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Part 1

The Classics





CHAPTER 1

Counting

We start with the oldest combinatorial tool — counting.

1. The binomial theorem

Given a set of n elements, how many of its subsets have exactly k elements? This number
(of k-element subsets of an n-element set) is usually denoted by

(
n
k

)
and is called the binomial

coefficient. Put otherwise,
(

n
k

)
is the number of possibilities to choose k distinct objects from a

collection on n distinct objects.
The following identity was proved by Sir Isaac Newton in about 1666, and is known as the

Binomial theorem.

Binomial Theorem. Let n be a positive integer. Then for all x and y,

(x + y)n =

n∑

k=0

(
n

k

)
xkyn−k .

Proof. If we multiply the terms

(x + y)n = (x + y) · (x + y) · . . . · (x + y)︸ ︷︷ ︸
n−times

,

then, for every k = 0, 1, . . . , n, there are exactly
(

n
k

)
possibilities to obtain the term xkyn−k. Why?

We obtain the term xkyn−k precisely if from n possibilities (terms x+y) we choose the first number
x exactly k times. �

Note that this theorem just generalizes the known equality:

(x + y)2 =

(
2

0

)
x0y2 +

(
2

1

)
x1y1 +

(
2

2

)
x2y0 = x2 + 2xy + y2 .

Be it so simple, the binomial theorem has many applications.

Example 1.1 (Parity of powers). To give a typical example, let us show the following property
of integers: If n, k are natural numbers, then nk is odd iff n is odd.

One direction (⇒) is trivial: If n = 2m is even, then nk = 2k(mk) must be also even. To show
the other direction (⇐), assume that n is odd, that is, has the form n = 2m + 1 for a natural
number m. The binomial theorem with x = 2m and y = 1 yields:

nk = (2m + 1)k = 1 + (2m)1
(

k

1

)
+ (2m)2

(
k

2

)
+ · · · + (2m)k

(
k

k

)
.

That is, the number nk has the form “1 plus an even number”, and must be odd.

The factorial of n is the product n! := n(n − 1) · · · 2 · 1. This is extended to all non-negative
integers by letting 0! = 1. The k-th factorial of n is the product of the first k terms:

(n)k :=
n!

(n − k)!
= n(n − 1) · · · (n − k + 1) .

Note that
(

n
0

)
= 1 (the empty set) and

(
n
n

)
= 1 (the whole set). In general, binomial coefficients

can be written as quotients of factorials:

3



4 1. COUNTING

Proposition 1.2. (
n

k

)
=

(n)k

k!
=

n!

k!(n − k)!
.

Proof. Observe that (n)k is the number of (ordered!) strings (x1, x2, . . . , xk) consisting of
k different elements of a fixed n-element set: there are n possibilities to choose the first element
x1; after that there are still n − 1 possibilities to choose the next element x2, etc. Another way
to produce such strings is to choose a k-element set and then arrange its elements in an arbitrary
order. Since each of

(
n
k

)
k-element subsets produces exactly (k)k = k! such strings, we conclude

that (n)k =
(

n
k

)
k!. �

There are a lot of useful equalities concerning binomial coefficients. In most situations, using
their combinatorial nature (instead of algebraic, as given by the previous proposition) we obtain
the desired result fairly easily. For example, if we observe that each subset is uniquely determined
by its complement, then we immediately obtain the equality

(1)

(
n

n − k

)
=

(
n

k

)
.

By this equality, for every fixed n, the value of the binomial coefficient
(

n
k

)
increases till the

middle and then decreases. By the binomial theorem, the sum of all these n + 1 coefficients is
equal to the total number 2n of all subsets of an n-element set:

n∑

k=0

(
n

k

)
=

n∑

k=0

(
n

k

)
1k1n−k = (1 + 1)n = 2n .

In a similar (combinatorial) way other useful identities can be established (see Exercises for
more examples).

Proposition 1.3 (Pascal Triangle). For every integers n ≥ k ≥ 1, we have
(

n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
.

Proof. The first term
(

n−1
k−1

)
is the number of k-sets containing a fixed element, and the

second term
(

n−1
k

)
is the number of k-sets avoiding this element; their sum is the whole number(

n
k

)
of k-sets. �

For growing n and k, exact values of binomial coefficients
(

n
k

)
are hard to compute. In

applications, however, we are often interested only in their rate of growth, so that (even rough)
estimates suffice. Such estimates can be obtained, using the Taylor series of the exponential and
logarithmic functions:

et = 1 + t +
t2

2!
+

t3

3!
+ · · · for all t ∈ R(2)

and

ln(1 + t) = t − t2

2
+

t3

3
− t4

4
+ · · · for −1 < t ≤ 1.(3)

This, in particular, implies some useful estimates:

1 + t < et for all t 6= 0,(4)

1 − t > e−t−t2/2 for all 0 < t < 1.(5)

Proposition 1.4.

(6)
(n

k

)k

≤
(

n

k

)
and

k∑

i=0

(
n

i

)
≤
(en

k

)k

.



2. SELECTION WITH REPETITIONS 5

Proof. Lower bound:
(n

k

)k

=
n

k
· n

k
· · · n

k
≤ n

k
· n − 1

k − 1
· · · n − k + 1

1
=

(
n

k

)
.

Upper bound: for 0 < t ≤ 1 the inequality

k∑

i=0

(
n

i

)
≤

k∑

i=0

(
n

i

)
ti

tk
=

(1 + t)n

tk

follows from the binomial theorem. Now substitute t = k/n and use (??). �

Tighter (asymptotic) estimates can be obtained using the famous Stirling formula for the
factorial:

(7) n! =
(n

e

)n √
2πn eαn ,

where 1/(12n + 1) < αn < 1/12n. This leads, for example, to the following elementary but very
useful asymptotic formula for the k-th factorial:

(8) (n)k = nke− k2

2n − k3

6n2 +o(1) valid for k = o(n3/4),

and hence, for binomial coefficients:

(9)

(
n

k

)
=

nke− k2

2n − k3

6n2

k!
(1 + o(1)) .

2. Selection with repetitions

In the previous section we considered the number of ways to choose r distinct elements from
an n-element set. It is natural to ask what happens if we can choose the same element repeatedly.
In other words, we may ask how many integer solutions does the equation x1 + · · · + xn = r have
under the condition that xi ≥ 0 for all i = 1, . . . , n. (Look at xi as the number of times the i-th
element was chosen.) The following more entertaining formulation of this problem was suggested
by Lovász, Pelikán, and Vesztergombi (1977).

Suppose we have r sweets (of the same sort), which we want to distribute to n children. In
how many ways can we do this? Letting xi denote the number of sweets we give to the i-th child,
this question is equivalent to that stated above.

The answer depends on how many sweets we have and how fair we are. If we are fair but have
only r ≤ n sweets, then it is natural to allow no repetitions and give each child no more than one
sweet (each xi is 0 or 1). In this case the answer is easy: we just choose those r (out of n) children
who will get a sweet, and we already know that this can be done in

(
n
r

)
ways.

Suppose now that we have enough sweets, i.e., that r ≥ n. Let us first be fair, that is, we
want every child gets at least one sweet. We lay out the sweets in a single row of length r (it
does not matter in which order, they all are alike), and let the first child pick them up from the
left to right. After a while we stop him/her and let the second child pick up sweets, etc. The
distribution of sweets is determined by specifying the place (between consecutive sweets) of where
to start with a new child. There are r − 1 such places, and we have to select n − 1 of them (the
first child always starts at the beginning, so we have no choice here). For example, if we have
r = 9 sweets and n = 6 children, a typical situation looks like this:

� f � � � f � f � � f � f �

2 3 4 5 6

Thus, we have to select an (n − 1)-element subset from an (r − 1)-element set. The number of
possibilities to do so is

(
r−1
n−1

)
. If we are unfair, we have more possibilities:

Proposition 1.5. The number of integer solutions to the equation

x1 + · · · + xn = r

under the condition that xi ≥ 0 for all i = 1, . . . , n, is
(

n+r−1
r

)
.
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Proof. In this situation we are unfair and allow that some of the children may be left
without a sweet. With the following trick we can reduce the problem of counting the number of
such distributions to the problem we just solved: we borrow one sweet from each child, and then
distribute the whole amount of n + r sweets to the children so that each child gets at least one
sweet. This way every child gets back the sweet we borrowed from him/her, and the lucky ones
get some more. This “more” is exactly r sweets distributed to n children. We already know that
the number of ways to distribute n+ r sweets to n children in a fair way is

(
n+r−1

n−1

)
, which by (??)

equals
(

n+r−1
r

)
. �

3. Partitions

A partition of n objects is a collection of its mutually disjoint subsets, called blocks, whose
union gives the whole set. Let S(n; k1, k2, . . . , kn) denote the number of all partitions of n objects
with ki i-element blocks (i = 1, . . . , n; k1 + 2k2 + . . . + nkn = n). That is,

ki = the number of i-element blocks in a partition.

Proposition 1.6.

S(n; k1, k2, . . . , kn) =
n!

k1! · · · kn!(1!)k1 · · · (n!)kn
.

Proof. If we consider any arrangement (i.e., a permutation) of the n objects we can get such
a partition by taking the first k1 elements as 1-element blocks, the next 2k2 elements as 2-element
blocks, etc. Since we have n! possible arrangements, it remains to show that we get any given
partition exactly

k1! · · · kn!(1!)k1 · · · (n!)kn

times. Indeed, we can construct an arrangement of the objects by putting the 1-element blocks
first, then the 2-element blocks, etc. However, there are ki! possible ways to order the i-element
blocks and (i!)ki possible ways to order the elements in the i-element blocks. �

4. Double counting

The double counting principle states the following “obvious” fact: if the elements of a set are
counted in two different ways, the answers are the same.

In terms of matrices the principle is as follows. Let M be an n × m matrix with entries 0 and
1. Let ri be the number of 1s in the i-th row, and cj be the number of 1s in the j-th column.
Then

n∑

i=1

ri =
m∑

j=1

cj = the total number of 1s in M .

The next example is a standard demonstration of double counting. Suppose a finite number
of people meet at a party and some shake hands. Assume that no person shakes his or her own
hand and furthermore no two people shake hands more than once.

Handshaking Lemma. At a party, the number of guests who shake hands an odd number of
times is even.

Proof. Let P1, . . . , Pn be the persons. We apply double counting to the set of ordered pairs
(Pi, Pj) for which Pi and Pj shake hands with each other at the party. Let xi be the number of
times that Pi shakes hands, and y the total number of handshakes that occur. On one hand, the
number of pairs is

∑n
i=1 xi, since for each Pi the number of choices of Pj is equal to xi. On the

other hand, each handshake gives rise to two pairs (Pi, Pj) and (Pj , Pi); so the total is 2y. Thus∑n
i=1 xi = 2y. But, if the sum of n numbers is even, then evenly many of the numbers are odd.

(Because if we add an odd number of odd numbers and any number of even numbers, the sum
will be always odd). �

This lemma is also a direct consequence of the following general identity, whose special version
for graphs was already proved by Euler. For a point x, its degree or replication number d(x) in a
family F is the number of members of F containing x.
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Proposition 1.7. Let F be a family of subsets of some set X. Then

(10)
∑

x∈X

d(x) =
∑

A∈F
|A| .

Proof. Consider the incidence matrix M = (mx,A) of F . That is, M is a 0-1 matrix with
|X| rows labeled by points x ∈ X and with |F| columns labeled by sets A ∈ F such that mx,A = 1
if and only if x ∈ A. Observe that d(x) is exactly the number of 1s in the x-th row, and |A| is the
number of 1s in the A-th column. �

Graphs are families of 2-element sets, and the degree of a vertex x is the number of edges
incident to x, i.e., the number of vertices in its neighborhood. Proposition ?? immediately implies

Theorem 1.8 (Euler 1736). In every graph the sum of degrees of its vertices is two times the
number of its edges, and hence, is even.

The following identities can be proved in a similar manner (we leave their proofs as exercises):
∑

x∈Y

d(x) =
∑

A∈F
|Y ∩ A| for any Y ⊆ X.(11)

∑

x∈X

d(x)2 =
∑

A∈F

∑

x∈A

d(x) =
∑

A∈F

∑

B∈F
|A ∩ B| .(12)

Turán’s number T (n, k, l) (l ≤ k ≤ n) is the smallest number of l-element subsets of an
n-element set X such that every k-element subset of X contains at least one of these sets.

Proposition 1.9. For all positive integers l ≤ k ≤ n,

T (n, k, l) ≥
(

n

l

)/(k

l

)
.

Proof. Let F be a smallest l-uniform family over X such that every k-subset of X contains
at least one member of F . Take a 0-1 matrix M = (mA,B) whose rows are labeled by sets A in
F , columns by k-element subsets B of X, and mA,B = 1 if and only if A ⊆ B.

Let rA be the number of 1s in the A-th row and cB be the number of 1s in the B-th column.
Then, cB ≥ 1 for every B, since B must contain at least one member of F . On the other hand, rA

is precisely the number of k-element subsets B containing a fixed l-element set A; so rA =
(

n−l
k−l

)

for every A ∈ F . By the double counting principle,

|F| ·
(

n − l

k − l

)
=
∑

A∈F
rA =

∑

B

cB ≥
(

n

k

)
,

which yields

T (n, k, l) = |F| ≥
(

n

k

)/(n − l

k − l

)
=

(
n

l

)/(k

l

)
,

where the last equality is another property of binomial coefficients (see Exercise ??). �

Our next application of double counting is from number theory: How many numbers divide at
least one of the first n numbers 1, 2, . . . , n? If t(n) is the number of divisors of n, then the behavior
of this function is rather non-uniform: t(p) = 2 for every prime number, whereas t(2m) = m + 1.
It is therefore interesting that the average number

τ(n) =
t(1) + t(2) + · · · + t(n)

n

of divisors is quite stable: It is about ln n.

Proposition 1.10. |τ(n) − ln n| ≤ 1.
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Proof. To apply the double counting principle, consider the 0-1 n × n matrix M = (mij)
with mij = 1 iff j is divisible by i:

1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 1
4 1 1 1
5 1 1
6 1 1
7 1
8 1

The number of 1s in the j-th column is exactly the number t(j) of divisors of j. So, summing over
columns we see that the total number of 1s in the matrix is Tn = t(1) + · · · + t(n).

On the other hand, the number of 1s in the i-th row is the number of multipliers i, 2i, 3i, . . . , ri
of i such that ri ≤ n. Hence, we have exactly ⌊n/i⌋ ones in the i-th row. Summing over rows, we
obtain that Tn =

∑n
i=1⌊n/i⌋. Since x − 1 < ⌊x⌋ ≤ x for every real number x, we obtain that

Hn − 1 ≤ τ(n) =
1

n
Tn ≤ Hn ,

where

(13) Hn = 1 +
1

2
+

1

3
+ · · · +

1

n
= ln n + γn, 0 ≤ γn ≤ 1

is the n-th harmonic number. �

5. The averaging principle

Suppose we have a set of m objects, the i-th of which has “size” li, and we would like to know
if at least one of the objects is large, i.e., has size li ≥ t for some given t. In this situation we can
try to consider the average size l =

∑
li/m and try to prove that l ≥ t. This would immediately

yield the result, because we have the following

Averaging Principle. Every set of numbers must contain a number at least as large (≥)
as the average and a number at least as small (≤) as the average.

This principle is a prototype of a very powerful technique – the probabilistic method – which
we will study in Part 4. The concept is very simple, but the applications can be surprisingly
subtle. We will use this principle quite often.

To demonstrate the principle, let us prove the following sufficient condition that a graph is
disconnected.

A (connected) component in a graph is a set of its vertices such that there is a path between
any two of them. A graph is connected if it consists of one component; otherwise it is disconnected.

Proposition 1.11. Every graph on n vertices with fewer than n − 1 edges is disconnected.

Proof. Induction by n. When n = 1, the claim is vacuously satisfied, since no graph has a
negative number of edges.

When n = 2, a graph with less than 1 edge is evidently disconnected.
Suppose now that the result has been established for graphs on n vertices, and take a graph

G = (V, E) on |V | = n + 1 vertices such that |E| ≤ n − 1. By Euler’s theorem (Theorem ??), the
average degree of its vertices is

1

|V |
∑

x∈V

d(x) =
2|E|
|V | ≤ 2(n − 1)

n + 1
< 2 .

By the averaging principle, some vertex x has degree 0 or 1. If d(x) = 0, x is a component disjoint
from the rest of G, so G is disconnected. If d(x) = 1, suppose the unique neighbor of x is y.
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1− )λ + ( λ ba a b

Figure 1. A convex function.

Then, the graph H obtained from G by deleting x and its incident edge has |V | − 1 = n vertices
and |E| − 1 ≤ (n − 1) − 1 = n − 2 edges; by the induction hypothesis, H is disconnected. The
restoration of an edge joining a vertex y in one component to a vertex x which is outside of a
second component cannot reconnect the graph. Hence, G is also disconnected. �

We mention one important inequality, which is especially useful when dealing with averages.
A real-valued function f(x) is convex if

f(λa + (1 − λ)b) ≤ λf(a) + (1 − λ)f(b) ,

for any 0 ≤ λ ≤ 1. From a geometrical point of view, the convexity of f means that if we draw a
line l through points (a, f(a)) and (b, f(b)), then the graph of the curve f(z) must lie below that
of l(z) for z ∈ [a, b]. Thus, for a function f to be convex it is sufficient that its second derivative
is nonnegative.

Proposition 1.12 (Jensen’s Inequality). If 0 ≤ λi ≤ 1,
∑n

i=1 λi = 1 and f is convex, then

(14) f

( n∑

i=1

λixi

)
≤

n∑

i=1

λif(xi) .

Proof. Easy induction on the number of summands n. For n = 2 this is true, so assume the
inequality holds for the number of summands up to n, and prove it for n + 1. For this it is enough
to replace the sum of the first two terms in λ1x1 + λ2x2 + . . . + λn+1xn+1 by the term

(λ1 + λ2)

(
λ1

λ1 + λ2
x1 +

λ2

λ1 + λ2
x2

)
,

and apply the induction hypothesis. �

If a1, . . . , an are non-negative then, taking f(x) = x2 and λi = 1/n, we obtain a useful
inequality (which is also an easy consequence of the Cauchy–Schwarz inequality):

(15)

n∑

i=1

a2
i ≥ 1

n

( n∑

i=1

ai

)2

.

Jensen’s inequality (??) yields the following useful inequality between the arithmetic and
geometric means: for any be non-negative numbers a1, . . . , an,

(16)
1

n

n∑

i=1

ai ≥
( n∏

i=1

ai

)1/n

.

To show this, apply Jensen’s inequality with f(x) = 2x, λ1 = . . . = λn = 1/n and xi = log2 ai, for
all i = 1, . . . , n. Then

1

n

n∑

i=1

ai =
n∑

i=1

λif(xi) ≥ f

(
n∑

i=1

λixi

)
= 2(

∑n

i=1
xi)/n =

(
n∏

i=1

ai

)1/n

.



10 1. COUNTING

6. The inclusion-exclusion principle

The principle of inclusion and exclusion (sieve of Eratosthenes) is a powerful tool in the theory
of enumeration as well as in number theory. This principle relates the cardinality of the union of
certain sets to the cardinalities of intersections of some of them, these latter cardinalities often
being easier to handle.

For any two sets A and B we have

|A ∪ B| = |A| + |B| − |A ∩ B|.
In general, given n subsets A1, . . . , An of a set X, we want to calculate the number |A1 ∪ · · · ∪ An|
of points in their union. As the first approximation of this number we can take the sum

(17) |A1| + · · · + |An|.
However, in general, this number is too large since if, say, Ai ∩ Aj 6= ∅ then each point of Ai ∩ Aj

is counted two times in (??): once in |Ai| and once in |Aj |. We can try to correct the situation
by subtracting from (??) the sum

(18)
∑

1≤i<j≤n

|Ai ∩ Aj |.

But then we get a number which is too small since each of the points in Ai ∩ Aj ∩ Ak 6= ∅ is
counted three times in (??): once in |Ai ∩ Aj |, once in |Aj ∩ Ak|, and once in |Ai ∩ Ak|. We can
therefore try to correct the situation by adding the sum

∑

1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak|,

but again we will get a too large number, etc. Nevertheless, it turns out that after n steps we will
get the correct result. This result is known as the inclusion-exclusion principle. The following
notation will be handy: if I is a subset of the index set {1, . . . , n}, we set

AI :=
⋂

i∈I

Ai,

with the convention that A∅ = X.

Proposition 1.13 (Inclusion-Exclusion Principle). Let A1, . . . , An be subsets of X. Then the
number of elements of X which lie in none of the subsets Ai is

(19)
∑

I⊆{1,...,n}
(−1)|I||AI |.

Proof. The sum is a linear combination of cardinalities of sets AI with coefficients +1 and
−1. We can re-write this sum as

∑

I

(−1)|I||AI | =
∑

I

∑

x∈AI

(−1)|I| =
∑

x

∑

I:x∈AI

(−1)|I|.

We calculate, for each point of X, its contribution to the sum, that is, the sum of the coefficients
of the sets AI which contain it.

First suppose that x ∈ X lies in none of the sets Ai. Then the only term in the sum to which
x contributes is that with I = ∅; and this contribution is 1.

Otherwise, the set J := {i : x ∈ Ai} is non-empty; and x ∈ AI precisely when I ⊆ J . Thus,
the contribution of x is

∑

I⊆J

(−1)|I| =

|J|∑

i=0

(|J |
i

)
(−1)i = (1 − 1)|J| = 0

by the binomial theorem.
Thus, points lying in no set Ai contribute 1 to the sum, while points in some Ai contribute 0;

so the overall sum is the number of points lying in none of the sets, as claimed. �
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For some applications the following form of the inclusion-exclusion principle is more conve-
nient.

Proposition 1.14. Let A1, . . . , An be a sequence of (not necessarily distinct) sets. Then

(20) |A1 ∪ · · · ∪ An| =
∑

∅6=I⊆{1,...,n}
(−1)|I|+1|AI | .

Proof. The left-hand of (??) is |A∅| minus the number of elements of X = A∅ which lie in
none of the subsets Ai. By Proposition ?? this number is

|A∅| −
∑

I⊆{1,...,n}
(−1)|I||AI | =

∑

∅6=I⊆{1,...,n}
(−1)|I|+1|AI | ,

as desired. �

Suppose we would like to know, given a set of indices I, how many elements belong to all
the sets Ai with i ∈ I and do not belong to any of the remaining sets. Proposition ?? (which
corresponds to the case when I = ∅) can be generalized for this situation.

Proposition 1.15. Let A1, . . . , An be sets, and I a subset of the index set {1, . . . , n}. Then
the number of elements which belong to Ai for all i ∈ I and for no other values is

(21)
∑

J⊇I

(−1)|J\I||AJ | .

Proof. Consider the set X :=
⋂

i∈I Ai and its subsets Bk := X ∩ Ak, for all k ∈ N \ I, where
N := {1, . . . , n}. The proposition asks us to calculate the number of elements of X lying in none
of Bk. By Proposition ??, this number is

∑

K⊆N\I

(−1)|K|
∣∣∣∣
⋂

k∈K

Bk

∣∣∣∣ =
∑

K⊆N\I

(−1)|K|
∣∣∣∣
⋂

i∈K∪I

Ai

∣∣∣∣

=
∑

J⊇I

(−1)|J\I||AJ | . �

What is the probability that if n people randomly search a dark closet to retrieve their hats,
no person will pick his own hat? Using the principle of inclusion and exclusion it can be shown
that this probability is very close to e−1 = 0.3678....

This question can be formalized as follows. A permutation is a bijective mapping f of the
set {1, . . . , n} into itself. We say that f fixes a point i if f(i) = i. A derangement is a permu-
tation which fixes none of the points. We have exactly n! permutations. How many of them are
derangements?

Proposition 1.16. The number of derangements of {1, . . . , n} is equal to

(22)

n∑

i=0

(−1)i

(
n

i

)
(n − i)! = n!

n∑

i=0

(−1)i

i!
.

The sum
∑n

i=0
(−1)i

i! is the initial part of the Taylor expansion of e−1; so about an e−1 fraction
of all permutations are derangements.

Proof. We are going to apply the inclusion-exclusion formula (??). Let X be the set of
all permutations, and Ai the set of permutations fixing the point i; so |Ai| = (n − 1)!, and more
generally, |AI | = (n−|I|)!, since permutations in AI fix every point in I and permute the remaining
points arbitrarily. A permutation is a derangement if and only if it lies in none of the sets Ai; so
by (??), the number of derangements is

∑

I⊆{1,...,n}
(−1)|I|(n − |I|)! =

n∑

i=0

(−1)i

(
n

i

)
(n − i)!

putting i = |I|. �
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Exercises

Ex 1.1. In how many ways can we distribute k balls to n boxes so that each box has at most
one ball?

Ex 1.2. Show that for every k the product of any k consecutive natural numbers is divisible
by k!. Hint: Consider

(
n+k

k

)
.

Ex 1.3. Show that the number of pairs (A, B) of distinct subsets of {1, . . . , n} with A ⊂ B is
3n − 2n. Hint: Use the binomial theorem to evaluate

∑n

k=0

(
n
k

)
(2k − 1).

Ex 1.4. Show that (
n

k

)
=

n

k

(
n − 1

k − 1

)
.

Hint: Count in two ways the number of pairs (x, M), where M is a k-element subset of {1, . . . , n}
and x ∈ M .

Ex 1.5. Prove that
n∑

k=1

k

(
n

k

)
= n2n−1 .

Hint: Count in two ways the number of pairs (x, M) with x ∈ M ⊆ {1, . . . , n}.

Ex 1.6. There is a set of 2n people: n male and n female. A good party is a set with the
same number of male and female. How many possibilities are there to build such a good party?

Ex 1.7. Use Proposition ?? to show that
r∑

i=0

(
n + i − 1

i

)
=

(
n + r

r

)
.

Ex 1.8. Let 0 ≤ a ≤ m ≤ n be integers. Use Proposition ?? to show that
n∑

i=m

(
i

a

)
=

(
n + 1

a + 1

)
−
(

m

a + 1

)
.

Ex 1.9. Prove the Cauchy–Vandermonde identity:
(

p + q

k

)
=

k∑

i=0

(
p

i

)(
q

k − i

)
.

Hint: Take a set of p + q people (p male and q female) and make a set of k people (with i male and k − i

female).

Ex 1.10. Show that
n∑

k=0

(
n

k

)2

=

(
2n

n

)
.

Hint: Exercise ?? and Eq. (??).

Ex 1.11. Prove the following analogy of the binomial theorem for factorials:

(x + y)n =

n∑

k=0

(
n

k

)
(x)k(y)n−k .

Hint: Divide both sides by n!, and use the Cauchy–Vandermonde identity.

Ex 1.12. Let 0 ≤ l ≤ k ≤ n. Show that
(

n

k

)(
k

l

)
=

(
n

l

)(
n − l

k − l

)
.

Hint: Count in two ways the number of all pairs (L, K) of subsets of {1, . . . , n} such that L ⊆ K, |L| = l

and |K| = k.
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Ex 1.13. Use combinatorics (not algebra) to prove that, for 0 ≤ k ≤ n,
(

n

2

)
=

(
k

2

)
+ k(n − k) +

(
n − k

2

)
.

Hint:
(

n
2

)
is the number of edges in a complete graph on n vertices.

Ex 1.14. One of Euclid’s theorems says that, if a prime number divides a product a · b of two
integers, then p must divide at least one of these integers. Use this to show that:

(i) If 1 ≤ k < p, then
(

p
k

)
≡ 0 mod p.

