function, and order the elements of the ground-set X according to
their weight, w(x1) ≥ w(x2) ≥ . . . ≥ w(xn). Let A be the solution given by
the greedy algorithm, and B an optimal solution. Our goal is to show that
w(B)/w(A) ≤ k.

Let Yi := {x1, . . . , xi} be the set of the first i elements considered by the
greedy algorithm. The main property of the greedy algorithm is given by the
following simple claim.

Claim 10.9. For every i, the set A ∩ Yi is a maximum independent subset
of Yi.

Proof. Suppose that the independent set A ∩ Yi is not a maximum indepen-
dent subset of Yi. Then there must exist an element xj ∈ Yi \ A (an element
not chosen by the algorithm) such that the set A∩Yi +xj is independent. But
then A ∩ Yj−1 + xj (as a subset of an independent set) is also independent,
and should have been chosen by the algorithm, a contradiction. ⊓⊔

Now let Ai := A ∩ Yi. Since Ai \ Ai−1 is either empty or is equal to {xi},
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w(A) = w(x1)|A1| +
n∑

i=2

w(xi)(|Ai| − |Ai−1|)

=
n−1∑

i=1

(w(xi) − w(xi+1))|Ai| + w(xn)|An| .

Similarly, letting Bi := B ∩ Yi, we get

w(B) =

n−1∑

i=1

(w(xi) − w(xi+1))|Bi| + w(xn)|Bn| .

Using the inequality (a + b)/(x + y) ≤ max{a/x, b/y} we obtain that
w(B)/w(A) does not exceed |Bi|/|Ai| for some i. By Claim 10.9, the set
Ai is a maximum independent subset of Yi. Since Bi is also a (not necessar-
ily maximum) independent subset of Yi, the k-balancedness property implies
that |Bi| ≤ k|Ai|. Hence, w(B)/w(A) ≤ |Bi|/|Ai| ≤ k, as desired.

(⇒) We will prove that if our family F fails to satisfy the k-exchange
property, then there is some weight function on which the greedy algorithm
fails to approximate an optimal solution by a factor of 1/k.

Suppose there are two sets A and B in F , with |B| > k|A|, such that no
element of B\A can be added to A while keeping the result in F . Let m = |A|.
Take any two positive numbers a and b such that 0 < a − b ≤ 1/k. Define
the weight function as follows: elements in A have weight m + a, elements
in B \ A have weight m + b, and other elements have weight 0. Then the
greedy algorithm tries elements of weight m + a first, gets all m of them, but
then is stuck because no element of weight m + b fits; hence, the total score
of the greedy algorithm is m(m + a). But the optimum is at least the total
weight (m + b)|B| ≥ (m + b)(km + 1) of elements in B. Thus, the greedy
algorithm can (1/k)-approximate this particular optimization problem only
if (m + b)(km + 1) ≤ km(m + a), or equivalently, if k(a − b) ≥ 1 + b/m. But
this is impossible because a − b ≤ 1/k and b > 0. ⊓⊔

When trying to show that a given family is a k-matroid, the following
somewhat easier to verify property, suggested by Mestre (2006), is often useful.
We say that a family F is k-extendible if for every sets A ⊂ B ∈ F and for
every element x 6∈ B the following holds: If the set A + x is independent
then the set B + x can be made independent by removing from B at most k
elements not in A, that is, there exists Y ⊆ B \ A such that |Y | ≤ k and the
set B \ Y + x is independent.

Lemma 10.10. Every k-extendible hereditary family is a k-matroid.

Proof. Given two independent sets A and B with |B| > k|A|, we need to
find an element z ∈ B \ A such that the set A + z is independent. If A ⊂ B
then we are done since all subsets of B are independent. Suppose now that
A 6⊆ B. The idea is to pick an element x ∈ A\B and apply the k-extendibility
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property to the sets C := A∩B and D := B to find a subset Y ⊆ D\C = B\A
with at most k elements such that the set B′ = B \ Y + x is independent.
If A is still not a subset of B′, then repeat the same procedure. Since, due
to the condition Y ⊆ B \ A, at any step none of the already added elements
of A are removed, after at most |A \ B| steps we will obtain an independent
set B′ such that A ⊆ B′. From |B| > k|A|, we have that |B \ A| > k|A \ B|.
Since in each step at most k elements of B are removed, at least one element
z ∈ B \ A must remain in B′, that is, A is a proper subset of B′. But then
the set A + z is independent, because B′ is such, and we are done. ⊓⊔

In the case of matroids (k = 1) we also have the converse.

Lemma 10.11. Every matroid is 1-extendible.