(ii) If 1 ≤ k ≤ n < p, then
(

n
k

)
6≡ 0 mod p.

Hint: (i) Let x = n(n − 1) · · · (n − k + 1). Note that x = a · b with a =
(

n
k

)
and b = k!.

Ex 1.15. Prove Fermat’s Little theorem: if p is a prime and if a is a natural number, then
ap ≡ a mod p. In particular, if p does not divide a, then ap−1 ≡ 1 mod p. Hint: Apply the induction
on a. For the induction step, use the binomial theorem to show that (a + 1)p ≡ ap + 1 mod p.

Ex 1.16. Let 0 < α < 1 be a real number, and αn be an integer. Using Stirling’s formula
show that (

n

αn

)
=

1 + o(1)√
2πα(1 − α)n

· 2n·H(α),

where H(α) = −α log2 α−(1−α) log2(1−α) is the binary entropy function. Hint: H(α) = log2 h(α),
where h(α) = α−α(1 − α)−(1−α).

Ex 1.17. Prove that, for s ≤ n/2,

(1):

s∑

k=0

(
n

k

)
≤
(

n

s

)(
1 +

s

n − 2s + 1

)
;

(2):

s∑

k=0

(
n

k

)
≤ 2n·H(s/n).

Hint: To (1): observe that
(

n
k−1

)
/
(

n
k

)
= k/(n − k + 1) does not exceed α := s/(n − s + 1), and use the

identity
∑∞

i=0
αi = 1/(1 − α).

To (2): set p = s/n and apply the binomial theorem to show that

ps(1 − p)n−s

s∑

k=0

(
n

k

)
≤ 1 .

See also Corollary ?? for another proof.

Ex 1.18. Prove the following estimates: If k ≤ k + x < n and y < k ≤ n, then

(23)

(
n − k − x

n − x

)x

≤
(

n − x

k

)(
n

k

)−1

≤
(

n − k

n

)x

≤ e−(k/n)x

and (
k − y

n − y

)y

≤
(

n − y

k − y

)(
n

k

)−1

≤
(

k

n

)y

.

Ex 1.19. Prove that if 1 ≤ k ≤ n/2, then

(24)

(
n

k

)
≥ γ ·

(ne

k

)k

, where γ =
1√
2πk

e−k2/n−1/(6k).

Hint: Use Stirling’s formula to show that
(

n

k

)
≥ 1√

2π e1/(6k)

(
n

k

)k ( n

n − k

)n−k
(

n

k(n − k)

)1/2

,

and apply the estimate ln(1 + t) ≥ t − t2/2 valid for all t ≥ 0.

Ex 1.20. In how many ways can we choose a subset S ⊆ {1, 2, . . . , n} such that |S| = k and
no two elements of S precede each other, i.e., x 6= y + 1 for all x, y ∈ S? Hint: If S = {a1, . . . , ak}
is such a subset with a1 < a2 < . . . < ak, then a1 < a2 − 1 < . . . < ak − (k − 1).
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Ex 1.21. Let k ≥ 2n. In how many ways can we distribute k sweets to n children, if each
child is supposed to get at least 2 of them?

Ex 1.22. Let F = {A1, . . . , Am} be a family of subsets of a finite set X. For x ∈ X, let d(x)
be the number of members of F containing x. Show that

∑m
i,j=1 |Ai ∩ Aj | =

∑
x∈X d(x)2.

Ex 1.23. Bell’s number Bn is the number of all possible partitions of an n-element set X
(we assume that B0 = 1). Prove that Bn+1 =

∑n
i=0

(
n
i

)
Bi. Hint: For every subset A ⊆ X there are

precisely B|X\A| partitions of X containing A as one of its blocks.

Ex 1.24. Let |N | = n and |X| = x. Show that there are xn mappings from N to X, and
that S(n, k)x(x − 1) · · · (x − k + 1) of these mappings have a range of cardinality k; here S(n, k)
is the Stirling number (the number of partitions of an n-element set into exactly k blocks). Hint:
We have x(x − 1) · · · (x − k + 1) possibilities to choose a sequence of k elements in X, and we can specify
S(n, k) ways in which elements of N are mapped onto these chosen elements.

Ex 1.25. Let F be a family of subsets of an n-element set X with the property that any two
members of F meet, i.e., A ∩ B 6= ∅ for all A, B ∈ F . Suppose also that no other subset of X
meets all of the members of F . Prove that |F| = 2n−1. Hint: Consider sets and their complements.

Ex 1.26. Let F be a family of k-element subsets of an n-element set X such that every l-
element subset of X is contained in at least one member of F . Show that |F| ≥

(
n
l

)/(
k
l

)
. Hint:

Argue as in the proof of Proposition ??.

Ex 1.27. (Sperner 1928). Let F be a family of k-element subsets of {1, . . . , n}. Its shadow is
the family of all those (k−1)-element subsets which lie entirely in at least one member of F . Show
that the shadow contains at least k|F|/(n−k+1) sets. Hint: Argue as in the proof of Proposition ??.

Ex 1.28. (Counting in bipartite graphs). Let G = (A ∪ B, E) be a bipartite graph, d be a
minimum degree of a vertex in A and D the maximum degree of a vertex in B. Assume that
|A|d ≥ |B|D. Show that then, for every subset A0 ⊆ A of density α := |A0|/|A|, there is a subset
B0 ⊆ B such that: (i) |B0| ≥ α|B|/2, (ii) every vertex of B0 has at least αD/2 neighbors in A0,
and (iii) at least half of the edges leaving A0 go to B0. Hint: Let B0 consist of all vertices in B having
> αD/2 neighbors in A0.

Ex 1.29. Let a1, . . . , an be nonnegative numbers. Define

f(t) =

(
at

1 + · · · + at
n

n

)1/t

.

Use Jensen’s inequality to show that s ≤ t implies f(s) ≤ f(t).

Ex 1.30. (Quine 1988). The famous Fermat’s Last Theorem states that if n > 2, then
xn + yn = zn has no solutions in nonzero integers x, y and z. This theorem can be stated in terms
of sorting objects into a row of bins, some of which are red, some blue, and the rest unpainted. The
theorem amounts to saying that when there are more than two objects, the following statement
is never true: The number of ways of sorting them that shun both colors is equal to the number of
ways that shun neither. Show that this statement is equivalent to Fermat’s equation xn +yn = zn.
Hint: Let n be the number of objects, z the number of bins, x the number of bins that are not red and y

the number of bins that are not blue. There are zn ways of sorting the objects into bins; xn of these ways
shun red and yn of them shun blue.

Ex 1.31. Use the principle of inclusion and exclusion to determine the number of ways in
which three women and their three spouses may be seated around a round table under each of the
following two restrictions:

(i) no woman sits beside her spouse (on either side);
(ii) no two women may sit opposite one another at the table (i.e., with two people between them

on either side).



EXERCISES 15

Hint: To (i): two seatings are equivalent if one can be rotated into the other; so the underlying set consists
of all circular permutations, 5! in number. Let Ai (i = 1, 2, 3) be the subset of permutations in which the
members of the i-th couple sit side by side. Show that |Ai| = 2 ·4!, |Ai ∩Aj | = 22 ·3!, |A1 ∩A2 ∩A3| = 23 ·2!
and apply the inclusion-exclusion formula. To (ii): distinguish two cases, according to whether there
exist two women sitting side by side or not.

Ex 1.32. Let m ≥ n. A function f : [m] → [n] is a surjection (or a mapping of [m] onto [n]) if
f maps at least one element of [m] to each element of [n]. Prove that the number of such functions

is
∑n−1

k=0(−1)k
(

n
k

)
(n − k)m. Hint: Let Ai = {f : f(j) 6= i for all j} and apply the inclusion-exclusion

formula.

Ex 1.33. Let n and k ≥ l be positive integers. How many different integer solutions are there
to the equation x1 +x2 + · · ·+xn = k, with all 0 ≤ xi < l? Hint: Consider the universum X = Xn,k of
all solutions with all xi ≥ 0, let Ai be the set of all solutions with xi ≥ l, and apply the inclusion-exclusion
formula (??). Observe that |Ai| = |Xn,k−l|, where the size of Xn,k is given by Proposition ??.

Ex 1.34. Let r ≥ 5. How many ways are there to color the vertices with r colors in the
following graphs such that adjacent vertices get different colors?

Hint: For the first graph, the universe X is the set of all r4 ways to color the vertices. Associate
with each edge e the set Ae of all colorings, which assign the same color to its ends, and apply the
inclusion-exclusion formula (??).

Ex 1.35. Say that a permutation π on [2n] has property P if for some i ∈ [2n], |π(i)−π(i+1)| =
n, where i+1 is taken modulo 2. Show that, for each n, there are more permutations with property
P than without it. Hint: Consider the sets Ai = {π : |π(i)−π(i+1)| = n}. Show that |Ai| = 2n(2n−2)!
and Ai ∩ Ai+1 = ∅.

Ex 1.36. Prove that for any two sets I ⊆ J ,
∑

I⊆K⊆J

(−1)|K\I| =

{
1, if I = J
0, if I 6= J.

Ex 1.37. Prove the following Bonferroni inequalities for each even k ≥ 2:

k∑

ν=1

(−1)ν+1
∑

|I|=ν

|AI | ≤ |
n⋃

i=1

Ai| ≤
k+1∑

ν=1

(−1)ν+1
∑

|I|=ν

|AI |

where AI :=
⋂

i∈I Ai. What about an odd k?

Ex 1.38. Let M be an n × n boolean matrix (with entries 0 and 1). A covering of M is a set
R1, . . . , Rt of rank-1 boolean matrices such that every 1-entry of M is a 1-entry in at least one of
these matrices, and every 0-entry of M is a 0-entry in all these matrices. That is, M must be an
entry-wise Or M =

∨t
i=1 Ri of the Ri’s. Let t(A) be the smallest number of the Ri’s in such a

covering of M . For a boolean matrix B ≤ M (again, inequality is entry-wise), let wM (B) denote
the largest possible number of 1-entries in B that can be covered by some all-1 submatrix R of
M . (Note that R need not be a submatrix of B.) Set

µ(M) = max
B≤M

|B|
wM (B)

,

where |B| is the number of 1s in B. Prove that

µ(M) ≤ t(M) ≤ µ(M) · ln |M | + 1 .

Hint: For the upper bound, consider a greedy covering R1, ..., Rt of M by all-1 submatrices: in the i-th
step choose an all-1 submatrix Ri ≤ M covering the largest number of all yet uncovered 1s in M . Let
Bi ≤ M be the submatrix containing all 1-entries of M that are left uncovered after the i-th step. Observe
that |Bi|/wA(Bi) ≤ µ(A) for all i.
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Ex 1.39. For a boolean matrix M and an integer k ≥ 1, let tk(M) denote the smallest number

t of rank-1 boolean matrices R1, . . . , Rt in a covering of M with a restriction that
∑t

i=1 Ri ≤ kJ ,
where J is an all-1 matrix. That is, we now require that no 1-entry of M is covered more than k
times. Prove that then

k∑

i=1

(
t

i

)
≥ rk(M) .

Hint: For a subset I ⊆ {1, . . . , t}, let RI be a (0, 1) matrix with RI [x, y] = 1 iff Ri[x, y] = 1 for all i ∈ I.
Use the inclusion-exclusion principle to write M as

M =
∑

I 6=∅

(−1)|I|+1RI .

Ex 1.40. The determinant det(A) of an n × n matrix A = (aij) is a sum of n! signed products
±a1i1

a2i2
· · · anin

, where (i1, i2, . . . , in) is a permutation of (1, 2, . . . , n), the sign being +1 or −1,
according to whether the number of inversions of (i1, i2, . . . , in) is even or odd. An inversion
occurs when ir > is but r < s. Prove the following: let A be a matrix of even order n with 0s on
the diagonal and arbitrary entries from {+1, −1} elsewhere. Then det(A) 6= 0. Hint: Observe that
for such matrices, det(A) is congruent modulo 2 to the number of derangements on n points, and show
that for even n, the sum (??) is odd.



CHAPTER 2

Advanced Counting

When properly applied, the (double) counting argument can lead to more subtle results than
those discussed in the previous chapter.

1. Bounds on intersection size

How many r-element subsets of an n-element set can we choose under the restriction that
no two of them share more than k elements? Intuitively, the smaller k is, the fewer sets we can
choose. This intuition can be made precise as follows. (We address the optimality of this bound
in Exercise ??.)

Lemma 2.1 (Corrádi 1969). Let A1, . . . , AN be r-element sets and X be their union. If |Ai ∩
Aj | ≤ k for all i 6= j, then

(25) |X| ≥ r2N

r + (N − 1)k
.

Proof. Just count. By (??), we have for each i = 1, . . . , N ,

(26)
∑

x∈Ai

d(x) =
N∑

j=1

|Ai ∩ Aj | = |Ai| +
∑

j 6=i

|Ai ∩ Aj | ≤ r + (N − 1)k .

Summing over all sets Ai and using Jensen’s inequality (??) we get

N∑

i=1

∑

x∈Ai

d(x) =
∑

x∈X

d(x)2 ≥ 1

n

(∑

x∈X

d(x)

)2

=
1

n

( n∑

i=1

|Ai|
)2

=
(Nr)2

n
.

Using (??) we obtain (Nr)2 ≤ N · |X| (r + (N − 1)k), which gives the desired lower bound on
|X|. �

Given a family of sets A1, . . . , AN , their average size is

1

N

N∑

i=1

|Ai|.

The following lemma says that, if the average size of sets is large, then some two of them must
share many elements.

Lemma 2.2. Let X be a set of n elements, and let A1, . . . , AN be subsets of X of average size
at least n/w. If N ≥ 2w2, then there exist i 6= j such that

(27) |Ai ∩ Aj | ≥ n

2w2 .

Proof. Again, let us just count. On the one hand, using Jensen’s inequality (??) and equality
(??), we obtain that

∑

x∈X

d(x)2 ≥ 1

n

(∑

x∈X

d(x)

)2

=
1

n

( N∑

i=1

|Ai|
)2

≥ nN2

w2 .

17
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On the other hand, assuming that (??) is false and using (??) and (??) we would obtain

∑

x∈X

d(x)2 =

N∑

i=1

N∑

j=1

|Ai ∩ Aj | =
∑

i

|Ai| +
∑

i6=j

|Ai ∩ Aj |

< nN +
nN(N − 1)

2w2 =
nN2

2w2

(
1 +

2w2

N
− 1

N

)
≤ nN2

w2 ,

a contradiction. �

Lemma ?? is a very special (but still illustrative) case of the following more general result.

Lemma 2.3 (Erdős 1964b). Let X be a set of n elements x1, . . . , xn, and let A1, . . . , AN be N
subsets of X of average size at least n/w. If N ≥ 2kwk, then there exist Ai1

, . . . , Aik
such that

|Ai1
∩ · · · ∩ Aik

| ≥ n/(2wk).

The proof is a generalization of the one above and we leave it as an exercise (see Exercises ??
and ??).

2. Graphs with no 4-cycles

Let H be a fixed graph. A graph is H-free if it does not contain H as a subgraph. (Recall
that a subgraph is obtained by deleting edges and vertices.) A typical question in graph theory is
the following one:

How many edges can a H-free graph with n vertices have?

That is, one is interested in the maximum number ex(n, H) of edges in a H-free graph on n
vertices. The graph H itself is then called a “forbidden subgraph.”

Let us consider the case when forbidden subgraphs are cycles. Recall that a cycle Ck of length
k (or a k-cycle) is a sequence v0, v1, . . . , vk such that vk = v0 and each subsequent pair vi and vi+1

is joined by an edge.
If H = C3, a triangle, then ex(n, C3) ≥ n2/4 for every even n ≥ 2: a complete bipartite r × r

graph Kr,r with r = n/2 has no triangles but has r2 = n2/4 edges. We will show later that this
is already optimal: any n-vertex graph with more than n2/4 edges must contain a triangle (see
Theorem ??). Interestingly, ex(n, C4) is much smaller, smaller than n3/2.

Theorem 2.4 (Reiman 1958). If G = (V, E) on n vertices has no 4-cycles, then

|E| ≤ n

4
(1 +

√
4n − 3) .

Proof. Let G = (V, E) be a C4-free graph with vertex-set V = {1, . . . , n}, and d1, d2, . . . , dn

be the degrees of its vertices. We now count in two ways the number of elements in the following
set S. The set S consists of all (ordered) pairs (u, {v, w}) such that v 6= w and u is adjacent to
both v and w in G. That is, we count all occurrences of “cherries”

w

u
v

in G. For each vertex u, we have
(

du

2

)
possibilities to choose a 2-element subset of its du neighbors.

Thus, summing over u, we find |S| =
∑n

u=1

(
du

2

)
. On the other hand, the C4-freeness of G implies

that no pair of vertices v 6= w can have more than one common neighbor. Thus, summing over all
pairs we obtain that |S| ≤

(
n
2

)
. Altogether this gives

n∑

i=1

(
di

2

)
≤
(

n

2

)

or

(28)

n∑

i=1

d2
i ≤ n(n − 1) +

n∑

i=1

di .
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G

Figure 1. Graph G contains several copies of C4 as a subgraph, but none of
them as an induced subgraph.

Now, we use the Cauchy–Schwarz inequality
( n∑

i=1

xiyi

)2

≤
( n∑

i=1

x2
i

)( n∑

i=1

y2
i

)

with xi = di and yi = 1, and obtain
( n∑

i=1

di

)2

≤ n

n∑

i=1

d2
i

and hence by (??) ( n∑

i=1

di

)2

≤ n2(n − 1) + n
n∑

i=1

di .

Euler’s theorem gives
∑n

i=1 di = 2|E|. Invoking this fact, we obtain

4|E|2 ≤ n2(n − 1) + 2n|E|
or

|E|2 − n

2
|E| − n2(n − 1)

4
≤ 0 .

Solving the corresponding quadratic equation yields the desired upper bound on |E|. �

Example 2.5 (Construction of dense C4-free graphs). The following construction shows that
the bound of Theorem ?? is optimal up to a constant factor.

Let p be a prime number and take V = (Zp \ {0}) × Zp, that is, vertices are pairs (a, b) of
elements of a finite field with a 6= 0. We define a graph G on these vertices, where (a, b) and (c, d)
are joined by an edge iff ac = b + d (all operations modulo p). For each vertex (a, b), there are
p − 1 solutions of the equation ax = b + y: pick any x ∈ Zp \ {0}, and y is uniquely determined.
Thus, G is a (p − 1)-regular graph on n = p(p − 1) vertices (some edges are loops). The number
of edges in it is n(p − 1)/2 = Ω(n3/2).

To verify that the graph is C4-free, take any two its vertices (a, b) and (c, d). The unique
solution (x, y) of the system

{
ax = b + y
cx = d + y

is given by
x = (b − d)(a − c)−1

2y = x(a + c) − b − d

which is only defined when a 6= c, and has x 6= 0 only when b 6= d. Hence, if a 6= c and b 6= d, then
the vertices (a, b) and (c, d) have precisely one common neighbor, and have no common neighbors
at all, if a = c or b = d.

3. Graphs with no induced 4-cycles

Recall that an induced subgraph is obtained by deleting vertices together with all the edges
incident to them (see Fig. ??).

Theorem ?? says that a graph cannot have many edges, unless it contains C4 as a (not
necessarily induced) subgraph. But what about graphs that do not contain C4 as an induced
subgraph? Let us call such graphs weakly C4-free.

Note that such graphs can already have many more edges. In particular, the complete graph
Kn is weakly C4-free: in any 4-cycle there are edges in Kn between non-neighboring vertices of C4.
Interestingly, any(!) dense enough weakly C4-free graph must contain large complete subgraphs.



20 2. ADVANCED COUNTING

[rgb]0,0,0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
...........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

[rgb]0,0,0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
...
........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

[rgb]0,0,0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
.............

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

............
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

[rgb]0,0,0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
.............

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.............
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

[rgb]0,0,0

.

.

.

..
.......
.
.
.
.
.
.......
..
.
.
.

[rgb]0,0,0

.

.

.

..
.......
.
.
.
.
.
.......
..
.
.
.

[rgb]0,0,0

.

.

.

..
.......
.
.
.
.
.
........
.
.
.
.

[rgb]0,0,0

.

.

.

.

.

.

[rgb]0,0,0[rgb]0,0,0[rgb]0,0,0[rgb]0,0,0[rgb]0,0,0[rgb]0

Figure 2. (a) If u and v were non-adjacent, we would have an induced 4-cycle
{xi, xj , u, v}. (b) If y and z were non-adjacent, then (S \ {xi}) ∪ {y, z} would be
a larger independent set.

Let ω(G) denote the maximum number of vertices in a complete subgraph of G. In particular,
ω(G) ≤ 3 for every C4-free graph. In contrast, for weakly C4-free graphs we have the following
result, due to Gyárfás, Hubenko and Solymosi (2002).

Theorem 2.6. If an n-vertex graph G = (V, E) is weakly C4-free, then

ω(G) ≥ 0.4
|E|2
n3 .

The proof of Theorem ?? is based on a simple fact, relating the average degree with the
minimum degree, as well as on two facts concerning independent sets in weakly C4-free graphs.

For a graph G = (V, E), let e(G) = |E| denote the number of its edges, dmin(G) the smallest
degree of its vertices, and dave(G) = 2e(G)/|V | the average degree. Note that, by Euler’s theorem,
dave(G) is indeed the sum of all degrees divided by the total number of vertices.

Proposition 2.7. Every graph G has an induced subgraph H with

dave(H) ≥ dave(G) and dmin(H) ≥ 1

2
dave(G) .

Proof. We remove vertices one-by-one. To avoid the danger of ending up with the empty
graph, let us remove a vertex v ∈ V if this does not decrease the average degree dave(G). Thus,
we should have

dave(G − v) =
2(e(G) − d(v))

|V | − 1
≥ dave(G) =

2e(G)

|V |
which is equivalent to d(v) ≤ dave(G)/2. So, when we stick, each vertex in the resulting graph H
has minimum degree at least dave(G)/2. �

Recall that a set of vertices in a graph is independent if no two of its vertices are adjacent.
Let α(G) denote the largest number of vertices in such a set.

Proposition 2.8. For every weakly C4-free graph G on n vertices, we have

ω(G) ≥ n(
α(G)+1

2

) .

Proof. Fix an independent set S = {x1, . . . , xα} with α = α(G). Let Ai be the set of
neighbors of xi in G, and Bi the set of vertices whose only neighbor in S is xi. Consider the
family F consisting of all α sets {xi} ∪ Bi and

(
α
2

)
sets Ai ∩ Aj . We claim that:

[(ii)]each member of F forms a clique in G, and the members of F cover all
vertices of G.

The sets Ai ∩ Aj are cliques because G is weakly C4-free: Any two vertices u 6= v ∈ Ai ∩ Aj must
be joined by an edge, for otherwise {xi, xj , u, v} would form a copy of C4 as an induced subgraph.
The sets {xi}∪Bi are cliques because S is a maximal independent set: Otherwise we could replace
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xi in S by any two vertices from Bi. By the same reason (S being a maximal independent set),
the members of F must cover all vertices of G: If some vertex v were not covered, then S ∪ {v}
would be a larger independent set.

Claims (i) and (ii), together with the averaging principle, imply that

ω(G) ≥ n

|F| =
n

α +
(

α
2

) =
n(

α+1
2

) . �

Proposition 2.9. Let G be a weakly C4-free graph on n vertices, and d = dmin(G). Then,
for every t ≤ α(G),

ω(G) ≥ d · t − n(
t
2

) .

(i):(ii): Proof. Take an independent set S = {x1, . . . , xt} of size t and let Ai be the set of
neighbors of xi in G. Let m be the maximum of |Ai ∩ Aj | over all 1 ≤ i < j ≤ t. We already know
that each Ai ∩ Aj must form a clique; hence, ω(G) ≥ m. On the other hand, by the Bonferroni
inequality (Exercise ??) we have that

n ≥
∣∣∣∣

t⋃

i=1

Ai

∣∣∣∣ ≥ td −
∑

i<j

|Ai ∩ Aj | ≥ td −
(

t

2

)
m ,

from which the desired lower bound on ω(G) follows. �

Now we are able to prove Theorem ??.

Proof of Theorem ??. Let a be the average degree of G; hence, a = 2|E|/n. By Propo-
sition ??, we know that G has an induced subgraph of average degree ≥ a and minimum degree
≥ a/2. So, we may assume w.l.o.g. that the graph G itself has these two properties. We now
consider the two possible cases.

If α(G) ≥ 4n/a, then we apply Proposition ?? with∗ t = 4n/a and obtain

ω(G) ≥ (a/2) · t − n(
t
2

) =
n(4n/a
2

) .

If α(G) ≤ 4n/a, then we apply Proposition ?? and obtain

ω(G) ≥ n(
α(G)+1

2

) ≥ n(4n/a+1
2

) .

In both cases we obtain

ω(G) ≥ n(4n/a+1
2

) =
a2

8n + 2a
≥ 0.1

a2

n
. �

4. Zarankiewicz’s problem

At most how many 1s can an n × n 0-1 matrix contain if it has no a × b submatrix whose
entries are all 1s? Zarankiewicz (1951) raised the problem of the estimation of this number for
a = b = 3 and n = 4, 5, 6 and the general problem became known as Zarankiewicz’s problem.

It is worth reformulating this problem in terms of bipartite graphs. A bipartite graph with
parts of size n is a triple G = (V1, V2, E), where V1 and V2 are disjoint n-element sets of vertices
(or nodes), and E ⊆ V1 × V2 is the set of edges. We say that the graph contains an a × b clique
if there exist an a-element subset A ⊆ V1 and a b-element subset B ⊆ V2 such that A × B ⊆ E.
(Note that an a × b clique is not the same as a b × a clique, unless a = b.)

Let ka(n) be the minimal integer k such that any bipartite graph with parts of size n and
more than k edges contains at least one a × a clique. Using the probabilistic argument, it can be
shown (see Exercise ??) that

ka(n) ≥ c · n2−2/a,

where c > 0 is a constant, depending only on a. It turns out that this bound is not very far
from the best possible, and this can be proved using the double counting argument. The result

∗For simplicity, we ignore ceilings and floors.
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is essentially due to Kővári, Sós and Turán (1954). For a = 2, a lower bound k2(n) ≤ 3n3/2 was
proved by Erdős (1938). He used this to prove that, if a set A ⊆ [n] is such that the products
of any two of its different members are different, then |A| ≤ π(n) + O(n3/4), where π(n) is the
number of primes not exceeding n.

Theorem 2.10. For all natural numbers n ≥ a ≥ 2 we have

ka(n) ≤ (a − 1)1/an2−1/a + (a − 1)n.

Proof. The proof is a direct generalization of a double counting argument we used in the
proof of Theorem ??. Our goal is to prove the following: let G = (V1, V2, E) be a bipartite
graph with parts of size n, and suppose that G does not contain an a × a clique; then |E| ≤
(a − 1)1/an2−1/a + (a − 1)n.

By a star in the graph G we will mean a set of any a of its edges incident with one vertex
x ∈ V1, i.e., a set of the form

S(x, B) := {(x, y) ∈ E : y ∈ B},

where B ⊆ V2, |B| = a. Let ∆ be the total number of such stars in G. We may count the stars
S(x, B) in two ways, by fixing either the vertex x or the subset B.

For a fixed subset B ⊆ V2, with |B| = a, we can have at most a − 1 stars of the form S(x, B),
because otherwise we would have an a × a clique in G. Thus,

(29) ∆ ≤ (a − 1) ·
(

n

a

)
.

On the other hand, for a fixed vertex x ∈ V1, we can form
(

d(x)
a

)
stars S(x, B), where d(x) is the

degree of vertex x in G (i.e., the number of vertices adjacent to x). Therefore,

(30)
∑

x∈V1

(
d(x)

a

)
≤ (a − 1) ·

(
n

a

)
.

We are going to estimate the left-hand side from below using Jensen’s inequality. Unfortunately,
the function

(
x
a

)
= x(x−1) · · · (x−a+1)/a! is convex only for x ≥ a−1. But we can set f(z) :=

(
x
a

)

if x ≥ a−1, and f(x) := 0 otherwise. Then Jensen’s inequality (??) (with λx = 1/n for all x ∈ V1)
yields

∑

x∈V1

(
d(x)

a

)
≥
∑

x∈V1

f(d(x)) ≥ n · f
( ∑

x∈V1

d(x)/n
)

= n · f(|E|/n) .

If |E|/n < a − 1, there is nothing to prove. So, we can suppose that |E|/n ≥ a − 1. Then we have
that

n ·
(|E|/n

a

)
= n · f(|E|/n) ≤

∑

x∈V1

(
d(x)

a

)
≤ (a − 1)

(
n

a

)
.

Expressing the binomial coefficients as quotients of factorials, this inequality implies

n (|E|/n − (a − 1))
a ≤ (a − 1)na,

and therefore |E|/n ≤ (a − 1)1/an1−1/a + a − 1, from which the desired upper bound on |E|
follows. �

The theorem above says that any bipartite graph with many edges has large cliques. In order
to destroy such cliques we can try to remove some of their vertices. We would like to remove as
few vertices as possible. Just how few says the following result.

Theorem 2.11 (Ossowski 1993). Let G = (V1, V2, E) be a bipartite graph with no isolated
vertices, |E| < (k + 1)r edges and d(y) ≤ r for all y ∈ V2. Then we can delete at most k vertices
from V1 so that the resulting graph has no (r − a + 1) × a clique for a = 1, 2, . . . , r.

For a vertex x, let N(x) denote the set of its neighbors in G, that is, the set of all vertices
adjacent to x; hence, |N(x)| is the degree d(x) of x. We will use the following lemma relating the
degree to the total number of vertices.
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Lemma 2.12. Let (X, Y, E) be a bipartite graph with no isolated vertices, and f : Y → [ 0, ∞)
be a function. If the inequality d(y) ≤ d(x) · f(y) holds for each edge (x, y) ∈ E, then |X| ≤∑

y∈Y f(y).

Proof. By double counting,

|X| =
∑

x∈X

∑

y∈N(x)

1

d(x)
≤
∑

x∈X

∑

y∈N(x)

f(y)

d(y)

=
∑

y∈Y

∑

x∈N(y)

f(y)

d(y)
=
∑

y∈Y

f(y)

d(y)
· |N(y)| =

∑

y∈Y

f(y). �

Proof of Theorem ??. (Due to F. Galvin 1997). For a set of vertices Y ⊆ V2, let
N(Y ) :=

⋂
y∈Y N(y) denote the set of all its common neighbors in G, that is, the set of all those

vertices in V1 which are joined to each vertex of Y ; hence |N(Y )| ≤ r for all Y ⊆ V2. Let X ⊆ V1

be a minimal set with the property that |N(Y ) \ X| ≤ r − |Y | whenever Y ⊆ V2 and 1 ≤ |Y | ≤ r.
Put otherwise, X is a minimal set of vertices in V1, the removal of which leads to a graph without
(r − a + 1) × a cliques, for all a = 1, . . . , r.

Our goal is to show that |X| ≤ k.
Note that, for each x ∈ X we can choose Yx ⊆ V2 so that 1 ≤ |Yx| ≤ r, x ∈ N(Yx) and

|N(Yx) \ X| = r − |Yx|;
otherwise X could be replaced by X \ {x}, contradicting the minimality of X. We will apply
Lemma ?? to the bipartite graph G′ = (X, V2, F ), where

F = {(x, y) : y ∈ Yx} .

All we have to do is to show that the hypothesis of the lemma is satisfied by the function (here
N(y) is the set of neighbors of y in the original graph G):

f(y) :=
|N(y)|

r
,

because then

|X| ≤
∑

y∈V2

f(y) =
1

r

∑

y∈V2

|N(y)| =
|E|
r

< k + 1.

Consider an edge (x, y) ∈ F ; we have to show that d(y) ≤ d(x) · f(y), where

d(x) = |Yx| and d(y) = |{x ∈ X : y ∈ Yx}|
are the degrees of x and y in the graph G′ = (X, V2, F ). Now, y ∈ Yx implies N(Yx) ⊆ N(y),
which in its turn implies

|N(y) \ X| ≥ |N(Yx) \ X| = r − |Yx|;
hence

d(y) ≤ |N(y) ∩ X| = |N(y)| − |N(y) \ X|
≤ |N(y)| − r + |Yx| = r · f(y) − r + d(x),

and so

d(x) · f(y) − d(y) ≥ d(x) · f(y) − r · f(y) + r − d(x)

= (r − d(x)) · (1 − f(y)) ≥ 0 . �

5. Density of 0-1 matrices

Let H be an m × n 0-1 matrix. We say that H is α-dense if at least an α-fraction of all its
mn entries are 1s. Similarly, a row (or column) is α-dense if at least an α-fraction of all its entries
are 1s.

The next result says that any dense 0-1 matrix must either have one “very dense” row or there
must be many rows which are still “dense enough.”
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Lemma 2.13 (Grigni and Sipser 1995). If H is 2α-dense then either
(a) there exists a row which is

√
α-dense, or

(b) at least
√

α · m of the rows are α-dense.

Note that
√

α is larger than α when α < 1.

Proof. Suppose that the two cases do not hold. We calculate the density of the entire matrix.
Since (b) does not hold, less than

√
α · m of the rows are α-dense. Since (a) does not hold, each

of these rows has less than
√

α · n 1s; hence, the fraction of 1s in α-dense rows is strictly less than
(
√

α)(
√

α) = α. We have at most m rows which are not α-dense, and each of them has less than
αn ones. Hence, the fraction of 1s in these rows is also less than α. Thus, the total fraction of 1s
in the matrix is less than 2α, contradicting the 2α-density of H. �

Now consider a slightly different question: if H is α-dense, how many of its rows or columns
are “dense enough”? The answer is given by the following general estimate due to Johan Håstad.
This result appeared in the paper of Karchmer and Wigderson (1990) and was used to prove
that the graph connectivity problem cannot be solved by monotone circuits of logarithmic depth.

Suppose that our universe is a Cartesian product A = A1 × · · · × Ak of some finite sets
A1, . . . , Ak. Hence, elements of A are strings a = (a1, . . . , ak) with ai ∈ Ai. Fix now a subset of
strings H ⊆ A and a point b ∈ Ai. The degree of b in H is the number dH(b) = |{a ∈ H : ai = b}|
of strings in H whose i-th coordinate is b.

Say that a point b ∈ Ai from the i-th set is popular in H if its degree dH(b) is at least a 1/2k
fraction of the average degree of an element in Ai, that is, if

dH(b) ≥ 1

2k

|H|
|Ai|

.

Let Pi ⊆ Ai be the set of all popular points in the i-th set Ai, and consider the Cartesian product
of these sets:

P := P1 × P2 × · · · × Pk .

Lemma 2.14 (Håstad). |P | > 1
2 |H|.

Proof. It is enough to show that |H \ P | < 1
2 |H|. For every non-popular point b ∈ Ai, we

have that

|{a ∈ H : ai = b}| <
1

2k

|H|
|Ai|

.

Since the number of non-popular points in each set Ai does not exceed the total number of points
|Ai|, we obtain

|H \ P | ≤
k∑

i=1

∑

b 6∈Pi

|{a ∈ H : ai = b}| <
k∑

i=1

∑

b 6∈Pi

1

2k

|H|
|Ai|

≤
k∑

i=1

1

2k
|H| =

1

2
|H| . �

Corollary 2.15. In any 2α-dense 0-1 matrix H either a
√

α-fraction of its rows or a
√

α-
fraction of its columns (or both) are (α/2)-dense.

Proof. Let H be an m × n matrix. We can view H as a subset of the Cartesian product
[m] × [n], where (i, j) ∈ H iff the entry in the i-th row and j-th column is 1. We are going to
apply Lemma ?? with k = 2. We know that |H| ≥ 2αmn. So, if P1 is the set of all rows with at
least 1

4 |H|/|A1| = αn/2 ones, and P2 is the set of all columns with at least 1
4 |H|/|A2| = αm/2

ones, then Lemma ?? implies that

|P1|
m

· |P2|
n

≥ 1

2

|H|
mn

≥ 1

2
· 2αmn

mn
= α .

Hence, either |P1|/m or |P2|/n must be at least
√

α, as claimed. �
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6. The Lovász–Stein theorem

This theorem was used by Stein (1974) and Lovász (1975) in studying some combinatorial
covering problems. The advantage of this result is that it can be used to get existence results for
some combinatorial problems using constructive methods rather than probabilistic methods.

Given a family F of subsets of some finite set X, its cover number of F , Cov (F), is the
minimum number of members of F whose union covers all points (elements) of X.

Theorem 2.16. If each member of F has at most a elements, and each point x ∈ X belongs
to at least v of the sets in F , then

Cov (F) ≤ |F|
v

(1 + ln a) .

Proof. Let N = |X|, M = |F| and consider the N ×M 0-1 matrix A = (ax,i), where ax,i = 1
iff x ∈ X belongs to the i-th member of F . By our assumption, each row of A has at least v ones
and each column at most a ones. By double counting, we have that Nv ≥ Ma, or equivalently,

(31)
M

v
≤ N

a
.

Our goal is to show that then A must contain an N × K submatrix C with no all-0 rows and such
that

K ≤ N/a + (M/v) ln a ≤ (M/v)(1 + ln a) .

We describe a constructive procedure for producing the desired submatrix C. Let Aa = A and
define A′

a to be any maximal set of columns from Aa whose supports† are pairwise disjoint and
whose columns each have a ones. Let Ka = |A′

a|. Discard from Aa the columns of A′
a and any row

with a one in A′
a. We are left with a ka × (M − Ka) matrix Aa−1, where ka = N − aKa. Clearly,

the columns of Aa−1 have at most a − 1 ones (indeed, otherwise such a column could be added to
the previously discarded set, contradicting its maximality). We continue by doing to Aa−1 what
we did to Aa. That is we define A′

a−1 to be any maximal set of columns from Aa−1 whose supports
are pairwise disjoint and whose columns each have a − 1 ones. Let Ka−1 = |A′

a−1|. Then discard
from Aa−1 the columns of A′

a−1 and any row with a one in A′
a−1 getting a ka−1 ×(M −Ka −Ka−1)

matrix Aa−2, where ka−1 = N − aKa − (a − 1)Ka−1.
The process will terminate after at most a steps (when we have a matrix containing only zeros).

The union of the columns of the discarded sets form the desired submatrix C with K =
∑a

i=1 Ki.
The first step of the algorithm gives ka = N − aKa, which we rewrite, setting ka+1 = N , as

Ka =
ka+1 − ka

a
.

Analogously,

Ki =
ki+1 − ki

i
for i = 1, . . . , a.

Now we derive an upper bound for ki by counting the number of ones in Ai−1 in two ways: every
row of Ai−1 contains at least v ones, and every column at most i − 1 ones, thus

vki ≤ (i − 1)(M − Ka − · · · − Ki+1) ≤ (i − 1)M ,

or equivalently,

ki ≤ (i − 1)M

v
.

†The support of a vector is the set of its nonzero coordinates.
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So,

K =

a∑

i=1

Ki =

a∑

i=1

ki+1 − ki

i

=
ka+1

a
+

ka

a(a − 1)
+

ka−1

(a − 1)(a − 2)
+ · · · +

k2

2 · 1
− k1

≤ N

a
+

M

v

(
1

a
+

1

a − 1
+ · · · +

1

2

)
≤ N

a
+

M

v
ln a .

The last inequality here follows because 1+1/2+1/3+· · ·+1/n is the n-th harmonic number which
is known to lie between ln n and ln n + 1. Together with (??), this yields K ≤ (M/v)(1 + ln a), as
desired. �

The advantage of this proof is that it can be turned into a simple greedy algorithm which
constructs the desired N × K submatrix A′ with column-set C, |C| = K:

(1) Set C := ∅ and A′ := A.
(2) While A′ has at least one row do:

- find a column c in A′ having a maximum number of ones;
- delete all rows of A′ that contain a 1 in column c;
- delete column c from A′;
- set C := C ∪ {c}.

6.1. Covering designs. An (n, k, l) covering design is a family F of k-subsets of an n-
element set (called blocks) such that every l-subset is contained in at least one of these blocks.
Let M(n, k, l) denote the minimal cardinality of such a design. A simple counting argument

(Exercise ??) shows that M(n, k, l) ≥
(

n
l

)/(
k
l

)
.

In 1985, Rödl proved a long-standing conjecture of Erdős and Hanani that for fixed k and l,
coverings of size

(
n
l

)/(
k
l

)
(1 + o(1)) exist. Rödl used non-constructive probabilistic arguments. We

will now use the Lovász–Stein theorem to show how to construct an (n, k, l) covering design with

only ln
(

k
l

)
times more blocks. This is not as sharp as Rödl’s celebrated result, but it is constructive.

A polynomial-time covering algorithm, achieving Rödl’s bound, was found by Kuzjurin (2000).

Theorem 2.17. M(n, k, l) ≤
(

n
l

)/(
k
l

)[
1 + ln

(
k
l

)]
.

Proof. Let X = (xS,T ) be an N × M 0-1 matrix with N =
(

n
l

)
and M =

(
n
k

)
. Rows of X

are labeled by l-element subsets S ⊆ [n], columns by k-element subsets T ⊆ [n], and xS,T = 1 iff

S ⊆ T . Note that each row contains exactly v =
(

n−l
k−l

)
ones, and each column contains exactly

a =
(

k
l

)
ones.

By the Lovász–Stein theorem, there is an N × K submatrix X ′ such that X ′ does not contain
an all-0 row and

K ≤ (M/v)(1 + ln a) =

(
n

k

)/(
n − l

k − l

)[
1 + ln

(
k

l

)]

=

(
n

l

)/(
k

l

)[
1 + ln

(
k

l

)]
,

as
(

n
l

)(
n−l
k−l

)
=
(

n
k

)(
k
l

)
(see Exercise ??). By the definition of X and the property of X ′ (no all-0

row), the k-subsets that correspond to the columns of X ′ form an (n, k, l) covering design. �

Exercises

Ex 2.1. Let A1, . . . , Am be subsets of an n-element set such that |Ai ∩ Aj | ≤ t for all i 6= j.
Prove that

∑m
i=1 |Ai| ≤ n + t ·

(
m
2

)
.

Ex 2.2. Let A = (aij) be an n × n matrix (n ≥ 4 even). The matrix is filled with integers
and each integer appears exactly twice. Show that there exists a permutation π of {1, . . . , n} such
that all the numbers ai,π(i), i = 1, . . . , n are distinct. (Such a permutation π is also called a Latin
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transversal of A.) Hint: Look at how many pairs of entries are “bad,” i.e., contain the same number,
and show that strictly less than n! of all permutations can go through such pairs.

Ex 2.3. Let F be a family of m subsets of a finite set X. For x ∈ X, let p(x) be the number
of pairs (A, B) of sets A, B ∈ F such that either x ∈ A ∩ B or x 6∈ A ∪ B. Prove that p(x) ≥ m2/2
for every x ∈ X. Hint: Let d(x) be the degree of x in F , and observe that p(x) = d(x)2 + (m − d(x))2.

Ex 2.4. Let F be a family of nonempty subsets of a finite set X that is closed under union
(i.e., A, B ∈ F implies A ∪ B ∈ F). Prove or give a counterexample: there exists x ∈ X such that
d(x) ≥ |F|/2. (Open conjecture, due to Peter Frankl.)

Ex 2.5. A projective plane of order r −1 is a family of n = r2 −r +1 r-element subsets (called
lines) of an n-element set of points such that each two lines intersect at precisely one point and
each point belongs to precisely r lines (cf. Sect. ??). Use this family to show that the bound given
by Corrádi’s lemma (Lemma ??) is optimal.

Ex 2.6. Theorem ?? gives a sufficient condition for a bipartite graph with parts of the same
size n to contain an a × a clique. Extend this result to not necessarily balanced graphs. Let
ka,b(m, n) be the minimal integer k such that any bipartite graph with parts of size m and n and
more than k edges contains at least one a × b clique. Prove that for any 0 ≤ a ≤ m and 0 ≤ b ≤ n,

ka,b(m, n) ≤ (a − 1)1/bnm1−1/b + (b − 1)m.

Ex 2.7. (Paturi–Zane 1998). Extend Theorem ?? to r-partite graphs as follows. An
r-partite m-clique is a Cartesian product V1 × V2 × · · · × Vr of m-element sets V1, . . . , Vr. An
r-partite graph with parts of size m is a subset E of an r-partite m-clique. Let ex(m, r, 2) denote
the maximum size |E| of such a graph E which does not contain an r-partite 2-clique. Erdős
(1959, 1964b) proved that

cmr−r/2r−1 ≤ ex(m, r, 2) ≤ mr−1/2r−1

,

where c = c(r) > 0 is a constant depending only on r. A slightly weaker upper bound ex(m, r, 2) <

2mr−1/2r−1

can be derived from Lemma ??. Show how to do this. Hint: Argue by induction on
r. For the induction step take X = V1 × · · · × Vr−1 and consider m subsets Av = {x ∈ X : (x, v) ∈ E}
with v ∈ Vr. Apply Lemma ?? with n = mr−1, N = m and w = 1

2
m1/2r−1

, to obtain a pair of points
u 6= v ∈ Vk for which the graph E′ = Au ∩ Av is large enough, and use the induction hypothesis.

Ex 2.8. Let F = {A1, . . . , AN } be a family of subsets of some set X. Use (??) to prove that
for every 1 ≤ s ≤ N , ∑

x∈X

d(x)s =
∑

(i1,i2,...,is)

|Ai1
∩ Ai2

∩ · · · ∩ Ais
|,

where the last sum is over all s-tuples (i1, i2, . . . , is) of (not necessarily distinct) indices.

Ex 2.9. Use the previous exercise and the argument of Lemma ?? to prove Lemma ??.

Ex 2.10. Let A1, . . . , AN be subsets of some n-element set X, and suppose that these sets
have average size at least αn. Show that for every s ≤ (1 − ǫ)αN with 0 < ǫ < 1, there are indices
i1, i2, . . . , is such that

|Ai1
∩ Ai2

∩ · · · ∩ Ais
| ≥ (ǫα)sn.

Hint: Consider the bipartite graph G = (X, V, E) where V = {1, . . . , N}, and (x, i) ∈ E if and only if
x ∈ Ai. Observe that |E| ≥ αnN and argue as in the proof of Theorem ??.

Ex 2.11. Prove the following very useful averaging principle for partitions. Let X = A1 ∪A2 ∪
· · ·∪Am be a partition of a finite set X into m mutually disjoint sets (blocks), and a =

∑m
i=1 |Ai|/m

be the average size of a block in this partition. Show that for every 1 ≤ b ≤ a, at least (1−1/b)|X|
elements of X belong to blocks of size at least a/b. How many elements of X belong to blocks of
size at most ab? Hint: m · (a/b) ≤ |X|/b.
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Ex 2.12. Let A1, . . . , Ar be a sequence of (not necessarily distinct) subsets of an n-element
set X such that each set has size n/s and each element x ∈ X belongs to least one and to at most

k of them; hence r ≤ ks. Let K :=
∑k

i=0

(
r
i

)
and assume that s > 2k. Prove that there exist

two disjoint subsets X1 and X2 of X such that |Xi| ≥ n/(2K) for both i = 1, 2, and none of the
sets A1, . . . , Ar contains points from both sets X1 and X2. Hint: Associate with each x ∈ X its trace

T (x) = {i : x ∈ Ai} and partition the elements of X according to their traces. Use the previous exercise
to show that at least n/2 elements belong to blocks of size at least n/(2K). Show that some two of these
elements x and y must have disjoint traces, T (x) ∩ T (y) = ∅.

Ex 2.13. Let X = A1 ∪ A2 ∪ · · · ∪ Am be a partition of a finite set X into mutually disjoint
blocks. Given a subset Y ⊆ X, we obtain its partition Y = B1 ∪ B2 ∪ · · · ∪ Bm into blocks
Bi = Ai ∩ Y . Say that a block Bi is λ-large if |Bi|/|Ai| ≥ λ · |Y |/|X|. Show that, for every λ > 0,
at least (1 − λ) · |Y | elements of Y belong to λ-large blocks.

Ex 2.14. Given a family S1, . . . , Sn of subsets of V = {1, . . . , n}, its intersection graph G =
(V, E) is defined by: {i, j} ∈ E if and only if Si ∩ Sj 6= ∅. Suppose that: (i) the sets have average
size at least r, and (ii) the average size of their pairwise intersections does not exceed k. Show
that |E| ≥ n

k ·
(

r
2

)
. Hint: Consider the sum

∑
i<j

|Si ∩ Sj |.

Ex 2.15. Let H be a 2α-dense 0-1 matrix. Prove that at least an α/(1 − α) fraction of its
rows must be α-dense.

Ex 2.16. (Alon 1986). Let S be a set of strings of length n over some alphabet. Suppose

that every two strings of S differ in at least d coordinates. Let k be such that d > n(1 − 1/
(

k
2

)
).

Show that any k distinct strings v1, . . . , vk of S attain k distinct values in at least one coordinate.
Hint: Assume the opposite and count the sum of distances between the

(
k
2

)
pairs of vi’s.



CHAPTER 3

Probabilistic Counting

Roughly speaking, the probabilistic method works as follows: trying to prove that an object
with certain properties exists, one defines an appropriate probability space of objects and shows
that a randomly chosen element of this space has the desired properties with a positive probability.
A prototype of this method is the following averaging (counting) argument:

If x1, . . . , xn ∈ R and

(32)
x1 + · · · + xn

n
≥ a

then for some j

(33) xj ≥ a.

The usefulness of the method lies in the fact that the average (??) is often easier to compute than
to exhibit a specific xj for which (??) can be proved to hold.

The goal of this chapter is to demonstrate the probabilistic method on simple examples (more
impressive applications will be given in Part ?? devoted to this method). In its simplest appli-
cations, probabilistic argument can be replaced by a straightforward counting, “counting with
weights.” However, as soon as one gets away from the simplest examples, the heart and soul of
the method is the probabilistic point of view rather than the act of counting.

1. Probabilistic preliminaries

We briefly recall some basic definitions of (discrete) probability.
A finite probability space consists of a finite set Ω and a function (called also probability

distribution) Pr : Ω → [0, 1], such that
∑

x∈Ω Pr [x] = 1. A probability space is a representation
of a random experiment, where we choose a member of Ω at random and Pr [x] is the probability
that x is chosen. Subsets A ⊆ Ω are called events. The probability of an event is defined by
Pr [A] :=

∑
x∈A Pr [x], i.e., the probability that a member of A is chosen.

We call Ω the domain (or a sample space) and we call Pr a probability distribution. The most
common probability distribution is the uniform distribution, which is defined as Pr [x] = 1/|Ω| for
each x ∈ Ω; the corresponding sample space is then called symmetric.

Some elementary properties follow directly from the definitions. In particular, for any two
events∗ A and B we have that

(1) Pr [Ω] = 1, Pr [∅] = 0 and Pr [A] ≥ 0 for all A ⊆ Ω;
(2) Pr [A ∪ B] = Pr [A] + Pr [B] − Pr [A ∩ B] ≤ Pr [A] + Pr [B];
(3) Pr [A ∪ B] = Pr [A] + Pr [B] if A and B are disjoint;
(4) Pr

[
A
]

= 1 − Pr [A];
(5) Pr [A \ B] = Pr [A] − Pr [A ∩ B];
(6) Pr [A ∩ B] ≥ Pr [A] − Pr

[
B
]
;

(7) If B1, . . . , Bm is a partition of Ω then Pr [A] =
∑m

i=1 Pr [A ∩ Bi].

For two events A and B, the conditional probability of A given B, denoted Pr [A|B], is the
probability that one would assign to A if one knew that B occurs. Formally,

Pr [A|B] :=
Pr [A ∩ B]

Pr [B]
,

∗Here and throughout A = Ω \ A stands for the complement of A.

29
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when Pr [B] 6= 0. For example, if we are choosing a uniform integer from {1, . . . , 6}, A is the event
that the number is 2 and B is the event that the number is even, then Pr [A|B] = 1/3, whereas
Pr [B|A] = 1.

Two events A and B are independent if Pr [A ∩ B] = Pr [A] ·Pr [B]. If B 6= ∅, this is equivalent
to Pr [A | B ] = Pr [A]. It is very important to note that the “independence” has nothing to do with
the “disjointness” of the events: if, say, 0 < Pr [A] < 1, then the events A and A are dependent!

Let Γ be finite set, and 0 ≤ p ≤ 1. A random subset S of Γ is obtained by flipping a
coin, with probability p of success, for each element of Γ to determine whether the element is
to be included in S; the distribution of S is the probability distribution on Ω = 2Γ given by
Pr [S] = p|S|(1 − p)|Γ|−|S| for S ⊆ Γ. We will mainly consider the case when S is uniformly
distributed, that is, when p = 1/2. In this case each subset S ⊆ Γ receives the same probability
Pr [S] = 2−|Γ|. If F is a family of subsets, then its random member S is a uniformly distributed
member; in this case, Ω = F and S has the probability distribution Pr [S] = 1/|F|. Note that, for
p = 1/2, a random subset of Γ is just a random member of 2Γ.

A random variable is a variable defined as a function X : Ω → R of the domain of a probability
space. For example, if X is a uniform integer chosen from {1, . . . , n}, then Y := 2X and Z := “the
number of prime divisors of X” are both random variables, and so is X itself. In what follows,
Pr [X = s] denotes the probability of the event X−1(s) = {x ∈ Ω : X(x) = s}. One says in this
case that X takes value s ∈ R with probability Pr [X = s]. It is clear that events are a special
type of random variables taking only two values 0 and 1. Namely, one can identify an event A ⊆ Ω
with its indicator random variable XA such that XA(x) = 1 if and only if x ∈ A.

One of the most basic probabilistic notions is the expected value of a random variable. This
is defined for any real-valued random variable X, and intuitively, it is the value that we would
expect to obtain if we repeated a random experiment several times and took the average of the
outcomes of X. Namely, if X takes values s1, . . . , sm, then the mean or expectation of X is defined
as the weighted average of these values:

E [X] :=
m∑

i=1

si · Pr [X = si] =
∑

x∈Ω

X(x) · Pr [x] .

For example, if X is the number of spots on the top face when we roll a fair die, then the expected
number of spots is E [X] =

∑6
i=1 i(1/6) = 3.5. In this book we will only consider random variables

with finite ranges S, so that we will not be faced with the convergence issue of the corresponding
series.

Note that the probability distribution Pr : Ω → [0, 1] itself is a random variable, and its
expectation is

E [Pr] =
∑

x∈Ω

Pr[x]2 .

In particular, if Pr is a uniform distribution of a set with n elements, then its expectation is 1/n,
as it should be. The expectation of the indicator random variable XA of an event A is just its
probability:

E [XA] = 0 · Pr[XA = 0] + 1 · Pr[XA = 1] = Pr[XA = 1] = Pr [A] .