Proof. Let F be a matroid. Given sets A ⊂ B ∈ F and an element x 6∈ B
such that the set A + x is independent, we need to find an element y ∈ B \ A
such that B − y + x is independent. If necessary, we can repeatedly apply the
matroid property to add elements of B \A to A until we get a subset A′ such
that A ⊆ A′ ⊂ B, A′ + x ∈ F and |A′ + x| = |B|. Since x 6∈ B, this implies
that B \ A′ consists of just one element y. But then B − y + x = A′ + x
belongs to F , as desired. ⊓⊔

It can be shown (see Exercise 10.12) that for k ≥ 2 the converse of
Lemma 10.10 does not hold, that is, not every k-matroid is k-extendible.
Still, together with Theorem 10.8, Lemma 10.10 gives us a handy tool to
show that some unrelated optimization problems can be approximated quite
well by using the trivial greedy algorithm.

Example 10.12 (Maximum weight f -matching). Given a graph G = (V, E)
with non-negative weights on edges and degree constraints f : V → N for
vertices, an f -matching is a set of edges M such that for all v ∈ V the number
degM (v) of edges in M incident to v is at most f(v). The corresponding
optimization problem is to find an f -matching of maximal weight.

In this case we have a family F whose ground-set is the set X = E of
edges of G and f -matchings are independent sets (members of F). Note that
F is already not a matroid when f(v) = 1 for all v ∈ V : if A = {a, b} and
B = {{c, a}, {b, d}} are two matchings, then |B| > |A| but no edge of B can
be added to A. We claim that this family is 2-extendible, and hence, is a
2-matroid.

To show this, let A + x and B be any two f -matchings, where A ⊂ B and
x = {u, v} is an edge not in B. If B + x is an f -matching, we are done. If
not, then degB(u) = f(u) or degB(v) = f(v) (or both). But we know that
degA(u) < f(u) and degA(v) < f(v), for otherwise A + x would not be an
f -matching. Thus, we can remove at most two edges of B not in A so that
the resulting graph plus the edge x forms a f -matching.
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Example 10.13 (Maximum weight traveling salesman problem). We are given
a complete directed graph with non-negative weights on edges, and we must
find a maximum weight Hamiltonian cycle, that is, a cycle that visits every
vertex exactly once. This problem is very hard: it is a so-called “NP-hard”
problem. On the other hand, using Theorem 10.8 and Lemma 10.10 we can
show that the greedy algorithm can find a Hamiltonian cycle whose weight
is at least one third of the maximum possible weight of a Hamiltonian cycle.

The ground-set X of our family F in this case consists of the directed edges
of the complete graph. A set is independent if its edges form a collection of
vertex-disjoint paths or a Hamiltonian cycle. It is enough to show that F is
3-extendible.

To show this, let A+x and B be any two members of F , where A ⊂ B and
x = (u, v) is an edge not in B. First remove from B the edges (if any) out of
u and into v. There can be at most two such edges, and neither of them can
belong to A since otherwise A+(u, v) would not belong to F . If we add (u, v)
to B then every vertex has in-degree and out-degree at most one. Hence, the
only reason why the resulting set may not belong to F is that there may be
a non-Hamiltonian cycle which uses (u, v). But then there must be an edge
in the cycle, not in A, that we can remove to break it: if all edges, except for
(u, v), of the cycle belong to A, then A + (u, v) contains a non-Hamiltonian
cycle and could not belong to F . Therefore we need to remove at most three
edges in total.

10.4 The Kruskal–Katona theorem

A neighbor of a binary vector v is a vector which can be obtained from v by
flipping one of its 1-entries to 0. A shadow of a set A ⊆ {0, 1}n of vectors
is the set ∂(A) of all its neighbors. A set A is k-regular if every vector in A
contains exactly k 1-entries. Note that in this case ∂(A) is (k − 1)-regular.

A basic question concerning shadows is the following one: What can one
say about |∂(A)| in terms of the total number |A| of vectors in a k-regular
set A?

In general one cannot improve on the trivial upper bound |∂(A)| ≤ k|A|.
But what about lower bounds? The question is non-trivial because one and
the same vector with k − 1 ones may be a neighbor of up to n − k + 1 vectors
in A. Easy counting shows that

|∂(A)| ≥ k

n − k + 1
|A| =

|A|(
n
k

)
(

n

k − 1

)
.

This can be shown by estimating the number N of pairs (u, v) of vectors
such that v ∈ A and u is a neighbor of v. Since every v ∈ A has exactly
k neighbors, we have that N = k|A|. On the other hand, every vector u