The probabilistic method is most striking when it is applied to prove theorems whose statement
does not seem to suggest the need for probability at all. It is therefore surprising what results
may be obtained from such simple principles like the union bound: The probability of a union of
events is at most the sum of the probabilities of the events,

(34) Pr [A1 ∪ A2 ∪ · · · ∪ An] ≤ Pr [A1] + Pr [A2] + · · · + Pr [An] .

Thus, if Ai’s are some “bad” events and
∑

Pr [Ai] < 1 then we know that Pr
[
∩iAi

]
= Pr

[
∪iAi

]
=

1 − Pr [∪iAi] > 0, that is, with positive probability, none of these bad events happens. Already
this simple fact often allows to show that some object with desired “good” properties exists.
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A next useful property is the linearity of expectation: If X1, . . . , Xn are random variables and
a1, . . . , an real numbers, then

E [a1X1 + · · · + anXn] = a1E [X1] + · · · + anE [Xn] .

The equality follows directly from the definition E [X]. The power of this principle comes from
there being no restrictions on the Xi’s.

A general framework for the probabilistic method is the following. Many extremal problems
can be defined by a pair (M, f), where M is some finite set of objects and f : M → R some function
assigning each object x ∈ M its “value”. For example, M could be a set of graphs, satisfying some
conditions, and f(x) could be the maximum size of a clique in x. Given a threshold value t,
the goal is to show that an object x ∈ M with f(x) ≥ t exists. That is, we want to show that
maxx∈M f(x) ≥ t.

To solve this task, one defines an appropriate probability distribution Pr : M → [0, 1] and
considers the resulting probability space. In this space the target function f becomes a random
variable. One tries then to show that either E [f ] ≥ t or Pr [f(x) ≥ t] > 0 holds. If at least one
of these inequalities holds, then the existence of x ∈ M with f(x) ≥ t is already shown. Indeed,
would f(x) < t hold for all x ∈ M , then we would have

Pr [f(x) ≥ t] = Pr [∅] = 0

and

E [f ] =
∑

i

i · Pr [f = i] <
∑

i

t · Pr [f = i] = t .

The property

E [f ] ≥ t implies f(x) ≥ t for at least one x ∈ M

is sometimes called the pigeonhole principle of expectation: a random variable cannot always be
smaller (or always greater) than its expectation.

In the next sections we give some simplest applications of the probabilistic method (more
applications are given in Part ??).

2. Tournaments

A tournament is an oriented graph T = (V, E) such that (x, x) 6∈ E for all x ∈ V , and for
any two vertices x 6= y exactly one of (x, y) and (y, x) belongs to E. That is, each tournament
is obtained from a complete graph by orienting its edges. The name tournament is natural, since
one can think of the set V as a set of players in which each pair participates in a single match,
where (x, y) ∈ E iff x beats y.

Say that a tournament has the property Pk if for every set of k players there is one who beats
them all, i.e., if for any subset S ⊆ V of k players there exists a player y 6∈ S such that (y, x) ∈ E
for all x ∈ S.

Theorem 3.1 (Erdős 1963a). If n ≥ k22k+1, then there is a tournament of n players that has
the property Pk.

Proof. Consider a random tournament of n players, i.e., the outcome of every game is
determined by the flip of fair coin. For a set S of k players, let AS be the event that no y 6∈ S
beats all of S. Each y 6∈ S has probability 2−k of beating all of S and there are n−k such possible
y, all of whose chances are mutually independent. Hence Pr [AS ] = (1 − 2−k)n−k and

Pr
[⋃

AS

]
≤
(

n

k

)
(1 − 2−k)n−k <

nk

k!
e−(n−k)/2k ≤ nke−n/2k

.

If n ≥ k22k+1, this probability is strictly smaller than 1. Thus, for such an n, with positive
probability no event AS occurs. This means that there is a point in the probability space for
which none of the events AS happens. This point is a tournament T and this tournament has the
property Pk. �
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3. Universal sets

A set of 0-1 strings of length n is (n, k)-universal if, for any subset of k coordinates S =
{i1, . . . , ik}, the projection

A↾S := {(ai1
, . . . , aik

) : (a1, . . . , an) ∈ A}

of A onto the coordinates in S contains all possible 2k configurations.
In Sects. ?? and ?? we will present two explicit constructions of such sets of size about n,

when k ≤ (log n)/3, and of size nO(k), for arbitrary k. On the other hand, a simple probabilistic
argument shows that (n, k)-universal sets of size k2k log2 n exist (note that 2k is a trivial lower
bound).

Theorem 3.2 (Kleitman–Spencer 1973). If
(

n
k

)
2k(1 − 2−k)r < 1, then there is an (n, k)-

universal set of size r.

Proof. Let A be a set of r random 0-1 strings of length n, each entry of which takes values
0 or 1 independently and with equal probability 1/2. For every fixed set S of k coordinates and
for every fixed vector v ∈ {0, 1}k,

Pr [v 6∈ A↾S ] =
∏

a∈A

Pr [v 6= a↾S ] =
∏

a∈A

(
1 − 2−|S|

)
=
(
1 − 2−k

)r
.

Since there are only
(

n
k

)
2k possibilities to choose a pair (S, v), the set A is not (n, k)-universal

with probability at most
(

n
k

)
2k(1 − 2−k)r, which is strictly smaller than 1. Thus, at least one set

A of r vectors must be (n, k)-universal, as claimed. �

4. Covering by bipartite cliques

A biclique covering of a graph G is a set H1, . . . , Ht of its complete bipartite subgraphs such
that each edge of G belongs to at least one of these subgraphs. The weight of such a covering is
the sum

∑t
i=1 |V (Hi)| of the number of vertices in these subgraphs. Let bc(G) be the smallest

weight of a biclique covering of G. Let Kn be a complete graph on n vertices.

Theorem 3.3. If n is a power of two, then bc(Kn) = n log2 n.

Proof. Let n = 2m. We can construct a covering of Kn as follows. Assign to each vertex
v its own vector xv ∈ {0, 1}m, and consider m = log2 n bipartite cliques H1, . . . , Hm, where two
vertices u and v are adjacent in Hi iff xu(i) = 0 and xv(i) = 1. Since every two distinct vectors
must differ in at least one coordinate, each edge of Kn belongs to at least one of these bipartite
cliques. Moreover, each of the cliques has weight (n/2) + (n/2) = n, since exactly 2m−1 = n/2
of the vectors in {0, 1}m have the same value in the i-th coordinate. So, the total weight of this
covering is mn = n log2 n.

To prove the lower bound we use a probabilistic argument. Let A1 × B1, . . . , At × Bt be
a covering of Kn by bipartite cliques. For a vertex v, let mv be the number of these cliques
containing v. By the double-counting principle,

t∑

i=1

(|Ai| + |Bi|) =
n∑

v=1

mv

is the weight of the covering. So, it is enough to show that the right-hand sum is at least n log2 n.
To do this, we throw a fair 0-1 coin for each of the cliques Ai ×Bi and remove all vertices in Ai

from the graph if the outcome is 0; if the outcome is 1, then we remove Bi. Let X = X1 + · · ·+Xn,
where Xv is the indicator variable for the event “the vertex v survives.”

Since any two vertices of Kn are joined by an edge, and since this edge is covered by at least
one of the cliques, at most one vertex can survive at the end. This implies that E [X] ≤ 1. On
the other hand, each vertex v will survive with probability 2−mv : there are mv steps that are
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“dangerous” for v, and in each of these steps the vertex v will survive with probability 1/2. By
the linearity of expectation,

n∑

v=1

2−mv =

n∑

v=1

Pr [v survives] =

n∑

v=1

E [Xv] = E [X] ≤ 1 .

We already know that the arithmetic mean of numbers a1, . . . , an is at least their geometric mean
(??):

1

n

n∑

v=1

av ≥
( n∏

v=1

av

)1/n

.

When applied with av = 2−mv , this yields

1

n
≥ 1

n

n∑

v=1

2−mv ≥
( n∏

v=1

2−mv

)1/n

= 2− 1
n

∑n

v=1
mv ,

from which 2
1
n

∑n

v=1
mv ≥ n, and hence, also

∑n
v=1 mv ≥ n log2 n follows. �

5. 2-colorable families

Let F be a family of subsets of some finite set. Can we color the elements of the underlying
set in red and blue so that no member of F will be monochromatic? Such families are called
2-colorable.

Recall that a family is k-uniform if each member has exactly k elements.

Theorem 3.4 (Erdős 1963b). Every k-uniform family with fewer than 2k−1 members is 2-
colorable.

Proof. Let F be an arbitrary k-uniform family of subsets of some finite set X. Consider
a random 2-coloring obtained by coloring each point independently either red or blue, where
each color is equally likely. Informally, we have an experiment in which a fair coin is flipped to
determine the color of each point. For a member A ∈ F , let XA be the indicator random variable
for the event that A is monochromatic. So, X =

∑
A∈F XA is the total number of monochromatic

members.
For a member A to be monochromatic, all its |A| = k points must receive the same color.

Since the colors are assigned at random and independently, this implies that each member of F
will be monochromatic with probability at most 2 · 2−k = 21−k (factor 2 comes since we have two
colors). Hence,

E [X] =
∑

A∈F
E [XA] =

∑

A∈F
21−k = |F| · 21−k .

Since points in our probability space are 2-colorings, the pigeonhole property of expectation implies
that a coloring, leaving at most |F| · 21−k members of F monochromatic, must exist.

In particular, if |F| < 2k−1 then no member of F will be left monochromatic. �

The proof was quite easy. So one could ask whether we can replace 2k−1 by, say, 4k? By
turning the probabilistic argument “on its head” it can be shown that this is not possible. The
sets now become random and each coloring defines an event.

Theorem 3.5 (Erdős 1964a). If k is sufficiently large, then there exists a k-uniform family
F such that |F| ≤ k22k and F is not 2-colorable.

Proof. Set r = ⌊k2/2⌋. Let A1, A2, . . . be independent random members of
([r]

k

)
, that is, Ai

ranges over the set of all A ⊆ {1, . . . , r} with |A| = k, and Pr [Ai = A] =
(

r
k

)−1
. Consider the

family F = {A1, . . . , Ab}, where b is a parameter to be specified later. Let χ be a coloring of
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{1, . . . , r} in red and blue, with a red points and r − a blue points. Using Jensen’s inequality (see
Proposition ??), for any such coloring and any i, we have

Pr [Ai is monochromatic] = Pr [Ai is red] + Pr [Ai is blue]

=

(
a
k

)
+
(

r−a
k

)
(

r
k

) ≥ 2

(
r/2

k

)/(
r

k

)
:= p,

where, by the asymptotic formula (??) for the binomial coefficients, p is about e−121−k. Since the
members Ai of F are independent, the probability that a given coloring χ is legal for F equals

b∏

i=1

(1 − Pr [Ai is monochromatic]) ≤ (1 − p)b.

Hence, the probability that at least one of all 2r possible colorings will be legal for F does not
exceed 2r(1 − p)b < er ln 2−pb, which is less than 1 for b = (r ln 2)/p = (1 + o(1))k22k−2e ln 2. But
this means that there must be at least one realization of the (random) family F , which has only
b sets and which cannot be colored legally. �

Let B(k) be the minimum possible number of sets in a k-uniform family which is not 2-
colorable. We have already shown that

2k−1 ≤ B(k) ≤ k22k .

As for exact values of B(k), only the first two B(2) = 3 and B(3) = 7 are known. The value
B(2) = 3 is realized by the graph K3. We address the inequality B(3) ≤ 7 in Exercise ??.

There is yet another class of 2-colorable families, without any uniformity restriction.

Theorem 3.6. Let F be an arbitrary family of subsets of a finite set, each of which has at
least two elements. If every two non-disjoint members of F share at least two common elements,
then F is 2-colorable.

Proof. Let X = {x1, . . . , xn} be the underlying set. We will color the points x1, . . . , xn one-
by-one so that we do not color all points of any set in F with the same color. Color the first point
x1 arbitrarily. Suppose that x1, . . . , xi are already colored. If we cannot color the next element
xi+1 in red then this means that there is a set A ∈ F such that A ⊆ {x1, . . . , xi+1}, xi+1 ∈ A and
all the points in A \ {xi+1} are red. Similarly, if we cannot color the next element xi+1 in blue,
then there is a set B ∈ F such that B ⊆ {x1, . . . , xi+1}, xi+1 ∈ B and all the points in B \ {xi+1}
are blue. But then A ∩ B = {xi+1}, a contradiction. Thus, we can color the point xi+1 either
red or blue. Proceeding in this way we will finally color all the points and no set of F becomes
monochromatic. �

6. The choice number of graphs

The choice number (or list-coloring number) of a graph G, denoted by ch(G), is the minimum
integer k such that for every assignment of a set S(v) of k colors to every vertex v of G, there
is a legal coloring of G that assigns to each vertex v a color from S(v). Recall that a coloring is
legal if adjacent vertices receive different colors. Obviously, this number is at least the chromatic
number χ(G) of G.

Theorem 3.7 (Alon 1992). For every bipartite n × n graph G with n ≥ 3, we have that
ch(G) ≤ 2 log2 n.

Proof. Let G = (V0 ∪ V1, E) be a bipartite graph with |V0| = |V1| = n. Suppose that each
vertex v is assigned a set S(v) of at least 2 log2 n colors, and let S = ∪vS(v) be the set of all
colors. Since the graph is bipartite, it is enough to show that there is a partition S = S0 ∪ S1 of
S such that

(35) Si ∩ S(v) 6= ∅ for both i = 0, 1 and all v ∈ Vi.
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Then, for every two (even not necessarily adjacent) vertices u ∈ V0 and v ∈ V1, we can choose
arbitrary colors cv ∈ S0 ∩ S(v) and cu ∈ S1 ∩ S(v); since S0 ∩ S1 = ∅, these colors are clearly
distinct.

To define such a partition S = S0 ∪ S1 just flip, for each color c ∈ S, a fair 0-1 coin to decide
whether to include this color in the set S0; let also S1 = S \ S0. For a fixed i ∈ {0, 1} and v ∈ Vi

we have that

Pr [Si ∩ S(v) = ∅] = 2−|S(v)| ≤ 2−2 log2 n =
1

n2 <
1

2n
.

The number of pairs (i, v) with i ∈ {0, 1} and v ∈ Vi is 2n. Hence, by the union bound, the
probability that our random partition S = S0 ∪ S1 does not satisfy (??) is strictly smaller than 1,
implying that a desired partition exists. �

Note that the proof says a bit more. If A1, . . . , An and B1, . . . , Bn are any two sequences of
not necessarily distinct 2 log2 n-element subsets of some set of vertices, then it is possible to color
the vertices in red and blue so that each of the Ai receives at least one red color and each of the
Bi receives at least one blue color.

Exercises

Ex 3.1. Let Ω = B1 ∪ B2 be a partition of a sample space, and A ⊆ Ω be an event. Prove
that then Pr [A] does not exceed the maximum of Pr[A | B1] and Pr[A | B2]. Hint: Show that
Pr [A] = Pr [B1] · Pr[A | B1] + Pr [B2] · Pr[A | B2].

Ex 3.2. Prove the following Bonferroni inequality:

Pr[A1 ∩ · · · ∩ An] ≥ Pr[A1] + · · · + Pr[An] − n + 1 .

Ex 3.3. Let X, Y : Ω → R be random variables. The variance of a random variable X is
defined as Var [X] := E

[
(X − E [X])2

]
. Prove that

(1) E [a · X + b · Y ] = a · E [X] + b · E [Y ] for any constants a and b.
(2) If X and Y are independent then E [X · Y ] = E [X] · E [Y ] and

Var [X + Y ] = Var [X] + Var [Y ].

(3) Var [X] = E[X2] − E [X]
2

. Hint: E [X · E [X]] = E [X]2.

Ex 3.4. Let X be a non-negative integer-valued random variable. Show that E[X2] ≥ E [X],
Pr [X = 0] ≥ 1 − E [X] and E [X] =

∑∞
x=1 Pr [X ≥ x].

Ex 3.5. Use the Cauchy–Schwarz inequality (
∑n

i=1 aibi)
2 ≤ (

∑n
i=1 a2

i )(
∑n

i=1 b2
i ) to show that,

for any random variable X, E [X]
2 ≤ E[X2].

Ex 3.6. Let X1, . . . , Xn be n independent 0-1 random variables such that
Pr [Xi = 1] = pi and Pr [Xi = 0] = 1 − pi. Let X =

∑n
i=1 Xi mod 2. Prove that Pr [X = 1] =

1
2 [1 −∏i(1 − 2pi)] . Hint: Consider the random variable Y = Y1 · · · Yn, where Yi = 1−2Xi, and observe
that E [Y ] = 1 − 2 · Pr [Y = −1].

Ex 3.7. For a graph G let, as before, bc(G) denote the smallest weight of a biclique covering
of G. Show that if an n-vertex graph G has no independent set of size larger than α then
bc(G) ≥ n log2(n/α). Hint: Argue as in the proof of the lower bound in Theorem ??, and show that
E [X] ≤ α.

Ex 3.8. For a graph G = (V, E), let µG be the minimum of (a + b)/ab over all pairs of
integers a, b ≥ 1 such that G contains a copy of a complete bipartite a × b graph Ka,b. Show that
bc(G) ≥ µG · |E|.

Ex 3.9. Prove that B(3) ≤ 7. That is, exhibit a family of seven 3-element sets which is not
2-colorable. Hint: Consider the Fano configuration (Fig. ??).
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Ex 3.10. (Razborov 1990). Consider the family of all pairs (A, B) of disjoint k-element subsets
of {1, . . . , n}. A set Y separates the pair (A, B) if A ⊆ Y and B ∩ Y = ∅. Prove that there exist
ℓ = 2k4k ln n sets such that every pair (A, B) is separated by at least one of them. Hint: Pick
subsets Y 1, . . . , Y ℓ of {1, . . . , n} randomly and independently, each with probability 2−n. Show that the

probability that none of them separates a given pair (A, B) is at most
(
1 − 2−2k

)ℓ
and use the counting

sieve.

Ex 3.11. Let X be a set of n = kr points and consider their colorings c : X → {1, . . . , k} by k
colors. Say that such a coloring c is balanced if each color is used for the same number of points, i.e.,
if |c−1(i)| = r for every color i = 1, . . . , k. Given a k-element set of points, say that it is differently
colored if no two of its points get the same color. Prove that there exist ℓ = O(kek log n) balanced
colorings c1, . . . , cℓ such that every k-element subset of X is differently colored by at least one of
them. Hint: Consider independent copies c1, . . . , cℓ of a balanced coloring c selected at random from the
set of all n!/(r!)k such colorings. Show that for every k-element subset S of X, c colors S differently with
probability p = rk ·

(
n
k

)−1
. Use the counting sieve to show that, with probability at least 1 −

(
n
k

)
(1 − p)ℓ,

every k-element subset S will be colored differently by at least one of c1, . . . , cℓ. Recall that r = n/k and
use Proposition ?? to show that this probability is nonzero for some ℓ = O(kek log n)

Ex 3.12. (Khasin 1969). Consider the k-threshold function T n
k (x1, . . . , xn) which outputs 1 if

and only if x1 + · · ·+xn ≥ k. In Sect. ?? we will show that any depth-3 Or-And-Or formula for T n
k

must have size exponential in k. What about the upper bounds? Use the previous exercise to show
that T n

k can be computed by a monotone Or-And-Or formula of size O(kekn log n). Hint: Each
balanced k-coloring c of {1, . . . , n} gives us an And-Or formula Fc =

∧k

i=1

∨
c(j)=i

xj . Use the previous
exercise to combine them into an Or-And-Or formula for T n

k .

Ex 3.13. Let F be a family, each member of which has ≥ 3 points and any two members
share exactly one point in common. Suppose also that F is not 2-colorable. Prove that: (i) every
point x belongs to at least two members of F , and (ii) any two points x, y belong to at least one
member of F . Hint: (i) Take x ∈ A ∈ F , color A \ {x} red and the rest blue. (ii) Select sets A, B such
that x ∈ A \ B and y ∈ B \ A; color (A ∪ B) \ {x, y} red and everything else blue.

Ex 3.14. (Lovász 1973). Let F be 3-uniform family on n ≥ 5 points, in which each pair of
points occurs in the same number of sets. Prove that F is not 2-colorable. Hint: Suppose there is a
2-coloring, count the members of F in two ways: by the monochromatic pairs contained in them and also
by the bichromatic pairs contained in them. Let n1 and n2 denote the number of red and blue points,
respectively, and let a be the number of members of F containing a given pair of points. We have a

(
n1
2

)

sets in F containing a pair {x, y} of red points, and a
(

n2
2

)
sets containing a blue pair of points. Hence,

|F| is the sum of these two numbers. On the other hand, each set of F contains exactly two pairs {x, y}
where x is blue and y is red; so 2|F| = an1n2. Compare these numbers, and use the arithmetic-geometric
mean inequality (??) to show that the equality can hold only if n ≤ 4.



CHAPTER 4

The Pigeonhole Principle

The pigeonhole principle (also known as Dirichlet’s principle) states the “obvious” fact that
n + 1 pigeons cannot sit in n holes so that every pigeon is alone in its hole. More generally, the
pigeonhole principle states the following:

If a set consisting of at least rs + 1 objects is partitioned into r classes, then some class
receives at least s + 1 objects.

Its truth is easy to verify: if every class receives at most s objects, then a total of at most rs
objects have been distributed. To see that the result is best possible, observe that a set with at
most rs points can be divided into r groups with at most s points in each group; hence none of
the groups contains s + 1 points.

This is one of the oldest “non-constructive” principles: it states only the existence of a pi-
geonhole with more than k items and says nothing about how to find such a pigeonhole. Today
we have powerful and far reaching generalizations of this principle (Ramsey-like theorems, the
probabilistic method, etc.). We will talk about them later.

As trivial as the pigeonhole principle itself may sound, it has numerous nontrivial applica-
tions. The hard part in applying this principle is to decide what to take as pigeons and what as
pigeonholes. Let us illustrate this by several examples.

1. Some quickies

To “warm-up,” let us start with the simplest applications. The degree of a vertex x in a graph
G is the number d(x) of edges of G adjacent to x.

Proposition 4.1. In any graph there exist two vertices of the same degree.

Proof. Given a graph G on n vertices, make n pigeonholes labeled from 0 up to n−1 and put
a vertex x into the k-th pigeonhole iff d(x) = k. If some pigeonhole contains more than one vertex,
we are done. So, assume that no pigeonhole has more than one vertex. There are n vertices going
into the n pigeonholes; hence each pigeonhole has exactly one vertex. Let x and y be the vertices
lying in the pigeonholes labeled 0 and n − 1, respectively. The vertex x has degree 0 and so has
no connection with other vertices, including y. But y has degree n − 1 and hence, is connected
with all the remaining vertices, including x, a contradiction. �

If G is a finite graph, the independence number α(G) is the maximum number of pairwise
nonadjacent vertices of G. The chromatic number χ(G) of G is the minimum number of colors
in a coloring of the vertices of G with the property that no two adjacent vertices have the same
color.

Proposition 4.2. In any graph G with n vertices, n ≤ α(G) · χ(G).

Proof. Consider the vertices of G partitioned into χ(G) color classes (sets of vertices with
the same color). By the pigeonhole principle, one of the classes must contain at least n/χ(G)
vertices, and these vertices are pairwise nonadjacent. Thus α(G) ≥ n/χ(G), as desired. �

A graph is connected if there is a path between any two of its vertices.

Proposition 4.3. Let G be an n-vertex graph. If every vertex has a degree of at least (n−1)/2
then G is connected.

37
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.  .  . .  .  .

yx

Figure 1. There are only n − 2 vertices and at least n − 1 edges going to them.

Proof. Take any two vertices x and y. If these vertices are not adjacent, then at least n − 1
edges join them to the remaining vertices, because both x and y have a degree of at least (n−1)/2.

Since there are only n − 2 other vertices, the pigeonhole principle implies that one of them
must be adjacent to both x and y (see Fig. ??). We have proved that every pair of vertices is
adjacent or has a common neighbor, so G is connected. �

Remark 4.4. A result is best possible if the conclusion no longer holds when we weaken one
of the conditions. Such is, for example, the result above: let n be even and G be a union of two
vertex disjoint complete graphs on n/2 vertices; then every vertex has degree (n − 2)/2, but the
graph is disconnected.

Note that, in fact, we have proved more: if every vertex of an n-vertex graph has degree at
least (n − 1)/2 then the graph has diameter at most two. The diameter of a graph is the smallest
number k such that every two vertices are connected by a path with at most k edges.

2. The Erdős–Szekeres theorem

Let A = (a1, a2, . . . , an) be a sequence of n different numbers. A subsequence of k terms of A
is a sequence B of k distinct terms of A appearing in the same order in which they appear in A.
In symbols, we have B = (ai1

, ai2
, . . . , aik

), where i1 < i2 < · · · < ik. A subsequence B is said to
be increasing if ai1

< ai2
< · · · < aik

, and decreasing if ai1
> ai2

> · · · > aik
.

We will be interested in the length of the longest increasing and decreasing subsequences of
A. It is intuitively plausible that there should be some kind of tradeoff between these lengths. If
the longest increasing subsequence is short, say has length s, then any subsequence of A of length
s + 1 must contain a pair of decreasing elements, so there are lots of pairs of decreasing elements.
Hence, we would expect the longest decreasing sequence to be large. An extreme case occurs when
s = 1. Then the whole sequence A is decreasing.

How can we quantify the feeling that the length of both, longest increasing and longest de-
creasing subsequences, cannot be small? A famous result of Erdős and Szekeres (1935) gives an
answer to this question and was one of the first results in extremal combinatorics.

Theorem 4.5 (Erdős–Szekeres 1935). Let A = (a1, . . . , an) be a sequence of n different real
numbers. If n ≥ sr + 1 then either A has an increasing subsequence of s + 1 terms or a decreasing
subsequence of r + 1 terms (or both).

Proof (due to Seidenberg 1959). Associate to each term ai of A a pair of “scores” (xi, yi) where xi

is the number of terms in the longest increasing subsequence ending at ai, and yi is the number
of terms in the longest decreasing subsequence starting at ai. Observe that no two terms have the
same score, i.e., that (xi, yi) 6= (xj , yj) whenever i 6= j. Indeed, if we have · · · ai · · · aj · · · , then
either ai < aj and the longest increasing subsequence ending at ai can be extended by adding
on aj (so that xi < xj), or ai > aj and the longest decreasing subsequence starting at aj can be
preceded by ai (so that yi > yj).

Now make a grid of n2 pigeonholes:
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r n1

1

s

n

Place each term ai in the pigeonhole with coordinates (xi, yi). Each term of A can be placed
in some pigeonhole, since 1 ≤ xi, yi ≤ n for all i = 1, . . . , n. Moreover, no pigeonhole can have
more than one term because (xi, yi) 6= (xj , yj) whenever i 6= j. Since |A| = n ≥ sr + 1, we have
more items than the pigeonholes shaded in the above picture. So some term ai will lie outside
this shaded region. But this means that either xi ≥ s + 1 or yi ≥ r + 1 (or both), exactly what
we need. �

The set of real numbers is totally ordered. That is, for any two distinct numbers x and y,
either x < y or y < x. The following lemma, due to Dilworth, generalizes the Erdős–Szekeres
theorem to sets in which two elements may or may not be comparable.

A partial order on a set P is a binary relation < between its elements which is transitive and
irreflexive: if x < y and y < z then x < z, but x < y and y < x cannot both hold. We write x ≤ y
if x < y or x = y. Elements x and y are comparable if either x ≤ y or y ≤ x (or both) hold. A
chain in a poset P is a subset C ⊆ P such that any two of its points are comparable. Dually, an
antichain is a subset A ⊆ P such that no two of its points are comparable.

Lemma 4.6 (Dilworth 1950). In any partial order on a set P of n ≥ sr + 1 elements, there
exists a chain of length s + 1 or an antichain of size r + 1.

Proof. A chain is maximal if it cannot be prolonged by adding a new element. Let C1, . . . , Cm

be all maximal chains in P , and suppose there is no chain of length s + 1. Since the chains Ci

must cover all n points of P , the pigeonhole principle implies that we must have m ≥ r + 1 such
chains. Let xi ∈ Ci be the greatest element of Ci. Then no two elements xi and xj with i 6= j
can be comparable: if xi ≤ xj then Ci ∪ {xj} would also be a chain, a contradiction with the
maximality of Ci. Thus, the elements x1, . . . , xm form an antichain of size m ≥ r + 1. �

This lemma implies the Erdős–Szekeres theorem (we address this question in Exercise ??).

3. Mantel’s theorem

Here we discuss one typical extremal property of graphs. How many edges are possible in a
triangle-free graph G on n vertices? A triangle is a set of three vertices, each two of which are
connected by an edge. Certainly, G can have n2/4 edges without containing a triangle: just let
G be the bipartite complete graph consisting of two sets of n/2 vertices each and all the edges
between the two sets. Indeed, n2/4 turns out to be the maximum possible number of edges: if we
take one more edge then the graph will have a triangle.

We give four proofs of this beautiful result: the first (original) proof is based on double

counting, the second uses the inequality
√

ab ≤ (a + b)/2 of the arithmetic and geometric mean,
the third uses the pigeonhole principle, and the fourth employs the so-called “shifting argument”
(we will give this last proof in the Sect. ?? devoted to this argument).

Theorem 4.7 (Mantel 1907). If a graph G on n vertices contains more than n2/4 edges, then
G contains a triangle.

First proof. Let G be a graph on a set V of n vertices containing m > n2/4 edges. Assume that G
has no triangles. Then adjacent vertices have no common neighbors, so d(x) + d(y) ≤ n for each
edge {x, y} ∈ E. Summing over all edges of G, we have (cf. Equation (??))

∑

x∈V

d(x)2 =
∑

{x,y}∈E

(d(x) + d(y)) ≤ mn .
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On the other hand, using Cauchy–Schwarz inequality (see Notation or Proposition ??) and Euler’s
equality

∑
x∈V d(x) = 2m (see Theorem ??), we obtain

∑

x∈V

d(x)2 ≥
(∑

x∈V d(x)
)2

|V | =
4m2

n
.

These two inequalities imply that m ≤ n2/4, contradicting the hypothesis. �

Second proof. Let G = (V, E) be a graph on a set V of n vertices and assume that G has no
triangles. Let A ⊆ V be the largest independent set, i.e., a maximal set of vertices, no two
of which are adjacent in G. Since G is triangle-free, the neighbors of a vertex x ∈ V form an
independent set, and we infer d(x) ≤ |A| for all x.

The set B = V \ A meets every edge of G. Counting the edges of G according to their end-
vertices in B, we obtain |E| ≤ ∑

x∈B d(x). The inequality of the arithmetic and geometric mean
(??) yields

|E| ≤
∑

x∈B

d(x) ≤ |A| · |B| ≤
( |A| + |B|

2

)2

=
n2

4
.

�

Third proof. To avoid ceilings and floorings, we will prove the theorem for graphs on an even
number 2n of vertices. We want to prove that every such graph with at least n2 + 1 edges must
contain a triangle. We argue by induction on n. If n = 1, then G cannot have n2 + 1 edges;
hence the statement is true. Assuming the result for n, we now consider a graph G on 2(n + 1)
vertices with (n + 1)2 + 1 edges. Let x and y be adjacent vertices in G, and let H be the induced
subgraph on the remaining 2n vertices. If H contains at least n2 + 1 edges then we are done by
the induction hypothesis. Suppose that H has at most n2 edges, and therefore at least 2n + 1
edges of G emanate from x and y to vertices in H:

Hz

yx

By the pigeonhole principle, among these 2n + 1 edges there must be an edge from x and an
edge from y to the same vertex z in H. Hence G contains the triangle {x, y, z}. �

4. Turán’s theorem

A k-clique is a graph on k vertices, every two of which are connected by an edge. For example,
triangles are 3-cliques. Mantel’s theorem says that, if a graph on n vertices has no 3-clique then
it has at most n2/4 edges. What about k > 3?

The answer is given by a fundamental result of Paul Turán, which initiated extremal graph
theory.

Theorem 4.8 (Turán 1941). If a graph G = (V, E) on n vertices has no (k + 1)-clique, k ≥ 2,
then

(36) |E| ≤
(

1 − 1

k

)
n2

2
.

Like Mantel’s theorem, this result was rediscovered many times with various different proofs.
Here we present the original one due to Turán. The proof based on so-called “weight shifting”
argument is addressed in Exercise ??. In Sect. ?? we will give a proof which employs ideas of a
totally different nature – the probabilistic argument.

Proof. We use induction on n. Inequality (??) is trivially true for n = 1. The case k = 2 is
Mantel’s theorem. Suppose now that the inequality is true for all graphs on at most n−1 vertices,
and let G = (V, E) be a graph on n vertices without (k + 1)-cliques and with a maximal number
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of edges. This graph certainly contains k-cliques, since otherwise we could add edges. Let A be a
k-clique, and set B = V \ A.

Since each two vertices of A are joined by an edge, A contains eA =
(

k
2

)
edges. Let eB be the

number of edges joining the vertices of B and eA,B the number of edges between A and B. By
induction, we have

eB ≤
(

1 − 1

k

)
(n − k)2

2
.

Since G has no (k + 1)-clique, every x ∈ B is adjacent to at most k − 1 vertices in A, and we
obtain

eA,B ≤ (k − 1)(n − k).

Summing up and using the identity

(
1 − 1

k

)
n2

2
=

(
k

2

)(n

k

)2

we conclude that

|E| ≤ eA + eB + eA,B ≤
(

k

2

)
+

(
k

2

)(
n − k

k

)2

+ (k − 1)(n − k)

=

(
k

2

)(
1 +

n − k

k

)2

=

(
1 − 1

k

)
n2

2
. �

An n-vertex graph T (n, k) that does not contain any (k + 1)-clique may be formed by parti-
tioning the set of vertices into k parts of equal or nearly-equal size, and connecting two vertices
by an edge whenever they belong to two different parts. Thus, Turán’s theorem states that the
graph T (n, k) has the largest number of edges among all n-vertex graphs without (k + 1)-cliques.

5. Dirichlet’s theorem

Here is the application of the pigeonhole principle which Dirichlet made, resulting in his name
being attached to the principle. It concerns the existence of good rational approximations to
irrational numbers. The result belongs to number theory, but the argument is combinatorial.

Theorem 4.9 (Dirichlet 1879). Let x be a real number. For any natural number n, there is a
rational number p/q such that 1 ≤ q ≤ n and

∣∣∣∣x − p

q

∣∣∣∣ <
1

nq
≤ 1

q2 .

Note that it is easy to get an approximation whose error is at most 1/n, by fxing the denom-
inator to be q = n. The improved approximation uses the pigeonhole principle.

Proof. For this proof, we let {x} denote the fractional part of the real number x, that is,
{x} := x − ⌊x⌋. Consider the n + 1 numbers {ax}, a = 1, 2, . . . , n + 1. We put these numbers into
the n pigeonholes

[0, 1/n) , [1/n, 2/n) , . . . , [1 − 1/n, 1) .

By the pigeonhole principle, some interval contains more than one of the numbers, say {ax} and
{bx} with a > b, which therefore differ by less than 1/n. Letting q = a−b, we see that there exists
an integer p = ⌊ax⌋ − ⌊bx⌋ such that |qx − p| < 1/n, from which the result follows on division by
q. Moreover, q is the difference between two integers in the range 1, . . . , n + 1, so q ≤ n. �
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6. Swell-colored graphs

Let us color the edges of the complete graph Kn on n vertices. We say that the graph is
swell-colored if each triangle contains exactly 1 or 3 colors, but never 2 colors and if the graph
contains more than one color. That is, we must use at least two colors, and for every triangle,
either all its three edges have the same color or each of them has a different color.

It can be shown (do this!) that Kn can never be swell-colored with exactly two colors. A
simple investigation shows that K3 and K4 are the only Kn swell-colorable with 3 colors; the other
Kn require more colors since they are more highly connected.

Using the pigeonhole principle we can prove the following lower bound.

Theorem 4.10 (Ward–Szabó 1994). The complete graph on n vertices cannot be swell-colored
with fewer than

√
n + 1 colors.

Proof. Let Kn be swell-colored with r distinct colors. Let N(x, c) denote the number of
edges incident to vertex x which have color c. Fix x0 and c0 for which N(x0, c0) is maximal, and
denote this maximum by N .

The n − 1 edges incident to x0 can be partitioned into ≤ r color classes, each of which with
N or fewer members. By the pigeonhole principle,

N · r ≥ n − 1.

Let x1, x2, . . . , xN be the vertices connected to x0 by the N edges of color c0. Let G denote
the (complete) subgraph of Kn induced by the vertex set {x0, x1, . . . , xN }. The swell-coloredness
of Kn is inherited by G and so all edges of G have color c0. Since Kn is assumed to have at least
two colors, there must be some vertex y of Kn not in subgraph G and such that at least one edge
joining y to G has a color different from c0.

Claim 4.11. The N + 1 edges connecting y to G all are distinctly colored with colors other
than c0.

The claim implies that r ≥ N + 2, which together with N · r ≥ n − 1 yields r(r − 2) ≥ n − 1,
and hence, r ≥ √

n + 1, as desired. So, it remains to prove the claim.

...

x

x

x

x

x

y
1

2

3

N

0

If an edge connecting y to G, say {y, x1} (see the figure above), has color c0 then by the
swell-coloredness of G, edge {y, x0} would have color c0, contrary to the definition of x0 (recall
that x1, x2, . . . , xN are all the edges incident to x0 and colored by c0). Furthermore, if any two
edges connecting y to G, say {y, x1} and {y, x2}, have the same color, then the swell-coloredness
of Kn implies that the edge {x1, x2} shares the same color. But {x1, x2} belongs to G, and hence
has color c0 and so {y, x1} would have color c0 which we have seen is impossible. This completes
the proof of the claim, and thus, of the theorem. �

The optimality of the lower bound given by Theorem ??, can be shown using a configuration
known as “affine plane.” We will investigate these configurations in Chap. ??. For our current
purposes it is enough to know that an affine plane AG(2, q) of order q contains exactly q2 points
and exactly q + 1 classes (also called “pencils”) of parallel lines, each containing q lines (two lines
are parallel if they share no point). Moreover, each two points lie on a unique line.

Having such a plane, we can construct a swell-coloring of Kq2 with q + 1 colors as follows.
Identify the vertices of Kq2 with the points in AG(2, q) and associate some unique color with each
of the q + 1 pencils of parallel lines. In order to define a swell-coloring, consider two distinct
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vertices x and y of Kq2 . These points lie on a unique line which, in its turn, belongs to exactly
one of the pencils. Color the edge {x, y} with the color of this pencil. Since any two points lie on
a unique line and parallel lines do not meet in a point, all three edges of a triangle will receive
different colors, and hence, the coloring is swell, as desired.

In fact, Ward and Szabó (1994) have proved that the converse also holds: if the graph Kq2

(q ≥ 2) can be swell-colored using q +1 colors then this coloring can be used to construct an affine
plane of order q.

7. The weight shifting argument

A version of the pigeonhole principle is the averaging principle which we formulated in Sect. ??:
every set of numbers contains a number at least as large as the average (and one at least as small).

Trying to show that some “good” object exists, we can try to assign objects their “weights”
so that objects with a large enough (or small enough) weight are good, and try to show that the
average weight is large (or small). The averaging principle then guarantees that at least one of the
objects is good. The main difficulty is to define the weights relevant for the desired application.
After this we face the problem of how to compute the weights and accumulate their sum. At this
step the so-called “shifting argument” can help. Let us illustrate this by three examples (the first
is trivial, whereas the next two are not).

Proposition 4.12. Let n ≤ m < 2n. Then for any distribution of m pigeons among n
pigeonholes so that no hole is left empty, at most 2(m − n) of the pigeons will be happy, i.e., will
sit not alone in their holes.

Proof. If some hole contains more than two pigeons then, by removing a pigeon from this
hole and placing it in a hole which had contained exactly one pigeon, we arrive to a new distribution
with one more happy pigeon. Thus, the maximum number of happy pigeons is achieved when each
hole has at most two pigeons, and in this case this number is ≤ 2(m − n), as desired. �

A trail in a graph is a walk without repeated edges.

Theorem 4.13 (Graham–Kleitman 1973). If the edges of a complete graph on n vertices are
labeled arbitrarily with the integers 1, 2, . . . ,

(
n
2

)
, each edge receiving its own integer, then there is

a trail of length at least n − 1 with an increasing sequence of edge-labels.

Proof. To each vertex x, assign its weight wx equal to the length of the longest increasing
trail ending at x. If we can show that

∑
x wx ≥ n(n − 1), then the averaging principle guarantees

a vertex with a large enough weight.
We accumulate the weights and their sum iteratively, growing the graph from the trivial graph;

at each step we add a new edge whose label is minimal among the remaining ones. Initially, the
graph has no edges, and the weights are all 0. At the i-th step we take a new edge e = {x, y}
labeled by i. Let wx and wy be the weights of x and y accumulated so far.

x

x y

wy

w

If wx = wy then increase both weights by 1. If wx < wy then the edge e prolongs the longest
increasing trail ending at y by 1; so the new weights are w′

x = wy + 1 and w′
y = wy. In either case,

when an edge is added, the sum of the weights of the vertices increases by at least 2. Therefore,
when all the

(
n
2

)
steps are finished, the sum of the vertex weights is at least n(n−1), as desired. �
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Finally, we illustrate the shifting argument by the fourth proof of Mantel’s theorem: If a graph
G on 2n vertices contains n2 + 1 edges, then G contains a triangle.

Fourth proof of Mantel’s theorem (Motzkin–Straus 1965). Let G be a graph on 2n vertices, and
let m be the number of edges in G. Assume that G has no triangles. Our goal is to prove that
then m ≤ n2. We assign a nonnegative wx to each vertex x such that

∑
x wx = 1. We seek to

maximize
S :=

∑
wxwy,

where the sum is taken over all edges {x, y} of G. One way of assigning the weights is to let
wx = 1/(2n) for each x. This gives

(37) S ≥ m

(2n)2 .

We are going to show that, on the other hand, S never exceeds 1/4, which together with the
previous lower bound will imply that m ≤ n2, as desired.

And now comes the “shifting argument.” Suppose that x and y are two nonadjacent vertices
and Wx and Wy are the total weights of vertices connected to x and y, respectively. Suppose also
that Wx ≥ Wy. Then for any ǫ ≥ 0,

(wx + ǫ)Wx + (wy − ǫ)Wy ≥ wxWx + wyWy.

This, in particular, means that we do not decrease the value of S if we shift all of the weight of
vertex y to the vertex x. It follows that S is maximized when all of the weight is concentrated
on a complete subgraph of G. But we have assumed that G has no triangles; so G cannot have
complete subgraphs other than single edges. Hence, S is maximized when all of the weight is
concentrated on two adjacent vertices, say x and y. Therefore

S ≤ max
{

wx · wy : wx + wy = 1
}

= 1/4

which, together with (??), yield the desired upper bound m ≤ n2. �

8. Schur’s theorem

The famous Fermat’s Last Theorem states that if n > 2, then xn + yn = zn has no solutions
in nonzero integers x, y and z. This theorem was first conjectured by Pierre de Fermat in 1637,
but was not proven until 1995 despite the efforts of many mathematicians. The last step in its
proof was done by Andrew Wiles.

As early as 1916, Issai Schur used the pigeonhole principle to show that Fermat’s Last Theorem
is false in the finite field Zp for any sufficiently large prime p. He derived this from the following
combinatorial result about colorings of numbers. The result may perhaps be considered as the
earliest result in Ramsey theory.

An r-coloring of a set assigns one of the colors 1, 2, . . . , r to each element of the set.

Theorem 4.14 (Schur 1916). For any r ≥ 2 and for any r-coloring of {1, 2, . . . , n}, where
n = ⌈er!⌉, there are three integers x, y, z of the same color and such that x + y = z.

Proof. Let χ : {1, . . . , n} → {1, . . . , r} be an r-coloring of the first n positive integers.
Assume that there do not exist positive integers x, y with x + y ≤ n such that χ(x) = χ(y) =
χ(x + y). Our goal is to show that then n < er!.

Let c0 be a color which appears most frequently among the n elements, and let x0 < x1 <
. . . < xn1−1 be the elements of color c0. By the pigeonhole principle, we know that n ≤ rn1,

Consider the set A0 = {xi − x0 : 1 ≤ i < n1}. By our assumption, no number in A0 can
receive color c0. So, the set A0 is colored by r − 1 colors. Let c1 be a color which appears most
frequently among the elements of A0, and let y0 < y1 < . . . < yn2−1 be its elements of color c1.
Observe that n1 − 1 ≤ (r − 1)n2.

Consider the set A1 = {yi − y0 : 1 ≤ i < n2}. By the assumption, no number in A1 can
receive any of colors c0 and c1. So, the set A1 is colored by r − 2 colors. Let c2 be a color which
appears most frequently among the elements of A1, and let z0 < z1 < . . . < zn3−1 be its elements
of color c2. Observe that n2 − 1 ≤ (r − 2)n3.
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e

Figure 2. What is the color of e?

Continue this procedure until some nk becomes 1. Since we have only r colors, this happens
at the latest for k = r. Thus, we obtained the inequalities n ≤ rn1 and ni ≤ (r − i)ni+1 + 1 for
i = 1, . . . , k − 1, with nk = 1. Putting them together we obtain that

n ≤
r−1∑

i=0

r(r − 1)(r − 2) · · · (r − i) =
r−1∑

i=0

r!

i!
< r!

∞∑

i=0

1

i!
= er! �

Schur (1916) used Theorem ?? to show that Fermat’s Last Theorem is false in the finite field
Zp for any sufficiently large prime p.

Theorem 4.15. For every integer n ≥ 1, there exists p0 such that for any prime p ≥ p0, the
congruence

xn + yn = zn mod p

has a solution.

Proof. The multiplicative group Z∗
p = {1, 2, . . . , p − 1} is known to be cyclic and hence it

has a generator g. Each element of Z∗
p can be written as x = gnj+i where 0 ≤ i < n. We color

the elements of Z∗
p by n colors, where χ(x) = i if x = gnj+i. By Schur’s theorem, for p sufficiently

large, there are elements x′, y′, z′ ∈ Z∗
p such that x′ +y′ = z′ and χ(x′) = χ(y′) = χ(z′). Therefore,

x′ = gnjx+i, y′ = gnjy+i, z′ = gnjz+i and

gnjx+i + gnjy+i = gnjz+i .

Setting x = gjx , y = gjy and z = gjz , we get a solution of xn + yn = zn in Z∗
p. �

9. Ramseyan theorems for graphs

How many people can we invite to a party where among each three people there are two who
know each other and two who don’t know each other? It turns out that at most five persons can
attend such a party.

To show this, let us consider the following simple game. Mark six points on the paper, no
three in line. There are two players; one has a Red pencil the other Blue. Each player’s turn
consists in drawing a line with his/her pencil between two of the points which haven’t already
been joined. (The crossing of lines is allowed). The player’s goal is to create a triangle in his/her
color. If you try to play it with a friend, you will notice that it always end in a win for one player:
a draw is not possible. Prove this! (Hint: see Fig. ??.)

We can generalize this argument to arbitrary graphs, not only those with up to six vertices.
Let G = (V, E) be an undirected graph. A subset S ⊆ V is a clique of G if any two vertices

of S are adjacent. Similarly, a subset T ⊆ V is an independent set of G if no two vertices of T are
adjacent in G.

For integers s, t ≥ 1, let R(s, t) denote the smallest number n such that in any(!) graph on n
or more vertices, there exists either a clique of s vertices or an independent set of t vertices.

Theorem 4.16.

R(s, t) ≤
(

s + t − 2

s − 1

)
=

(
s + t − 2

t − 1

)
.
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S T

x

Figure 3. Splitting the graph into neighbors and non-neighbors of x

Proof. By induction on s + t. It is clear form the definition that R(1, t) = R(s, 1) = 1. For
s > 1 and t > 1, let us prove that

(38) R(s, t) ≤ R(s, t − 1) + R(s − 1, t).

Let G = (V, E) be a graph on n = R(s, t − 1) + R(s − 1, t) vertices. Take an arbitrary vertex
x ∈ V , and split V \ {x} into two subsets S and T , where each vertex of S is nonadjacent to x
and each vertex of T is adjacent to x (see Fig. ??). Since

R(s, t − 1) + R(s − 1, t) = |S| + |T | + 1,

we have either |S| ≥ R(s, t − 1) or |T | ≥ R(s − 1, t).
Let |S| ≥ R(s, t−1), and consider the induced subgraph G[S] of G: this is a graph on vertices

S, in which two vertices are adjacent if and only if they are such in G. Since the graph G[S] has
at least R(s, t − 1) vertices, by the induction hypothesis, it contains either a clique on s vertices
or an independent set of t − 1 vertices. Moreover, we know that x is not adjacent to any vertex
of S in G. By adding this vertex to S, we conclude that the subgraph G[S ∪ {x}] (and hence, the
graph G itself) contains either a clique of s vertices or an independent set of t vertices. The case
when |T | ≥ R(s − 1, t) is analogous.

Since
(

n−1
k

)
+
(

n−1
k−1

)
=
(

n
k

)
(see Proposition ??), the recurrence (??) implies

R(s, t) ≤ R(s, t − 1) + R(s − 1, t) ≤
(

s + t − 3

s − 1

)
+

(
s + t − 3

s − 2

)
=

(
s + t − 2

s − 1

)
. �

We have proved Theorem ?? by induction on s + t. The same result can also be proved using
so-called induced coloring argument. This argument is encountered frequently in Ramsey theory.
To explain the idea, let us prove the following weaker bound for s = t:

R(t, t) ≤ 22t .

That is, any graph on 4t or more vertices must contain either a clique or an independent set on t
vertices.

Proof via induced coloring argument. Take a complete graph on 22t vertices, and fix
an arbitrary coloring of its edges in red and blue. Let us suppose for convenience that the vertices
are totally ordered. Let x1 be the first vertex. Then by the pigeonhole principle there is a set of
vertices S1 of size at least 22t−1 such that every edge from x1 to S1 has the same color. Now let
x2 be the least vertex of S1. By the pigeonhole principle again there is a set S2 ⊆ S1 of size at
least 22t−2 such that every edge from x2 to S2 has the same color. Continuing this process, we
obtain a sequence x1, . . . , x2t of vertices and a sequence S0 ⊃ S1 ⊃ S2 ⊃ . . . ⊃ S2t of sets such
that xi ∈ Si−1 for every i, and every edge from xi to Si has the same color. (Here S0 is the set of
all vertices.) It follows that the color of the edge joining xi to xj depends only on min{i, j}. That
is, for each i = 0, 1, . . . , 2t − 1, all edges joining xi with the subsequent vertices xi+1, . . . , x2t have
the same color ci ∈ {red, blue}. Since we have 2t distinct values for i and only two colors, the
pigeonhole principle implies that there must be a subset T ⊆ {1, . . . , 2t} of size |T | ≥ (2t)/2 = t
such that ci = cj for all i, j ∈ T . Thus, all edges joining vertices in {xi : i ∈ T} have the same
color. �

A simple probabilistic argument yields the following lower bound.

Theorem 4.17 (Erdős 1947). R(t, t) > 2t/2 for all t ≥ 3.
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That is, the edges of Kn can be colored in two colors so that we get no monochromatic K2 log n.

Proof. Consider a random 2-coloring of the edges of Kn obtained by coloring each edge
independently either red or blue, where each color is equally likely. For any fixed set T of t
vertices, the probability that all

(
t
2

)
edges between these vertices receive the same color (i.e., that

either all edges are red or they are blue) is 2 · 2−(t
2). The number of t-element subsets of vertices(

n
t

)
and therefore the probability that there is at least one monochromatic t-clique is at most

(
n

t

)
· 21−(t

2) <
nt

t!
· 21+t/2

2t2/2
,

which is < 1 if n ≤ 2t/2 and t ≥ 3. �

Using Stirling’s Formula, the lower bound on R(t, t) can be improved to about t2t/2. On the
other hand, Theorem ?? gives an upper bound

(2t
t

)
on R(t + 1, t + 1). This bound was recently

improved by Conlon (2009) to about t−ℓ
(2t

t

)
with ℓ ≥ c log n/ log log n. The gap is still large, and

tight bounds are known only for s = 3:

c1
t2

log t
≤ R(3, t) ≤ c2

t2

log t
.

The upper bound is due to Ajtai, Komlós, and Szemerédi (1980) and the lower bound was proved
by Kim (1995) using a probabilistic argument.

In the case of bipartite graphs the following bounds are known. Let b(t) be the smallest
number n such that, in any two-coloring of the complete bipartite n × n graph Kn,n there is a

monochromatic Kt,t. The best known lower bound b(t) = Ω(k2k/2) is the same as for ordinary
graphs. The best known upper bound b(t) = O(2k log k) was proved by Conlon (2008).

10. Ramsey’s theorem for sets

We now consider colorings of k-element subsets of [n] for k > 2. The Ramsey theorem for
graphs (we just proved) speaks about the case k = 2: for every s ≥ 1, there is an n such that it
is not possible to color 2-element subsets of [n] (edges) in red and blue so that every s-element
subset of [n] will contain two 2-element subsets of different colors. (In this case n ≥ 4s is enough.)
In its unabridged form, the celebrated result of Ramsey (1930) speaks about colorings of larger
subsets using any number of colors.

Theorem 4.18 (Ramsey’s theorem). For every natural numbers 1 ≤ k ≤ s and r ≥ 2 there
exists a natural number n = Rr(k; s) such that whenever k-subsets of [n] are colored in r colors,
there is an s-subset of [n] whose all k-subsets receive the same color.

Proof. We first observe that it is enough to consider the case of r = 2 colors.

Claim 4.19. Rr+1(k; s) ≤ Rr (k; R2(k; s)).

Proof. Let N = Rr (k; R2(k; s)) and let an arbitrary coloring of k-subsets of an N -element
set X with r+1 colors 0, 1, . . . , r be given. Then consider this as an r-coloring simply by identifying
the colors 0 and 1. (This is known as the “mixing colors” trick.) By the choice of N , either there
exists an R2(k; s)-element subset, all whose k-subsets receive one of the colors 2, . . . , r (and we
are done), or there exists an R2(k; s)-element subset Y with each its k-subsets in color 0 or 1.
According to the size of Y , all k-subsets of some its s-element subset must be monochromatic. �

By Claim ??, it is enough to show that R2(k; s) exists.
In order to argue by induction, we define a more “granulated” version of the Ramsey number

R2(k; s). Namely let R(k; s, t) be the smallest number n with the following property: If k-subsets
of an n-set are colored with two colors 0 and 1, then all k-subsets of some s-subset receive color
0 or all k-subsets of some t-subset receive color 1. Thus, the theorem claims that R(k; s, s) exists
for all s ≥ k. We will prove a stronger statement that R(k; s, t) ≤ n, where

n := R (k − 1; R(k; s − 1, t), R(k; s, t − 1)) + 1.
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d

a

b

c

Figure 4. Point d lies in none of the lines ab, bc and ac.

We prove this recurrence by induction on k and on s, t. Observe that, by the pigeonhole principle,
R(1; s, t) = s + t − 1 for all s and t and, moreover, R(k; x, k) = R(k; k, x) = x for all k and x ≥ k.
By induction, we may assume that the numbers R(k; s − 1, t) and R(k; s, t − 1) exist, and take an
arbitrary n-element set X, where n is defined above.

Let χ be a coloring of k-subsets of X with two colors 0 and 1. Fix a point x ∈ X, and let
X ′ := X \ {x}. We define a new coloring χ′ of the (k − 1)-subsets A of X ′ by

χ′(A) := χ (A ∪ {x}) .

By the choice of n and by symmetry, we can assume to have found a subset Y ⊆ X ′ such that
|Y | = R(k; s − 1, t) and

χ′(A) = 0 for all (k − 1)-subsets A of Y .

Now consider how the original coloring χ acts on the k-subsets of Y . According to its size, the set
Y must either contain a t-element subset, all whose k-subsets receive color 1 (and we are done),
or it must contain an (s − 1)-element subset Z, all whose k-subsets receive color 0. In this last
case consider the s-element subset Z ∪ {x} and take an arbitrary its subset B of size k. If x 6∈ B
then B is a k-element subset of Z, and hence, χ(B) = 0. If x ∈ B then the set A = B \ {x} is a
(k − 1)-subset of Y , and hence again, χ(B) = χ (A ∪ {x}) = χ′(A) = 0. �

One of the earliest and most popular applications of Ramsey’s theorem is due to Erdős and
Szekeres (1935). In fact, this application was a first step in popularizing Ramsey’s theorem.

Theorem 4.20 (Erdős–Szekeres 1935). Let m ≥ 3 be a positive integer. Then there exists
a positive integer n such that any set of n points in the Euclidean plane, no three of which are
collinear, contains m points which are the vertices of a convex m-gon.

Proof (due to Johnson 1986). Choose n = R2(3; m), the number from the Ramsey’s Theorem ??,
and let A be any set of n points in the plane, no three of which are collinear (i.e., lie on a line).
For a, b, c ∈ A, let |abc| denote the number of points of A which lie in the interior of the triangle
spanned by a, b and c. Define the 2-coloring χ of triples of points in A by χ(a, b, c) = 0 if |abc| is
even and χ(a, b, c) = 1 otherwise. By the choice of n, there exists an m-element subset B ⊆ A such
that all its 3-element subsets receive the same color. Then the points of B form a convex m-gon.
Otherwise, there would be four points a, b, c, d ∈ B such that d lies in the interior of the triangle
abc (see Fig. ??). Since no three points of B are collinear, we have |abc| = |abd|+ |acd|+ |bcd|+1,
contradicting that the coloring χ is constant on all triples from B. �

Exercises

Ex 4.1. Suppose five points are chosen inside an equilateral triangle with side-length 1. Show
that there is at least one pair of points whose distance apart is at most 1/2. Hint: Divide the
triangle into four suitable boxes.

Ex 4.2. (D.R. Karger). Jellybeans of 8 different colors are in 6 jars. There are 20 jellybeans
of each color. Use the pigeonhole principle to prove that there must be a jar containing two pairs
of jellybeans from two different colors of jellybeans. Hint: For each color there is a jar containing a
pair of jellybeans of that color, and we have more colors than jars.
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Ex 4.3. Show that for any positive integer n, there is a multiple of n that contains only the
digits 7 or 0. Hint: Consider the values modulo n of all the numbers ai of the form 77 . . . 7, with i sevens,
i = 1, . . . , n + 1.

Ex 4.4. Prove that every set of n + 1 distinct integers chosen from {1, 2, . . . , 2n} contains a
pair of consecutive numbers and a pair whose sum is 2n + 1. For each n, exhibit two sets of size n
to show that these results are the best possible. Hint: Use pigeonholes (2i, 2i − 1) and (i, 2n − i + 1),
i = 1, . . . , n.

Ex 4.5. Prove that every set of n + 1 distinct integers chosen from {1, 2, . . . , 2n} contains two
numbers such that one divides the other. Sketch: (due to Lajos Pósa): Write every number x in the
form x = kx2a, where kx is an odd number between 1 and 2n − 1. Take odd pigeonholes 1, 3, 5, . . . , 2n − 1
and put x into the pigeonhole number kx. Some hole must have two numbers x < y.

Ex 4.6. Coin-weighing problem (Erdős–Spencer 1974). Let n coins of weights 0 and 1 be given.
We are also given a scale with which we may weigh any subset of the coins. The information from
previous weighings may be used. The object is to determine the weights of the coins with the
minimal number of weighings. Formally, the problem may be stated as follows. A collection
S1, . . . , Sm of subsets of [n] is called determining if an arbitrary subset T of [n] can be uniquely
determined by the cardinalities |Si ∩T |, 1 ≤ i ≤ m. Let D(n) be the minimum m for which such a
determining collection exists. By weighting each coin separately (Si = {i}) we see that D(n) ≤ n.
Show that D(n) ≥ n/ (log2(n + 1)). Hint: Take a determining collection S1, . . . , Sm, observe that for
each i there are only n + 1 possible |Si ∩ T |, and apply the pigeonhole principle.

Ex 4.7. Suppose that n is a multiple of k. Construct a graph without (k + 1)-cliques, in
which the number of edges achieves the upper bound (??) given by Turán’s theorem. Hint: Split
the n vertices into k equal size parts and join all pairs of vertices from different parts (this is a complete
k-partite graph).

Ex 4.8. Recall that the independence number α(G) of a graph G is the maximum number of
pairwise nonadjacent vertices of G. Prove the following dual version of Turán’s theorem: if G is a
graph with n vertices and nk/2 edges, k ≥ 1, then α(G) ≥ n/(k + 1).

Ex 4.9. (Motzkin–Straus 1965). Prove Turán’s theorem using the shifting argument described
in the fourth proof of Mantel’s theorem. Hint: Let G be a graph with n vertices and m edges, and
suppose that G has no (k + 1)-clique. Assign weights wx to the vertices as before. Setting wx = 1/n for
all vertices, we obtain S ≥ m/n2. On the other hand, the same shifting argument yields that the weight
is concentrated on some clique U with |U | = t ≤ k vertices. Setting wx = 1/t for x ∈ U , and wx = 0
otherwise, the total weight becomes

(
t
2

)
/t2 = (1 − 1/t)/2. Since this expression is increasing in t, the best

we can do is to set t = k.

Ex 4.10. Derive the Erdős–Szekeres theorem from Lemma ??. Hint: Given a sequence A =
(a1, . . . , an) of n ≥ rs + 1 real numbers, define a partial order 4 on A by ai 4 aj if ai ≤ aj and i ≤ j,
and apply Dilworth’s lemma.

Ex 4.11. Let n2 + 1 points be given in R2. Prove that there is a sequence of n + 1 points
(x1, y1), . . . , (xn+1, yn+1) for which x1 ≤ x2 ≤ · · · ≤ xn+1 and y1 ≥ y2 ≥ · · · ≥ yn+1, or a sequence
of n + 1 points for which x1 ≤ x2 ≤ · · · ≤ xn+1 and y1 ≤ y2 ≤ · · · ≤ yn+1.

Ex 4.12. Show that, if n > srp, then any sequence of n real numbers must contain either
a strictly increasing subsequence of length greater than s, a strictly decreasing subsequence of
length greater than r, or a constant subsequence of length greater than p. Hint: By the pigeonhole
principle, if only sr or fewer distinct values occur, then some value must be taken by more than p numbers
in the sequence. Otherwise, we can argue as in the Erdős–Szekeres theorem.

Ex 4.13. Let 0 < a1 < a2 < · · · < asr+1 be sr + 1 integers. Prove that we can select either
s + 1 of them, no one of which divides any other, or r + 1 of them, each dividing the following one.
Hint: Apply Dilworth’s lemma.
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Ex 4.14. Show that the bound in the Erdős–Szekeres’ theorem is best possible. Hint: Consider
the sequence A = (Bs−1, Bs−2, . . . , B0), where

Bi = (ir + 1, ir + 2, . . . , ir + r).

Ex 4.15. Use the pigeonhole principle to prove the following fact, known as Chinese remainder
theorem. Let a1, . . . , ak, b be integers, and m = m1 · · · mk where mi and mj are relatively prime,
for all i 6= j. Then there exists exactly one integer a, b ≤ a < b + m, such that a ≡ ai mod mi

for all i = 1, . . . , k. Hint: The integers x ∈ {b, b + 1, . . . b + m − 1} are different modulo m; hence their
residues (x mod m1, . . . , x mod mk) run through all m possible values.

Ex 4.16. (Moon–Moser 1962). Let G = (V, E) be a graph on n vertices and t(G) the number
of triangles in it. Show that

t(G) ≥ |E|
3n

(
4 · |E| − n2) .

Hint: For an edge e = {x, y}, let t(e) be the number of triangles containing e. Let B = V \ {x, y}. Among
the vertices in B there are precisely t(e) vertices which are adjacent to both x and y. Every other vertex
in B is adjacent to at most one of these two vertices. We thus obtain d(x) + d(y) − t(e) ≤ n. Summing
over all edges e = {x, y} we obtain

∑

e∈E

(d(x) + d(y)) −
∑

e∈E

t(e) ≤ n · |E|.

Apply the Cauchy–Schwarz inequality to estimate the first sum.

Comment: This implies that a graph G on an even number n of vertices with |E| = n2/4 + 1 edges not
only contains one triangle (as it must be by Mantel’s theorem), but more than n/3.

Ex 4.17. (Goodman 1959). Let G be a graph with n vertices and m edges. Let t(G) denote
the number of triangles contained in the graph G or in its complement. Prove that

t(G) ≥
(

n

3

)
+

2m2

n
− m(n − 1).

Hint: Let ti be the number of triples of vertices {i, j, k} such that the vertex i is adjacent to precisely one
of j or k. Observe that t(G) ≥

(
n
3

)
− 1

2

∑
i
ti and that ti = di(n − 1 − di), where di is the degree of the

vertex i in G. Use the Cauchy–Schwarz inequality (??) and Euler’s theorem (Theorem ??) to show that∑
d2

i ≥ 1
n

(∑
di

)2
= 4m2

n
.

Ex 4.18. A set S ⊆ V of vertices in a graph G = (V, E) spans an edge e ∈ E if both endpoints
of e belong to S. Say that a graph is (k, r)-sparse if every subset of k vertices spans at most r of
its edges. Turán’s theorem (Theorem ??) gives an upper bound on the maximal possible number

of edges in a (k, r)-sparse graph for r =
(

k
2

)
− 1. Show that every (k, r)-sparse graph on n vertices

has at most α ·
(

n
2

)
edges, where α = r ·

(
k
2

)−1
. Hint: Observe that every edge is spanned by precisely(

n−2
k−2

)
of k-element subsets and use Exercise ??.

Ex 4.19. Color all non-empty subsets (not the points!) of [n] = {1, . . . , n} with r colors. Prove
that, if n is large enough, then there are two disjoint non-empty subsets A, B such that A, B and
A ∪ B have the same color. Hint: Take n = Rr(2; 3). Assume the non-empty subsets of [n] are colored
with r colors. Now color each pair {i, j} (1 ≤ i < j ≤ n) by the color of the interval {i, i + 1, . . . , j − 1}.
By Theorem ??, there exists a monochromatic triangle x < y < z. Take A = {x, x + 1, . . . , y − 1} and
B = {y, y + 1, . . . , z − 1}.

Ex 4.20. Show that for every r ≥ 2 there exists a constant c = c(r) such that, if n is large
enough, then for every r-coloring of the points 1, . . . , n, at least c · n2 of the pairs {i, j} of points
will receive the same color. Hint: By the pigeonhole principle, every (r + 1)-subset of points contributes
at least one monochromatic pair, and every pair is contained only in

(
n−2
r−1

)
of such subsets.

Ex 4.21. Prove that R(3, 4) ≤ 9. Hint: Color the edges of K9 in red and blue, and assume that
there are no red triangles and no blue 4-cliques. Then each vertex is incident to precisely three red edges
and five blue edges. Thus, there are exactly (9 · 3)/2 many red edges. But this should be an integer!
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Ex 4.22. Derive the following weaker version of Schur’s theorem (Theorem ??) from Ramsey’s
theorem (Theorem ??): For any r ≥ 2 there is n > 3 such that for any r-coloring of {1, 2, . . . , n},
there are three integers of the same color and such that x + y = z. Hint: Choose n = Rr(2; 3).
Given a coloring χ : [n] → [r] of the points in [n], consider the coloring χ′ of the pairs defined by:
χ′({x, y}) = χ(|x − y|) What does it means to have a χ′-monochromatic triangle with vertices x < y < z?

Ex 4.23. Use the previous exercise to show that R(4, 4) ≤ 18. Hint: (??).

The next exercises are about the chromatic number χ(G) of graphs. Recall that this is the
smallest number of colors we need in order to color the vertices of G in such a way that no two
adjacent vertices receive the same color.

Ex 4.24. Show that any graph G must have at least
(

χ(G)
2

)
edges.

Ex 4.25. Let G1, G2 be two graphs. Prove that χ(G1 ∪ G2) ≤ χ(G1) · χ(G2). Hint: Use pairs
of colors to color G1 ∪ G2.

Ex 4.26. Let G be a graph on n vertices. A complement G of a graph G is a graph on the
same set of vertices in which two vertices are adjacent if and only if they are non-adjacent in G.
Prove that χ(G) · χ(G) ≥ n and χ(G) + χ(G) ≥ 2

√
n. Hint: (χ(G) − χ(G))2 ≥ 0.

Ex 4.27. Prove that χ(G) ≤ ∆(G) + 1, where ∆(G) is the maximum degree of a vertex in G.
Hint: Order the vertices v1, . . . , vn and use greedy coloring: assign to vi the smallest-indexed color not
already used on its lower-indexed neighbors.

Ex 4.28. (Welsh–Powell 1967). Let G be a graph on n vertices, whose degrees are d1 ≥ d2 ≥
. . . ≥ dn. Prove that χ(G) ≤ 1 + maxi min{di, i − 1}. Hint: Apply the greedy algorithm from the
previous exercise. When we color the i-th vertex, at most min{di, i−1} of its neighbors have already been
colored, so its color is at most 1 + min{di, i − 1}.

Ex 4.29. Let G = (V, E) be a graph and S ⊆ V a subset of its vertices. The induced subgraph
of G is the graph G[S] on vertices S, in which two vertices are adjacent if and only if they are
such in the original graph G. Prove that for any graph G we can find a partition V = S ∪ T of its
vertices into two disjoint non-empty subsets S and T such that χ(G[S]) + χ(G[T ]) = χ(G).

Ex 4.30. A graph G is k-critical if χ(G) = k but χ(H) < k for every proper subgraph H of
G. Let δ(G) denote the minimum degree of a vertex in G. Prove the following: if G is a k-critical
graph, then δ(G) ≥ k − 1. Hint: Assume there is a vertex x ∈ V of degree at most k − 2, and consider
the induced subgraph H = G[V \ {x}]. Graph H must have a legal (k − 1)-coloring, and at least one of
these k − 1 colors is not used to color the neighbors of x; we can use it for x.

Ex 4.31. (Szekeres–Wilf 1968). Prove that χ(G) ≤ 1 + maxH⊆G δ(H) holds for any graph G.
Hint: Let k = χ(G), take a k-critical subgraph H of G and use the previous estimate.

Ex 4.32. Let G be a directed graph without cycles and suppose that G has no path of length
k. Prove that then χ(G) ≤ k. Hint: Let c(x) denote the maximum length of a path starting from x.
Then c is a coloration with colors 0, 1, . . . , k − 1. Show that it is legal.

Ex 4.33. Let G be a graph on n vertices, and α(G) be its independence number, i.e., the
maximal number of vertices, no two of which are joined by an edge. Show that n/α(G) ≤ χ(G) ≤
n − α(G) + 1.

Ex 4.34. It is clear that χ(G) ≥ ω(G), where ω(G) is the clique number of G, i.e., the
maximum size of a clique in G. Erdős (1947) has proved that, for every large enough n, there
exists an n-vertex graph G such that ω(G) ≤ 2 log2 n and ω(G) ≤ 2 log2 n (see Theorem ?? for
a proof). Use this result to show that the gap between χ(G) and ω(G) can be quite large: the
maximum of χ(G)/ω(G) over all n-vertex graphs G is Ω

(
n/(log2 n)2

)
. Hint: χ(G) ≥ n/ω(G).

Ex 4.35. Let G = (V, E) be a graph, and (Cv)v∈V be a sequence of (not necessarily disjoint)
sets. We can look at each set Cv as a color set (or a “palette”) for the vertex v. Given such a
list of color sets, we consider only colorings c such that c(v) ∈ Cv for all v ∈ V , and call them
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{1,2} {3,4}

{2,4}{2,3}{1,4}{1,3}

{1,2} {1,3} {2,3}

{2,3}{1,3}{1,2}

Figure 5. The graphs K2,4 and K3,3 with a particular lists of color sets

list colorings of G. As before, a coloring is legal if no two adjacent vertices receive the same color.
The list chromatic number χℓ(G) is the smallest number k such that for any list of color sets Cv

with |Cv| = k for all v ∈ V , there always exists a legal list coloring of G. Of course, χℓ(G) ≤ |V |.
Show that χ(G) ≤ χℓ(G) ≤ ∆(G) + 1.

Ex 4.36. Let K2,4 be a complete bipartite graph with parts of size 2 and 4 (see Fig. ??).
Show that χ(K2,4) = 2 but χℓ(K2,4) = 3. What is χℓ(K3,3)? Hint: Use the list of color sets given in
Fig ??.

Ex 4.37. Generalize the above construction for K3,3 to find graphs G where χ(G) = 2, but
χℓ(G) is arbitrarily large. For this, consider the complete bipartite graph G = V1 ×V2 whose parts
V1 and V2 consist of all k-subsets v of {1, . . . , 2k − 1}. Define the pallete Cv of a vertex (k-subset)
v to be the subset v itself. Show that χℓ(G) > k. Hint: Observe that we need at least k colors to
color V1 and at least k colors to color V2.

Ex 4.38. Let Sn be a graph which has vertex set the n2 entries of an n × n matrix with
two entries adjacent if and only if they are in the same row or in the same column. Show that
χℓ(Sn) ≥ n. Hint: Any legal coloring of Sn corresponds to Latin square.

Comment: The problem, whether χℓ(Sn) = n, was raised by Jeff Dinitz in 1978. Janssen
(1992) has proved that χℓ(Sn) ≤ n + 1, and the final solution χℓ(Sn) = n was found by
Galvin (1995).



CHAPTER 5

Systems of Distinct Representatives

A system of distinct representatives for a sequence of (not necessarily distinct) sets S1, S2, . . . , Sm

is a sequence of distinct elements x1, x2, . . . , xm such that xi ∈ Si for all i = 1, 2, . . . , m.
When does such a system exist? This problem is called the “marriage problem” because an

easy reformulation of it asks whether we can marry each of m girls to a boy she knows; boys are
the elements and Si is the set of boys known to the i-th girl.

Clearly, if the sets S1, S2, . . . , Sm have a system of distinct representatives then the following
Hall’s Condition is fulfilled:

(∗) for every k = 1, 2, . . . , m the union of any k sets has at least k elements:
∣∣∣∣
⋃

i∈I

Si

∣∣∣∣ ≥ |I| for all I ⊆ {1, . . . , m}.

Surprisingly, this obvious necessary condition is also sufficient.

1. The marriage theorem

The following fundamental result is known as Hall’s marriage theorem (Hall 1935), though an
equivalent form of it was discovered earlier by König (1931) and Egerváry (1931), and the result is
also a special case of Menger’s theorem (1927). The case when we have the same number of girls
as boys was proved by Frobenius (1917).

Theorem 5.1 (Hall’s Theorem). The sets S1, S2, . . . , Sm have a system of distinct repre-
sentatives if and only if (∗) holds.

Proof. We prove the sufficiency of Hall’s condition (∗) by induction on m. The case m = 1
is clear. Assume that the claim holds for any collection with less than m sets.

Case 1: For each k, 1 ≤ k < m, the union of any k sets contains more than k elements.
Take any of the sets, and choose any of its elements x as its representative, and remove x from

all the other sets. The union of any s ≤ m − 1 of the remaining m − 1 sets has at least s elements,
and therefore the remaining sets have a system of distinct representatives, which together with x
give a system of distinct representatives for the original family.

Case 2: The union of some k, 1 ≤ k < m, sets contains exactly k elements.
By the induction hypothesis, these k sets have a system of distinct representatives. Remove

these k elements from the remaining m − k sets. Take any s of these sets. Their union contains at
least s elements, since otherwise the union of these s sets and the k sets would have less than s+k
elements. Consequently, the remaining m − k sets also have a system of distinct representatives
by the induction hypothesis. Together these two systems of distinct representatives give a system
of distinct representatives for the original family. �

In general, Hall’s condition (∗) is hard to verify: we must check if the union of any k, 1 ≤
k ≤ m, of the sets S1, . . . , Sm contains at least k elements. But if we know more about these sets,
then (sometimes) the situation is much better. Here is an example.

Corollary 5.2. Let S1, . . . , Sm be r-element subsets of an n-element set such that each
element belongs to the same number d of these sets. If m ≤ n, then the sets S1, . . . , Sm have a
system of distinct representatives.

53
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1

3

5 2 4 ?

Figure 1. A partial 2 × 5 Latin square that cannot be completed

Proof. By the double counting argument (??), mr = nd, and hence, m ≤ n implies that
d ≤ r. Now suppose that S1, . . . , Sm does not have a system of distinct representatives. By Hall’s
theorem, the union Y = Si1

∪ · · · ∪ Sik
of some k (1 ≤ k ≤ m) sets contains strictly less than k

elements. For x ∈ Y , let dx be the number of these sets containing x. Then, again, using (??), we
obtain

rk =

k∑

j=1

|Sij
| =

∑

x∈Y

dx ≤ d|Y | < dk,

a contradiction with d ≤ r. �

Hall’s theorem was generalized in different ways. Suppose, for example, that each of the
elements of the underlying set is colored either in red or in blue. Interpret red points as “bad”
points. Given a system of subsets of this (colored) set, we would like to come up with a system of
distinct representatives which has as few bad elements as possible.

Theorem 5.3 (Chvátal–Szemerédi 1988). The sets S1, . . . , Sm have a system of distinct rep-
resentatives with at most t red elements if and only if they have a system of distinct representatives
and for every k = 1, 2, . . . , m the union of any k sets has at least k − t blue elements.

Proof. The “only if” part is obvious. To prove the “if” part, let R be the set of red elements.
We may assume that |R| > t (otherwise the conclusion is trivial). Now enlarge S1, . . . , Sm to
S1, . . . , Sm, Sm+1, . . . , Sm+r by adding r = |R| − t copies of the set R. Observe that the sequence
S1, . . . , Sm has a system of distinct representatives with at most t red elements if and only if the
extended sequence has a system of distinct representatives (without any restriction). Hence, Hall’s
theorem reduces our task to proving that the extended sequence fulfills Hall’s condition (∗), i.e.,
that for any set of indices I ⊆ {1, . . . , m+r}, the union Y =

⋃
i∈I Si contains at least |I| elements.

Let J = I ∩ {1, . . . , m}. If J = I then, by the first assumption, the sets Si (i ∈ I) have a system
of distinct representatives, and hence, |Y | ≥ |I|. Otherwise, by the second assumption,

|Y | =

∣∣∣∣
⋃

i∈J

(Si \ R)

∣∣∣∣+ |R| ≥ (|J | − t) + |R|

= |J | + (|R| − t) ≥ |J | + |I \ J | = |I|;
hence (∗) holds again. �

2. Two applications

In this section we present two applications of Hall’s theorem to prove results whose statement
does not seem to be related at all to set systems and their representatives.

2.1. Latin rectangles. An r ×n Latin rectangle is an r ×n matrix with entries in {1, . . . , n}
such that each of the numbers 1, 2, . . . , n occurs once in each row and at most once in each column.
A Latin square is a Latin r×n-rectangle with r = n. This is one of the oldest combinatorial objects,
whose study goes back to ancient times.

Suppose somebody gives us an n×n matrix, some of whose entries are filled with the numbers
from {1, . . . , n} so that no number occurs more than once in a row or column. Our goal is to fill
the remaining entries so that to get a Latin square. When is this possible? Of course, the fewer
entries are filled, the more chances we have to complete the matrix. Fig. ?? shows that, in general,
it is possible to fill n entries so that the resulting partial matrix cannot be completed.
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In 1960, Trevor Evans raised the following question: if fewer than n entries in an n × n
matrix are filled, can one then always complete it to obtain a Latin square? The assertion that a
completion is always possible became known as the Evans conjecture, and was proved by Smetaniuk
(1981) using a quite subtle induction argument.

On the other hand, it was long known that if a partial Latin square has no partially filled rows
(that is, each row is either completely filled or completely free) then it can always be completed.
That is, we can build Latin squares by adding rows one-by-one. And this can be easily derived
from Hall’s theorem.

Theorem 5.4 (Ryser 1951). If r < n, then any given r × n Latin rectangle can be extended
to an (r + 1) × n Latin rectangle.

Proof. Let R be an r × n Latin rectangle. For j = 1, . . . , n, define Sj to be the set of those
integers 1, 2, . . . , n which do not occur in the j-th column of R. It is sufficient to prove that
the sets S1, . . . , Sn have a system of distinct representatives. But this follows immediately from
Corollary ??, because: every set Sj has precisely n − r elements, and each element belongs to
precisely n − r sets Sj (since it appears in precisely r columns of the rectangle R). �

2.2. Decomposition of doubly stochastic matrices. Using Hall’s theorem we can obtain
a basic result of polyhedral combinatorics, due to Birkhoff (1949) and von Neumann (1953).

An n×n matrix A = {aij} with real non-negative entries aij ≥ 0 is doubly stochastic if the sum
of entries along any row and any column equals 1. A permutation matrix is a doubly stochastic
matrix with entries 0 and 1; such a matrix has exactly one 1 in each row and in each column.
Doubly stochastic matrices arise in the theory of Markov chains: aij is the transition probability
from the state i to the state j. A matrix A is a convex combination of matrices A1, . . . , As if there
exist non-negative reals λ1, . . . , λs such that A =

∑s
i=1 λiAi and

∑s
i=1 λi = 1.

Birkhoff–Von Neumann Theorem. Every doubly stochastic matrix is a convex combina-
tion of permutation matrices.

Proof. We will prove a more general result that every n × n non-negative matrix A = (aij)
having all row and column sums equal to some positive value γ > 0 can be expressed as a linear
combination A =

∑s
i=1 λiPi of permutation matrices P1, . . . , Ps, where λ1, . . . , λs are non-negative

reals such that
∑s

i=1 λi = γ.
To prove this, we apply induction on the number of non-zero entries in A. Since γ > 0, we have

at least n such entries. If there are exactly n non-zero entries then A = γP for some permutation
matrix P , and we are done. Now suppose that A has more than n non-zero entries and that the
result holds for matrices with a smaller number of such entries. Define

Si = {j : aij > 0}, i = 1, 2, . . . , n,

and observe that the sets S1, . . . , Sn fulfill Hall’s condition. Indeed, if the union of some k (1 ≤ k ≤
n) of these sets contained less than k elements, then all the non-zero entries of the corresponding
k rows of A would occupy no more than k −1 columns; hence, the sum of these entries by columns
would be at most (k − 1)γ, whereas the sum by rows is kγ, a contradiction.

By Hall’s theorem, there is a system of distinct representatives

j1 ∈ S1, . . . , jn ∈ Sn.

Take the permutation matrix P1 = {pij} with entries pij = 1 if and only if j = ji. Let λ1 =
min{a1j1

, . . . , anjn
}, and consider the matrix A1 = A − λ1P1. By the definition of the sets Si,

λ1 > 0. So, this new matrix A1 has less non-zero entries than A. Moreover, the matrix A1 satisfies
the condition of the theorem with γ1 = γ − λ1. We can therefore apply the induction hypothesis
to A1, which yields a decomposition A1 = λ2P2 + · · · + λsPs, and hence, A = λ1P1 + A1 =
λ1P1 + λ2P2 + · · · + λsPs, as desired. �
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3. Min–max theorems

The early results of Frobenius and König have given rise to a large number of min-max
theorems in combinatorics, in which the minimum of one quantity equals the maximum of another.
Celebrated among these are:

• Menger’s theorem (Menger 1927): the minimum number of vertices separating two given
vertices in a graph is equal to the maximum number of vertex-disjoint paths between
them;

• König–Egerváry’s min-max theorem (König 1931, Egerváry 1931): the size of a largest
matching in a bipartite graph is equal to the smallest set of vertices which together touch
every edge;

• Dilworth’s theorem for partially ordered sets (Dilworth 1950): the minimum number of
chains (totally ordered sets) which cover a partially ordered set is equal to the maximum
size of an antichain (set of incomparable elements).

Here we present the proof of König–Egerváry’s theorem (stated not for bipartite graphs but for
their adjacency matrices); the proof of Dilworth’s theorem is given in Sect. ??.

By Hall’s theorem, we know whether each of the girls can be married to a boy she knows. If so,
all are happy (except for the boys not chosen ...). But what if not? In this sad situation it would
be nice to make as many happy marriages as possible. So, given a sequence of sets S1, S2, . . . , Sm,
we try to find a system of distinct representatives for as many of these sets as possible. In terms
of 0-1 matrices this problem is solved by the following result.

Let A be an m × n matrix, all whose entries have value 0 or 1. Two 1s are dependent if they
are on the same row or on the same column; otherwise, they are independent. The size of the
largest set of independent 1s is also known as the term rank of A.

Theorem 5.5 (König 1931, Egerváry 1931). Let A be an m × n 0-1 matrix. The maximum
number of independent 1s is equal to the minimum number of rows and columns required to cover
all the 1s in A.

Proof. Let r denote the maximum number of independent 1s and R the minimum number of
rows and columns required to cover all the 1s. Clearly, R ≥ r, because we can find r independent
1s in A, and any row or column covers at most one of them.

We need to prove that r ≥ R. Assume that some a rows and b columns cover all the 1s and
a + b = R. Because permuting the rows and columns changes neither r nor R, we may assume
that the first a rows and the first b columns cover the 1s. Write A in the form

A =

(
Ba×b Ca×(n−b)

D(m−a)×b E(m−a)×(n−b)

)
.

We know that there are no 1s in E. We will show that there are a independent 1s in C. The same
argument shows – by symmetry – that there are b independent 1s in D. Since altogether these
a + b 1s are independent, this shows that r ≥ a + b = R, as desired.

We use Hall’s theorem. Define

Si = {j : cij = 1} ⊆ {1, 2, . . . , n − b},

as the set of locations of the 1s in the i-th row of C = (cij). We claim that the sequence
S1, S2, . . . , Sa has a system of distinct representatives, i.e., we can choose a 1 from each row, no
two in the same column. Otherwise, Hall’s theorem tells us that the 1s in some k (1 ≤ k ≤ a) of
these rows can all be covered by less than k columns. But then we obtain a covering of all the 1s
in A with fewer than a + b rows and columns, a contradiction. �

4. Matchings in bipartite graphs

Let G be a bipartite graph with bipartition A, B. Two edges are disjoint if they have no vertex
in common. A matching in G is a set of pairwise disjoint edges. The vertices belonging to the
edges of a matching are matched, others are free. We may ask whether G has a matching which
matches all the vertices from A; we call this a matching of A into B. A perfect matching is a
matching of A into B in the case when |A| = |B|.
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M M’

P

Figure 2. Enlarging the matching M by the M -augmenting path P

The answer is given by Hall’s theorem. A vertex x ∈ A is a neighbor of a vertex y ∈ B in
the graph G if (x, y) ∈ E. Let Sx be the set of all neighbors of x in G. Observing that there is a
matching of A into B if and only if the sets Sx with x ∈ A have a system of distinct representatives,
Hall’s theorem immediately yields the following:

Theorem 5.6. If G is a bipartite graph with bipartition A, B, then G has a matching of A
into B if and only if, for every k = 1, 2, . . . , |A|, every subset of k vertices from A has at least k
neighbors.

To illustrate this form of Hall’s theorem, we prove the following (simple but non-trivial!) fact.

Proposition 5.7. Let X be an n-element set. For any k ≤ (n − 1)/2 it is possible to extend
every k-element subset of X to a (k + 1)-element subset (by adding some element to that set) so
that the extensions of no two sets coincide.

Proof. Consider the bipartite graph G = (A, B, E), where A consists of all k-element subsets,
B consists of all (k + 1)-element subsets of X and (x, y) ∈ E if and only if x ⊂ y. What we need
is to prove that this graph has a matching of A into B. Is the condition of Theorem ?? satisfied?
Certainly, since for I ⊆ A, every vertex of I is joined to n − k vertices in B and every vertex of
B is joined to at most k + 1 vertices in I. So, if S(I) is the union of all neighbors of the vertices
from I, and E′ = E ∩ (I × B) is the set of edges in the corresponding subgraph, then

|I|(n − k) = |E′| ≤ |S(I)|(k + 1).

Thus,

|S(I)| ≥ |I|(n − k)/(k + 1) ≥ |I|
for every I ⊆ A, and Theorem ?? gives the desired matching of A into B. �

In terms of (bipartite) graphs, the König–Egerváry theorem is as follows. A vertex cover in
a bipartite graph G with bipartition A, B is a set of vertices S ⊆ A ∪ B such that every edge is
incident to at least one vertex from S. A maximum matching is a matching of maximum size.

Theorem 5.8. The maximum size of a matching in a bipartite graph equals the minimum size
of a vertex cover.

How can we find such a matching of maximal size? To obtain a large matching, we could
iteratively select an edge disjoint from those previously selected. This yields a matching which is
“maximal” in a sense that no more edges can be added to it. But this matching does not need to
be a maximum matching: some other matching may have more edges. A better idea is to jump
between different matchings so that the new matching will always have one edge more, until we
exhaust the “quota” of possible edges, i.e., until we reach the maximal possible number of edges
in a matching. This idea employs the notion of “augmenting paths.”

Assume that M is a (not necessarily maximum) matching in a given graph G. The edges of
M are called matched and other edges are called free. Similarly, vertices which are endpoints of
edges in M are called matched (in M); all other vertices are called free (in M). An augmenting
path with respect to M (or M -augmenting path) is a path in G such that its edges are alternatively
matched and free, and the endpoints of the path are free.
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If P is an M -augmenting path, then M is certainly not a maximum size matching: the set M ′ of
all free edges along this path form a matching with one more edge (see Fig. ??). Thus, the presence
of an augmenting path implies that a matching is not a maximum matching. Interestingly (and
it is a key for the matching algorithm), the converse is also valid: the absence of an augmenting
path implies that the matching is, in fact, a maximum matching. This result was proved by Berge
(1957), and holds for arbitrary graphs.

Theorem 5.9 (Berge 1957). A matching M in a graph G is a maximum matching if and only
if G has no M -augmenting path.

Proof. We have noted that an M -augmenting path produces a larger matching. For the con-
verse, suppose that G has a matching M ′ larger than M ; we want to construct an M -augmenting
path. Consider the graph H = M ⊕ M ′, where ⊕ is the symmetric difference of sets. That is, H
consists of precisely those edges which appear in exactly one of the matchings M and M ′.

Since M and M ′ are matchings, every vertex has at most one incident edge in each of them.
This means that in H, every vertex has at most degree 2, and hence, the graph H consists of
disjoint paths and cycles. Furthermore, every path or cycle in H alternates between edges of M
and edges of M ′. This implies that each cycle in H has even length. As |M ′| > |M |, the graph H
must have a component with more edges of M ′ than of M . Such a component can only be a path
that starts and ends with an edge of M ′; it remains to observe that every such path in H is an
M -augmenting path in G. �

This theorem suggests the following algorithm to find a maximum matching in a graph G:
start with the empty matching M = ∅, and at each step search for an M -augmenting path in G.
In one step the matching is enlarged by one, and we can have at most ℓ such steps, where ℓ is the
size of a maximum matching. In general, the computation of augmenting paths is not a trivial
task, but for bipartite graphs it is quite easy.

Given a bipartite graph G = (A, B, E) and a matching M in it, construct a directed graph
GM by directing all matched edges from A to B and other edges from B to A. Let A0, B0 denote
the sets of free vertices in A and B, respectively.

Proposition 5.10. A bipartite graph G has an M -augmenting path if and only if there is a
directed path in GM from a vertex in B0 to a vertex in A0.

We leave the proof of this fact as an exercise.
Using this fact, one may easily design an augmenting path algorithm running in time O(n2),

where n is the total number of vertices. (One can apply, for example, the “depth-first search”
algorithm to find a path from B0 to A0.) We need to find an augmenting path at most n/2 times,
hence, the complexity of this matching algorithm is O(n3). Using a trickier augmenting path
algorithm, Hopcroft and Karp (1973) have found a faster algorithm using time O(n5/2).

Exercises

Ex 5.1. Let S1, . . . , Sm be a sequence of sets such that: (i) each set contains at least r elements
(where r > 0) and (ii) no element is in more than r of the sets. Show that these sets have a system
of distinct representatives. Hint: See the proof of Corollary ??.

Ex 5.2. Show that in a group of m girls and n boys there exist some t girls for whom husbands
can be found if and only if any subset of the girls (k of them, say) between them know at least
k + t − m of the boys. Hint: Invite additional m − t “very popular” boys who are known to all the girls.
Show that at least t girls can find husbands in the original situation if and only if all the girls can find
husbands in the new situation. Then apply Hall’s theorem to the new situation.

Ex 5.3. Show that any bipartite graph with maximum degree d is a union of d matchings.
Hint: Argue by induction on d and use Theorem ?? in the induction step.

Ex 5.4. Let S1, . . . , Sm be a sequence of sets satisfying Hall’s condition (∗). Suppose that for
some 1 ≤ k < m, the union S1 ∪ · · · ∪ Sk of the first k sets has precisely k elements. Show that
none of the remaining sets Sk+1, . . . , Sm can lie entirely in this union.
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Ex 5.5. In Theorem ?? we have shown that (as long as r < n) we can add a new row to every
r × n Latin rectangle such that the resulting (r + 1) × n matrix is still Latin. Prove that this can
be done in at least (n − r)! ways.

Ex 5.6. Let G be a bipartite graph with bipartition A, B. Let a be the minimum degree of a
vertex in A, and b the maximum degree of a vertex in B. Prove the following: if a ≥ b then there
exists a matching of A into B.

Ex 5.7. Let S1, . . . , Sm be a sequence of sets each of cardinality at least r, and assume that
it has a system of distinctive representatives. Prove that then it has at least

f(r, m) =

min{r,m}∏

i=1

(r + 1 − i)

systems of distinctive representatives. Hint: Follow the proof of Hall’s theorem. Case 1 gives at least
r · f(r − 1, m − 1) ≥ f(r, m) and Case 2 at least f(r, k) · f (max{r − k, 1}, m − k) = f(r, m) systems of
distinctive representatives.

Ex 5.8. Prove that every bipartite graph G with ℓ edges has a matching of size at least
ℓ/∆(G), where ∆(G) is the maximum degree of a vertex in G. Hint: Use Theorem ??.

Ex 5.9. Suppose that M, M ′ are matchings in a bipartite graph G with bipartition A, B.
Suppose that all the vertices of S ⊆ A are matched by M and that all the vertices of T ⊆ B are
matched by M ′. Prove that G contains a matching that matches all the vertices of S ∪ T .

Ex 5.10. (Lovász et al. 1995). Let F be a family of sets, each of size at least 2. Let A, B be
two sets such that |A| = |B|, both A and B intersect all the members of F , and no set of fewer
than |A| elements does this. Consider a bipartite graph G with parts A and B, where a ∈ A is
connected to b ∈ B if there is an F ∈ F containing both a and b. Show that this graph has a
perfect matching. Hint: For I ⊆ A, let S(I) ⊆ B be the set of neighbors of I in G; show that the set
A′ = (A \ I) ∪ S(I) intersects all the members of F .

Ex 5.11. (Sperner 1928). Let t < n/2 and let F be a family of subsets of an n-element set
X. Suppose that: (i) each member of F has size at most t, and (ii) F is an antichain, i.e., no
member of F is a subset of another one. Let Ft be the family of all those t-element subsets of X,
which contain at least one member of F . Prove that then |F| ≤ |Ft|. Hint: Use Proposition ?? to
extend each member of F to a unique member in the family Ft.

Ex 5.12. Let A be a 0-1 matrix with m 1s. Let s be the maximal number of 1s in a row or
column of A, and suppose that A has no square r × r all-1 sub-matrix. Use the König–Egerváry
theorem to show that we then need at least m/(sr) all-1 (not necessarily square) sub-matrices to
cover all 1s in A. Hint: There are at least m/s independent 1s, and at most r of them can be covered
by one all-1 sub-matrix.





Part 2

Extremal Set Theory





CHAPTER 6

Sunflowers

One of most beautiful results in extremal set theory is the so-called Sunflower Lemma discov-
ered by Erdős and Rado (1960) asserting that in a sufficiently large uniform family, some highly
regular configurations, called “sunflowers,” must occur, regardless of the size of the universe. In
this chapter we will consider this result as well as some of its modifications and applications.

1. The sunflower lemma

A sunflower (or ∆-system) with k petals and a core Y is a collection of sets S1, . . . , Sk such
that Si ∩ Sj = Y for all i 6= j; the sets Si \ Y are petals, and we require that none of them is
empty. Note that a family of pairwise disjoint sets is a sunflower (with an empty core).

Sunflower Lemma. Let F be family of sets each of cardinality s.
If |F| > s!(k − 1)s then F contains a sunflower with k petals.

Proof. We proceed by induction on s. For s = 1, we have more than k − 1 points (disjoint
1-element sets), so any k of them form a sunflower with k petals (and an empty core). Now let
s ≥ 2, and take a maximal family A = {A1, . . . , At} of pairwise disjoint members of F .

If t ≥ k, these sets form a sunflower with t ≥ k petals (and empty core), and we are done.
Assume that t ≤ k − 1, and let B = A1 ∪ · · · ∪ At. Then |B| ≤ s(k − 1). By the maximality of

A, the set B intersects every member of F . By the pigeonhole principle, some point x ∈ B must
be contained in at least

|F|
|B| >

s!(k − 1)s

s(k − 1)
= (s − 1)!(k − 1)s−1

members of F . Let us delete x from these sets and consider the family

Fx := {S \ {x} : S ∈ F , x ∈ S}.

By the induction hypothesis, this family contains a sunflower with k petals. Adding x to the
members of this sunflower, we get the desired sunflower in the original family F . �

It is not known if the bound s!(k −1)s is the best possible. Let f(s, k) denote the least integer
so that any s-uniform family of f(s, k) sets contains a sunflower with k petals. Then

(39) (k − 1)s < f(s, k) ≤ s!(k − 1)s + 1.

The upper bound is the sunflower lemma, the lower bound is Exercise ??. The gap between the
upper and lower bound for f(s, k) is still huge (by a factor of s!).

Y

Figure 1. A sunflower with 8 petals

63
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Conjecture 6.1 (Erdős and Rado). For every fixed k there is a constant C = C(k) such that
f(s, k) < Cs.

The conjecture remains open even for k = 3 (note that in this case the sunflower lemma
requires at least s!2s ≈ ss sets). Several authors have slightly improved the bounds in (??). In
particular, J. Spencer has proved

f(s, 3) ≤ ec
√

ss!.

For s fixed and k sufficiently large, Kostochka et al. (1999) have proved

f(s, k) ≤ ks
(

1 + ck−2−s
)

,

where c is a constant depending only on s.
But the proof or disproof of the conjecture is nowhere in sight.
A family F = {S1, . . . , Sm} is called a weak ∆-system if there is some λ such that |Si ∩Sj | = λ

whenever i 6= j. Of course, not every such system is a sunflower: in a weak ∆-system it is enough
that all the cardinalities of mutual intersections coincide whereas in a sunflower we require that
these intersections all have the same elements. However, the following interesting result due to
M. Deza states that if a weak ∆-system has many members then it is, in fact, “strong,” i.e., forms
a sunflower. We state this result without proof.

Theorem 6.2 (Deza 1973). Let F be an s-uniform weak ∆-system. If |F| ≥ s2 − s + 2 then
F is a sunflower.

The family of lines in a projective plane of order s − 1 shows that this bound is optimal (see
Exercise ??).

A related problem is to estimate the maximal possible number F (n, k) of members in a family
F of subsets of an n-element set such that F does not contain a weak ∆-system with k members.
It is known that

20.01(n ln n)1/3 ≤ F (n, 3) ≤ 1.99n.

The upper bound was proved by Frankl and Rödl (1987), and the lower bound by Kostochka and
R"odl (1998).

2. Modifications

Due to its importance, the sunflower lemma was modified in various directions. If S1, . . . , Sk

form a sunflower with a core Y , then we have two nice properties:

(a): the core Y lies entirely in all the sets S1, . . . , Sk;
(b): the sets S1 \ Y, . . . , Sk \ Y are mutually disjoint.

It is therefore natural to look at what happens if we relax any of these two conditions.

2.1. Relaxed core. We can relax property (a) and require that only the differences Si \ Y
be non-empty and mutually disjoint for some set Y .

Given distinct finite sets S1, . . . , Sk, their common part is the set

Y :=
⋃

i6=j

(Si ∩ Sj) .

Note that, if |Y | < mini |Si| then all the sets S1 \Y, . . . , Sk \Y are nonempty and mutually disjoint.

Lemma 6.3 (Füredi 1980). Let F be a finite family of sets, and s = maxS∈F |S|. If |F| >
(k − 1)s then the common part of some k of its members has fewer than s elements.

Proof. We prove a contraposition of this claim: If the common part of every k members of F
has at least s = maxS∈F |S| elements, then |F| ≤ (k − 1)s. The cases k = 2 and s = 1 are trivial.
Apply induction on k. Once k is fixed, apply induction on s. Let S0 be an arbitrary member of
F of size s. We have

(40) |F| = 1 +
∑

X⊂S0

|{S ∈ F : S ∩ S0 = X}| .



3. APPLICATIONS 65

Fix now an arbitrary X ⊂ S0, and consider the family

FX := {S \ S0 : S ∈ F , S ∩ S0 = X} .

The maximum size of its member is s′ ≤ s−|X|. Moreover, the common part of any its k′ = k −1
members S1 \ S0, . . . , Sk−1 \ S0 is the common part of k members S0, S1, . . . , Sk−1 of F minus
X, and hence is at least s − |X| ≥ s′. We can therefore apply the induction hypothesis with
s′ ≤ s − |X|, k′ = k − 1 and deduce

(41) |FX | ≤ (k − 2)s−|X| .

Combining (??) and (??) we obtain

|F| ≤ 1 +
∑

X⊂S0

(k − 2)s−|X| ≤
s∑

i=0

(
s

i

)
(k − 2)s−i = (k − 1)s ,

as desired. �

2.2. Relaxed disjointness. What if we relax the disjointness property (b) of sunflowers,
and only require that the differences S1 \ Y, . . . , Sk \ Y cannot be intersected (blocked) by a set of
size smaller than some number t? In this case we say that sets S1, . . . , Sk form a “flower” with t
petals.

A blocking set of a family F is a set which intersects all the members of F ; the minimum
number of elements in a blocking set is the blocking number of F and is denoted by τ(F); if ∅ ∈ F
then we set τ(F) = 0. A restriction of a family F onto a set Y is the family

FY := {S \ Y : S ∈ F , S ⊇ Y } .

A flower with k petals and a core Y is a family F such that τ(FY ) ≥ k. Note that every sunflwover
is a flower with the same number of petals, but not every flower is a sunflower (give an example).

Håstad et al. (1995) observed that the proof of the sunflower lemma can be easily modified to
yield a similar result for flowers.

Lemma 6.4. Let F be a family of sets each of cardinality s, and k ≥ 1 and integer. If
|F| > (k − 1)s then F contains a flower with k petals.

Proof. Induction on s. The basis s = 1 is trivial since then F consists of at least k distinct
single-element sets. Now suppose that the lemma is true for s−1 and prove it for s. Take a family
F of sets each of cardinality s, and assume that |F| > (k − 1)s. If τ(F) ≥ k then the family F
itself is a flower with at least (k − 1)s + 1 ≥ k petals (and an empty core). Otherwise, some set of
size k − 1 intersects all the members of F , and hence, at least |F|/(k − 1) of the members must
contain some point x. The family

Fx := {S \ {x} : S ∈ F , x ∈ S}
has

|Fx| ≥ |F|
k − 1

> (k − 1)s−1

members, each of cardinality s − 1. By the induction hypothesis, the family Fx contains a flower
with k petals and some core Y , x 6∈ Y . Adding the element x back to the sets in this flower, we
obtain a flower in F with the same number of petals and the core Y ∪ {x}. �

3. Applications

The sunflower lemma and its modifications have many applications in complexity theory. In
particular, the combinatorial part of the celebrated lower bounds argument for monotone cir-
cuits, found by Razborov (1985), is based on this lemma and on its modification due to Füredi
(Lemma ??). Andreev (1987) has also used his modification (Exercise ??) to prove exponential
lower bounds for such circuits. In this section we will show how the last modification (Lemma ??)
can be used to obtain some information about the number of minterms and to prove lower bounds
for small depth non-monotone circuits.
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3.1. The number of minterms. Let x1, . . . , xn be boolean variables taking their values in
{0, 1}. A monomial is an And of literals, and a clause is an Or of literals, where a literal is either
a variable xi or its negation xi = xi ⊕ 1. Thus, we have 2s

(
n
s

)
monomials and that many clauses

of size s.
A 1-term of a boolean function f : {0, 1}n → {0, 1} is a monomial M such that M(a) ≤ f(a)

for all inputs a ∈ {0, 1}n. That is, if we set all literals of M to 1, then the function f is forced to
take value 1 independent on what values we assign to the remaining variables. Dually, a 0-term of
f is a clause C such that C(a) ≥ f(a) for all inputs a ∈ {0, 1}n. A minterm of f is a 1-term M

of f which is minimal in the sense that deleting every single literal from M already violates this
property.

A boolean function f is a t-And-Or (or a t-CNF) if it can be written as an And of an arbitrary
number of clauses, each of size at most t.

Lemma 6.5. Let f be a t-And-Or function on n variables. Then for every s = 1, . . . , n the
function f has at most ts minterms of size s.

Proof. Let f = C1 ∧ · · · ∧ Cm, where each clause Ci has size at most t. We interpret the
clauses as sets of their literals, and let C = {C1, . . . , Cm} be the corresponding family of these
sets. Let F be the family of all minterms of f that have size s (we look at minterms as sets of
their literals). Then every set in C intersects each set in F (see Exercise ??).

Suppose that |F| > ts. Then, by Lemma ??, F has a flower with t + 1 petals. That is, there
exists a set of literals Y such that no set of at most t literals can intersect all the members of the
family

FY = {M \ Y : M ∈ F , M ⊇ Y }.

The set Y is a proper part of at least one minterm of f , meaning that Y cannot intersect all the
clauses in C. Take a clause C ∈ C such that C ∩ Y = ∅. Since this clause intersects all the sets in
F , this means that it must intersect all the sets in FY . But this is impossible because C has size
at most t. �

3.2. Small depth formulas. An s-threshold function is a monotone boolean function T n
s

which accepts a 0-1 vector if and only if it has at least s ones. That is,

T n
s (x1, . . . , xn) = 1 if and only if x1 + · · · + xn ≥ s.

This function can be computed by the following formula:

T n
s (x1, . . . , xn) =

∨

I : |I|=s

∧

i∈I

xi.

This formula is monotone (has no negated literals) and has depth 2 (there are only two alternations
between And and Or operations). But the size of this formula (the number of literals in it) is
s
(

n
s

)
. Can T n

s be computed by a substantially smaller formula if we allow negated literals and/or
a larger depth?

Håstad (1986) proved that, for s = ⌊n/2⌋, each such formula computing T n
s must have size

exponential in n, even if we allow any constant depth, i.e., any constant number of alternations of
And’s and Or’s. Razborov (1987) has proved that the same holds even if we allow sum modulo 2
as an additional operation. Both these proofs employ non-trivial machinery: the switching lemma
and approximations of boolean functions by low-degree polynomials.

On the other hand, Håstad et al. (1995) have shown that, at least for depth-3, one can deduce
the same lower bound in an elementary way using the flower lemma (Lemma ??). In fact, their
proof holds for depth-3 circuits but, to demonstrate the idea, it is enough to show how it works
for special depth-3 formulas.

An Or-And-Or formula is a formula of the form

(42) F = F1 ∨ F2 ∨ · · · ∨ Ft,

where each Fi is an And-Or formula, that is, each Fi is an And of an arbitrary number of clauses,
each clause being an Or of literals (variables or their negations). We say that such a formula
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has bottom fan-in k if each of its clauses has at most k positive literals (the number of negated
variables may be arbitrary). The size of a formula is the total number of literals in it.

At this point, let us note that the condition on bottom fan-in is not crucial: if the size of F
is not too large then it is possible to set some small number of variables to constant 1 so that the
resulting formula will already satisfy this condition (see Exercise ??).

The idea of Håstad et al. (1995) is accumulated in the following lemma.

Lemma 6.6. Let F = F1 ∨ F2 ∨ · · · ∨ Ft be an Or-And-Or formula of bottom fan-in k. Suppose
that F rejects all vectors with fewer than s ones. Then F cannot accept more than tks vectors
with precisely s ones.

Note that this lemma immediately implies that every Or-And-Or formula of bottom fan-in k
computing the threshold function T n

s has size at least
(

n

s

)
k−s >

( n

ks

)s

.

Proof. Suppose that F accepts more than tks vectors with precisely s ones. Then some of
its And-Or subformulas Fi accepts more than ks of such vectors. Let A be this set of vectors with
s ones accepted by Fi; hence

|A| > ks.

The formula Fi has the form
Fi = C1 ∧ C2 ∧ · · · ∧ Cr,

where C1, . . . , Cr are clauses with at most k positive literals in each of them. Let B be the set
of all vectors with at most s − 1 ones. All these vectors must be rejected by Fi, since they are
rejected by the whole formula F . Our goal is to show that the set B contains a vector v on which
each of the clauses C1, . . . , Cr outputs the same value as on some vector from A; this will mean
that the formula Fi makes an error on this input – it is forced to accept v.

Say that a vector v is a k-limit for A if, for every subset S of k coordinates, there exists a
vector u ∈ A such that v ≤ u (vector comparision) and v coincides with u in all the coordinates
from S; that is, vi ≤ ui for all i and vi = ui for all i ∈ S.

Claim 6.7. There exists a vector v ∈ B which is a k-limit for A.

Proof of Claim ??. For a vector u ∈ {0, 1}n, let Eu be the corresponding subset of {1, . . . , n},
whose incidence vector is u, that is, Eu = {i : ui = 1}. Consider the family F = {Eu : u ∈ A}.
This family is s-uniform and has more than ks members. By Lemma ??, F has a flower with
k + 1 petals. That is, there exists a set Y such that no set of size at most k can intersect all the
members of the family FY = {E \ Y : E ∈ F , E ⊇ Y }. Let v be the incidence vector of Y . We
claim that v is a k-limit for A.

To show this, take an arbitrary subset S of {1, . . . , n} of size at most k. Then

(43) S ∩ (Eu \ Y ) = ∅
for at least one set Eu ∈ F such that Y ⊆ Eu. The last condition implies that v ≤ u, and hence, v
coincides with u on all coordinates from S \ Eu and from S ∩ Y . But, by (??), there are no other
coordinates in S, and hence, v coincides with u on all coordinates from S, as desired. �

Fix a vector v guaranteed by the claim. To get the desired contradiction we will show that the
formula Fi will be forced to (wrongly) accept this vector. Suppose the opposite that v is rejected
by Fi. Then C(v) = 0 for some clause C of Fi. This clause has a form

C =

( ∨

i∈S

xi

)
∨
( ∨

j∈T

xj

)

for some two disjoint sets of S, T such that |S| ≤ k. By Claim ??, there is a vector u in A such
that v ≤ u and v coincides with u on all the coordinates from S. The vector u must be accepted
by the formula Fi, and hence, by the clause C. This can happen only if this vector has a 1 in
some coordinate i ∈ S or has a 0 in some coordinate j ∈ T (or both). In the first case C(v) = 1
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because v coincides with u on S, and in the second case C(v) = 1 because, due to the condition
v ≤ u, vector v has 0s in all coordinates where vector u has them. Thus, in both cases, C(v) = 1,
a contradiction. �

Exercises

Ex 6.1. A projective plane of order s−1 is a family of n = s2 −s+1 s-element subsets (called
lines) of an n-element set of points such that each two lines intersect in precisely one point and
each point belongs to precisely s lines (cf. Sect. ??). Show that the equality in Deza’s theorem
(Theorem ??) is attained when a projective plane of order s − 1 exists.

Ex 6.2. Take s pairwise disjoint (k − 1)-element sets V1, . . . , Vs and consider the family

F = {S : |S| = s and |S ∩ Vi| = 1 for all i = 1, . . . , s}.

This family has (k − 1)s sets. Show that it has no sunflower with k petals.

Ex 6.3. Show that the bounds in Lemmas ??, and ?? are optimal. Hint: Consider the family
defined in the previous exercise.

Ex 6.4. A matching of size k in a graph is a set of its k pairwise disjoint edges (two edges
are disjoint if they have no vertex in common). A star of size k is a set of k edges incident to one
vertex. Argue as in the proof of the sunflower lemma to show that any set of more than 2(k − 1)2

edges either contains a matching of size k or a star of size k.

Ex 6.5. (Andreev 1987). Let F be a family of sets each of cardinality at most s, and suppose
that |F| > (k−1)s. Use the argument of Lemma ?? to prove that then there exist k sets S1, . . . , Sk

in F such that all the sets Si \ (S1 ∩ S2), i = 1, . . . , k are pairwise disjoint.

Ex 6.6. Let n−k+1 < s ≤ n and consider the family F of all s-element subsets of a n-element
set. Prove that F has no sunflower with k petals. Hint: Suppose the opposite and count the number
of elements used in such a sunflower.

Ex 6.7. Given a graph G = (V, E) and a number 2 ≤ s ≤ |V |, let Gs denote the graph whose
vertices are all s-element subsets of V , and two such subsets A and B are connected by an edge
if and only if there is an edge (u, v) ∈ E such that u ∈ A \ B and v ∈ B \ A. Suppose that the
graph G is “sparse” in the following sense: every subset of at most ks vertices spans fewer that(

k
2

)
edges. Use Lemma ?? to show that then Gs has no clique of size larger than (k −1)s. Hint: Let

F be a clique in Gs, and suppose that F forms a flower with k petals. Then each member A ∈ F contains
an element vA which is not contained in any other member of F . Use the fact that F was a clique in Gs

to argue that {vA : A ∈ F} is a clique in G.

Ex 6.8. For a graph G, let G be a graph whose vertices are all maximum cliques of G, and
where two such cliques A and B are connected by an edge if and only if there is an edge (u, v) ∈ E
such that u ∈ A \ B and v ∈ B \ A. Recall that a clique is a maximum clique if each of remaining
vertices is not connected to at least one of its edges (i.e. we cannot add any new vertices). Let
α(G) denote the independence number of G, that is, the maximum number of vertices no two of
which are adjacent in G. Show that α(G) ≤ α(G). Hint: Let F be an independent set in G. Show
that then for any three distinct members A, B and K of F , the intersections A ∩ K and B ∩ K must be
comparable by set-inclusion. Argue that then each member K ∈ F must contain an element vK which
belongs to none of the remaining members. Why is then the set {vK : K ∈ F} an independent set in G?

Ex 6.9. Show that every 0-term C and every 1-term K of a boolean function f must share at
least one literal in common. Hint: Take a restriction (a partial assignment to variables) which evaluates
all the literals of K to 1. If C has no literal of K, then this restriction can be extended to an input a such
that f(a) = 0.

Ex 6.10. Let F be a set of clauses on n variables. Say that a clause is long if it has at least
k + 1 positive literals. Let ℓ be the number of long clauses in F , and suppose that

ℓ <

(
n + 1

m + 1

)k

.
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Prove that then it is possible to assign some n − m variables to constant 1 so that the resulting
set F ′ will have no long clauses. Hint: Construct the desired set assignment via the following “greedy”
procedure: Take the variable xi1 which occurs in the largest number of long clauses and set it to 1; then
take the variable xi2 which occurs in the largest number of remaining long clauses and set it to 1, and so
on, until all long clauses dissapear (get value 1). In computations use the estimate

∑n

i=1
i−1 ∼ ln n.

Ex 6.11. Consider the following function on n = sr variables:

f =

s∧

i=1

r∨

j=1

xij .

Let F be an Or-And-Or formula of bottom fan-in k (k ≤ r) computing this function. Show that
then F has size at least (r/k)s. Hint: Observe that f rejects all vectors with fewer than s ones and
accepts rs vectors with precisely s ones; apply Lemma ??.

Ex 6.12. (Håstad et al. 1995). Consider the function on n = m2 variables defined by the
formula

f =

m∧

i=1

m∨

j=1

xij ∧ yij .

This formula is a depth-3 And-Or-And formula of size only 2n. Prove that any depth-3 Or-And-Or
formula for this function has size at least 2Ω(

√
n). Hint: Assume that f has such a formula F of size at

most 2m/3. Reduce the bottom fan-in of F to k = ⌈m/2⌉ by setting one half of the variables to constants
at random as follows: for each pair of variables xij , yij , pick one of them at random (with probability 1/2)
and set it to 1. If some clause has more than k positive literals, then none of these literals is set to 1 with
probability at most 2−k−1. The probability, that some of the clauses with more than k positive literals is
not evaluated to 1, does not exceed 2m/3 · 2−(k+1) ≤ 2−m/6 < 1, and in particular such a setting exists.
The resulting function has the same form as that considered in the previous exercise.





CHAPTER 7

Intersecting Families

A basic interrelation between sets is their intersection. The size (or other characteristics) of
mutual intersections between the members of a given family reflects some kind of “dependence”
between them. In this chapter we will study the weakest kind of this dependence – the members
are required to be non-disjoint. A family is intersecting if any two of its sets have a non-empty
intersection.

1. Ultrafilters and Helly property

We start with two simple structural properties of intersecting families.
An ultrafilter over a set X is a collection F of its subsets such that: (i) F is upwards-closed,

that is, A ∈ F and A ⊆ B implies B ∈ F , and (ii) for every subset A of X, exactly one of A or its
complement A = X \ A belongs to F .

Theorem 7.1. Every ultrafilter is an intersecting family, and every intersecting family is
contained in some ultrafilter.

Proof. To prove the first claim, let F be an ultrafilter. If some two members A, B of F were
disjoint, then the complement of B would contain the set A, and hence, would belong to F (by
(i)). But this is impossible since, by (ii), F cannot contain the set B together with its complement.

To prove the second claim, take an arbitrary intersecting family and extend it to an ultrafilter
as follows. If there are some sets not in the family and such that their addition does not destruct
the intersection property, add all them. After that, add all supersets of the sets we already have.
We claim that the resulting family F is an ultrafilter. Indeed, if it is not, there must be a set A
such that neither A nor its complement A belongs to F . By the construction, A must be disjoint
from at least one member B of our initial family (for otherwise A would be added during the first
phase), and hence, B is contained in the complement A. But B ∈ F and F is upwards-closed, a
contradiction. �

In 1923, E. Helly proved the following result: if n ≥ k + 1 convex sets in Rk have the property
that any k + 1 of them have a nonempty intersection, then there is a point common to all of them.

It is natural to ask if objects other than convex sets obey Helly-type laws. For arbitrary
families of sets we have the following Helly-type result.

Theorem 7.2. Let F be a family and k be the minimum size of its member. If any k + 1
members of F intersect (i.e., share a common point) then all of them do.

Proof. Suppose the opposite that the intersection of all sets in F is empty, and take a set
A = {x1, . . . , xk} ∈ F . For every i = 1, . . . , k there must be a set Bi ∈ F such that xi 6∈ Bi.
Hence, A ∩ B1 ∩ · · · ∩ Bk = ∅, a contradiction. �

2. The Erdős–Ko–Rado theorem

Let F be an intersecting family of k-element subsets of {1, . . . , n}. The basic question is:
how large can such a family be? To avoid trivialities, we assume n ≥ 2k since otherwise any two
k-element sets intersect, and there is nothing to prove.

We can obtain an intersecting family by taking all
(

n−1
k−1

)
k-element subsets containing a fixed

element. Can we find larger intersecting families? The whole number of k-element subsets is(
n
k

)
= n

k

(
n−1
k−1

)
, so the question is not trivial.
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The following result, found by Erdős, Ko, and Rado in 1938 (but published only 23 years
later), answers the question.

Theorem 7.3 (Erdős–Ko–Rado 1961). If 2k ≤ n then every intersecting family of k-element
subsets of an n-element set has at most

(
n−1
k−1

)
members.

Proof. (Due to G.O.H. Katona 1972.) Let [n] = {0, 1, . . . , n − 1} be the underlying set.
The idea is to study all permutations of the elements of [n], estimating how often the consecutive
elements of these permutations can constitute one of the sets in our family. For s ∈ [n], let Bs

denote the set of k consecutive numbers s, s + 1, . . . , s + k − 1, where the addition is modulo n.

Claim 7.4. At most k of the sets Bs can belong to F .

We can suppose that B0 ∈ F . The only sets Bs that intersect B0 other than B0 itself are the
2k − 2 sets Bs with −(k − 1) ≤ s ≤ k − 1, s 6= 0 (where the indices are taken modulo n). These
sets can be partitioned into k − 1 pairs of disjoint sets, Bi, Bi+k, where −(k − 1) ≤ i ≤ −1.

1-1

- (k-2)

- (k-1)

k-2

k-1

2-2

.
.
.

.

.

.

0

Since F can contain at most one set of each such pair the assertion of the claim follows.
We now count in two ways the number L of pairs (f, s), where f is a permutation of [n] and

s is a point in [n], such that the set

f(Bs) := {f(s), f(s + 1), . . . , f(s + k − 1)}
belongs to F . By the claim, for each fixed permutation f , the family F can contain at most k
of the sets f(Bs). Hence, L ≤ kn!. On the other hand, exactly nk!(n − k)! of the pairs (f, s)
yield the same set f(Bs): there are n possibilities for s, and for each fixed s, there are k!(n − k)!
possibilities to choose the permutation f . Hence, L = |F| · nk!(n − k)!. Combining this with the
previous estimate, we obtain

|F| ≤ kn!

nk!(n − k)!
=

k

n

(
n

k

)
=

(
n − 1

k − 1

)
. �

3. Fisher’s inequality

A fundamental result of design theory–known as Fisher’s inequality—states that, if each two
clubs in a town share the same number of members in common, then the number of clubs cannot
exceed the total number of inhabitants in the town. In the proof of this result we will use (for the
first time) a powerful tool: linear algebra.

The general frame for the linear algebra method in combinatorics is the following: if we want
to come up with an upper bound on the size of a set of objects, associate them with elements in a
vector space V of relatively low dimension, and show that these elements are linearly independent;
hence, we cannot have more objects in our set than the dimension of V . This fact—there cannot
be more linearly independent vectors in V than the dimension of V —is usually called the “linear
algebra bound.” We will consider this tool in great details in Part ??. Here we restrict ourselves
with just one important application.

Theorem 7.5 (Fisher’s inequality). Let A1, . . . , Am be distinct subsets of {1, . . . , n} such that
|Ai ∩ Aj | = k for some fixed 1 ≤ k ≤ n and every i 6= j. Then m ≤ n.
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Proof. For two vectors x, y ∈ Rn, let 〈x, y〉 = x1y1 + · · · + xnyn denote their scalar product.
Let v1, . . . , vm ∈ {0, 1}n be incidence vectors of A1, . . . , Am. By the linear algebra bound it is
enough to show that these vectors are linearly independent over the reals. Assume the contrary,
i.e., that the linear relation

∑m
i=1 λivi = 0 exists, with not all coefficients being zero. Obviously,

〈vi, vj〉 = |Ai| if j = i, and 〈vi, vj〉 = k if j 6= i. Consequently,

0 =

( m∑

i=1

λivi

)( m∑

j=1

λjvj

)
=

m∑

i=1

λ2
i 〈vi, vi〉 +

∑

1≤i6=j≤m

λiλj〈vi, vj〉

=

m∑

i=1

λ2
i |Ai| +

∑

1≤i6=j≤m

λiλjk =

m∑

i=1

λ2
i (|Ai| − k) + k ·

( m∑

i=1

λi

)2

.

Clearly, |Ai| ≥ k for all i and |Ai| = k for at most one i, since otherwise the intersection condition
would not be satisfied. But then the right-hand is greater than 0 (because the last sum can vanish
only if at least two of the coefficients λi are nonzero), a contradiction. �

This theorem was first proved by the statistician R. A. Fisher in 1940 for the case when
k = 1 and all sets Ai have the same size (such configurations are known as balanced incomplete
block designs). In 1948, de Bruijn and Erdős relaxed the uniformity condition for the sets Ai (see
Theorem ??). This was generalized by R. C. Bose in 1949, and later by several other authors.
But it was the two-page paper of Bose where the linear argument was first applied to solve a
combinatorial problem. The general version, stated above, was first proved by Majumdar (1953);
the proof we presented is a variation of a simplified argument found by Babai and Frankl (1992).

4. Maximal intersecting families

Let F be a k-uniform family of sets of some n-element set. Say that F is maximal intersecting
if

(i) F is intersecting;
(ii) the addition of any new k-element set to F destroys this property, that is, for every k-element

subset E 6∈ F , the family F ∪ {E} is no longer intersecting.

The case when n ≤ 2k − 1 is not interesting, because then the only maximal intersecting family
is the family of all k-element subsets. But what if n ≥ 2k? Intuitively, any maximal intersecting
family must be large enough, because every k-element set not in the family must be avoided by
at least one of its members. It is therefore interesting to investigate the minimal possible number
f(k) of members which such a family can have.

To give an upper bound on f(k), consider the family F of lines in a projective plane of
order k − 1 (see Sect. ??). For our current purposes it is enough to know that F is a family of
|F| = n = k2 − k + 1 k-element subsets (called lines) of an n-element set of points such that each
two lines intersect in precisely one point and each point belongs to precisely k lines. It is easy to
show that this family is maximal intersecting (see Exercise ??). Hence, f(k) ≤ k2 − k + 1 for all
those values of k for which a projective plane of order k − 1 exists.

In the case of projective planes, we have a k-uniform family with about k2 sets. But the
number of points in this case is also the same. What if we take a lot fewer than k2 points?
Can we then still find a k-uniform and maximal intersecting family of size at most k2? Using
double-counting we can answer this question negatively.

Theorem 7.6 (Füredi 1980). Let F be a maximal intersecting family of k-element sets of an
n-element set. If n ≤ k2/2 log k, then F must have more than k2 members.

Proof. To simplify computations, we only prove the theorem under a slightly stronger as-
sumption that n ≤ k2/(1+2 log k). The idea is to count in two ways the number N of pairs (F, E)
where F ∈ F and E is a k-element subset disjoint from F (and hence, E 6∈ F). Since every such
set E must be avoided by at least one member of F , N ≥

(
n
k

)
− |F| . On the other hand, each

member of F can avoid at most
(

n−k
k

)
of the sets E; hence N ≤ |F|·

(
n−k

k

)
. These two inequalities,
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together with the estimate (??), imply

|F| ≥
(

n
k

)

1 +
(

n−k
k

) ≥ 1

2
·
(

n

n − k

)k

> ek2/n−1 ≥ e2 log k ≥ k2 . �

Now suppose that F1, . . . , Fm are intersecting (not necessarily uniform) families of an n-
element set {1, . . . , n}. How many sets can we have in their union?

Taking each Fi to be the family of all 2n−1 subsets containing the element i, we see that the
union will have 2n − 2n−m sets.

A beautiful result, due to Kleitman, says that this bound is best possible.

Theorem 7.7 (Kleitman 1966). The union of m intersecting families contains at most 2n −
2n−m sets.

Proof. We apply induction on m. The case m = 1 being trivial, we turn to the induction
step. We say that a family A is monotone increasing (monotone decreasing) if A ∈ A and B ⊇ A
(respectively, B ⊆ A) implies B ∈ A. A famous result, also due to Kleitman (we will prove it in
Sect. ??; see Theorem ?? and Exercise ??) says that, if A is a monotone decreasing and B is a
monotone increasing family of subsets of an n-element set, then

(44) |A ∩ B| ≤ 2−n|A| · |B| .

Now let F =
⋃m

i=1 Fi, with each Fi being an intersecting family. Since our aim is to bound
|F| from the above, we may assume that each Fi is maximal intersecting family; in particular,
|Fm| = 2n−1. Let A be the complement of Fm, i.e., the family of all |A| = 2n−1 subsets not in Fm,

and B =
⋃m−1

i=1 Fi. Since F1, . . . , Fm are maximal intersecting families, A is monotone decreasing
and B is monotone increasing. By the induction hypothesis, |B| ≤ 2n − 2n−m+1, and, by (??),

|A ∩ B| ≤ 2−n2n−1(2n − 2n−m+1) = 2n−1 − 2n−m .

Therefore,
|B ∩ Fm| = |B| − |A ∩ B| ≥ |B| − 2n−1 + 2n−m

and

|F| =

∣∣∣∣
m⋃

i=1

Fi

∣∣∣∣ = |B| + |Fm| − |B ∩ Fm| ≤ 2n − 2n−m . �

5. Cross-intersecting families

A pair of families A, B is cross-intersecting if every set in A intersects every set in B. The
rank of A is the maximum cardinality of a set in A. The degree dA(x) of a point x in A is the
number of sets in A containing x.

If A has rank a, then, by the pigeonhole principle, each set in A contains a point x which
is “popular” for the members of B in that dB(x) ≥ |B|/a. Similarly, if B has rank b, then each
member of B contains a point y for which dA(y) ≥ |A|/b. However, this alone does not imply that
we can find a point which is popular in both families A and B. It turns out that if we relax the
“degree of popularity” by one-half, then such a point exists.

Theorem 7.8 (Razborov–Vereshchagin 1999). Let A be a family of rank a and B be a family
of rank b. Suppose that the pair A, B is cross-intersecting. Then there exists a point x such that

dA(x) ≥ |A|
2b

and dB(x) ≥ |B|
2a

.

Proof. Assume the contrary and let A, B be independent random sets that are uniformly
distributed in A, B respectively. That is, for each A ∈ A and B ∈ B, Pr [A = A] = 1/|A|
and Pr [B = B] = 1/|B|. Since the pair A, B is cross-intersecting, the probability of the event
“∃x(x ∈ A ∩ B)” is equal to 1. Since the probability of a disjunction of events is at most the sum
of the probabilities of the events, we have

∑

x

Pr [x ∈ A ∩ B] ≥ 1.
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Let X0 consist of those points x for which

dA(x)

|A| = Pr [x ∈ A] <
1

2b
,

and X1 consist of the remaining points. Note that by our assumption, for any x ∈ X1,

Pr [x ∈ B] =
dB(x)

|B| <
1

2a

holds. By double counting (see Proposition ??),
∑

x dA(x) =
∑

A∈A |A|. Hence,
∑

x∈X1

Pr [x ∈ A ∩ B] =
∑

x∈X1

Pr [x ∈ A] · Pr [x ∈ B]

<
1

2a
·
∑

x∈X1

Pr [x ∈ A] ≤ 1

2a
·
∑

x

Pr [x ∈ A]

=
1

2a
·
∑

x

dA(x)

|A| =
1

2a|A| ·
∑

x

dA(x) =
1

2a|A| ·
∑

A∈A
|A| ≤ a|A|

2a|A| =
1

2
.

In a similar way we obtain
∑

x∈X0

Pr [x ∈ A ∩ B] <
1

2
,

a contradiction. �

We mention (without proof) the following related result.

Theorem 7.9 (Füredi 1995). Let a + b ≤ n, A be a family of a-element sets and B a family

of b-element sets on the common underlying set [n] such that |A| ≥
(

n−1
a−1

)
−
(

n−b−1
a−1

)
+ 1 and

|B| ≥
(

n−1
b−1

)
−
(

n−a−1
b−1

)
+1. If the pair A, B is cross-intersecting, then some element x ∈ [n] belongs

to all members of A and B.

Exercises

Ex 7.1. Let F be a family of subsets of an n-element set. Prove that if F is intersecting then
|F| ≤ 2n−1. Is this the best bound? If so, then exhibit an intersecting family with |F| = 2n−1.
Hint: A set and its complement cannot both be the members of F .

Ex 7.2. Let F be an intersecting family of subsets of an n-element set X. Show that there is
an intersecting family F ′ ⊇ F such that |F| = 2n−1. Hint: Show that for any set A such that neither
A nor A belongs to F , exactly one of A and A can be added to F .

Ex 7.3. Let n ≤ 2k and let A1, . . . , Am be a family of k-element subsets of [n] such that
Ai ∪ Aj 6= [n] for all i, j. Show that m ≤

(
1 − k

n

) (
n
k

)
. Hint: Apply the Erdős–Ko–Rado theorem to

the complements Ai = [n] − Ai.

Ex 7.4. The upper bound
(

n−1
k−1

)
given by Erdős–Ko–Rado theorem is achieved by the families

of sets containing a fixed element. Show that for n = 2k there are other families achieving this
bound. Hint: Include one set out of every pair of sets formed by a k-element set and its complement.

Ex 7.5. One can generalize the intersection property and require that |A ∩ B| ≥ t for all
A 6= B ∈ F . Such families are called t-intersecting. The first example of a t-intersecting family
which comes to mind, is the family of all subsets of [n] containing some fixed set of t elements.
This family has 2n−t sets. Are there larger t-intersecting families? Hint: Let n + t be even and take
F =

{
A ⊆ [n] : |A| = n+t

2

}
.

Ex 7.6. Let =. {B1, . . . , Bb} be a (v, k, λ) design, i.e., a family of k-element subsets of a v-
element set of points X = {x1, . . . , xv} such that every two points belong to exactly λ sets. Use
Fisher’s inequality to show that b ≥ v. Hint: Take Ai := {j : xi ∈ Bj}.
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Ex 7.7. Consider the k-uniform family of all n = k2 − k + 1 lines in the set of points of a
projective plane of order k − 1. Clearly, this family is intersecting. Show that it is also maximal
intersecting, i.e., that every k-element set E, which intersects all the lines, must be a line. Hint:
Assume that E is not a line, draw a line L through some two points x 6= y of E, and take a point
z ∈ L \ {x, y}. This point belongs to k lines, and each of them intersect E.

Ex 7.8. (Razborov–Vereshchagin 1999). Show that the bound in Theorem ?? is tight up to a
multiplicative factor of 2. Hint: Consider the following pair of families

A = {A1, . . . , Ab}, where Ai = {(i, 1), (i, 2), . . . , (i, a)},

B = {B1, . . . , Ba}, where Bj = {(1, j), (2, j), . . . , (b, j)}.



CHAPTER 8

Chains and Antichains

Partial ordered sets provide a common frame for many combinatorial configurations. Formally,
a partially ordered set (or poset, for short) is a set P together with a binary relation < between
its elements which is transitive and antysymmetric: if x < y and y < z then x < z, but x < y and
y < x cannot both hold. We write x ≤ y if x < y or x = y. Elements x and y are comparable if
either x ≤ y or y ≤ x (or both) hold.

A chain in a poset P is a subset C ⊆ P such that any two of its points are comparable.
Dually, an antichain is a subset A ⊆ P such that no two of its points are comparable. Observe
that |C ∩ A| ≤ 1, i.e., every chain C and every antichain A can have at most one element in
common (for two points in their intersection would be both comparable and incomparable).

Here are some frequently encountered examples of posets: a family of sets is partially ordered
by set inclusion; a set of positive integers is partially ordered by division; a set of vectors in Rn is
partially ordered by (a1, . . . , an) < (b1, . . . , bn) iff ai ≤ bi for all i, and ai < bi for at least one i.

Small posets may be visualized by drawings, known as Hasse diagrams: x is lower in the plane
than y whenever x < y and there is no other point z ∈ P for which both x < z and z < y. For
example:

{a,c} {a,b}

{b}{a} {c}

O

{b,c}

{a,b,c}

1

2
3

6
9

18

1. Decomposition in chains and antichains

A decomposition of a poset is its partition into mutually disjoint chains or antichains. Given
a poset P , our goal is to decompose it into as few chains (or antichains) as possible. One direction
is easy: if a poset P has a chain (antichain) of size r then it cannot be partitioned into fewer than
r antichains (chains). The reason here is simple: any two points of the same chain must lie in
different members of a partition into antichains.

Is this optimal? If P has no chain (or antichain) of size greater than r, is it then possible
to partition P into r antichains (or chains, respectively)? One direction is straightforward (see
Exercise ?? for an alternative proof):

Theorem 8.1. Suppose that the largest chain in the poset P has size r. Then P can be
partitioned into r antichains.

Proof. Let Ai be the set of points x ∈ P such that the longest chain, whose greatest element
is x, has i points (including x). Then, by the hypothesis, Ai = ∅ for i ≥ r + 1, and hence,
P = A1 ∪ A2 ∪ · · · ∪ Ar is a partition of P into r mutually disjoint subsets (some of them may
be also empty). Moreover, each Ai is an antichain, since if x, y ∈ Ai and x < y, then the longest

77
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chain x1 < . . . < xi = x ending in x could be prolonged to a longer chain x1 < . . . < xi < y,
meaning that y 6∈ Ai. �

The dual result looks similar, but its proof is more involved. This result, uniformly known as
Dilworth’s Decomposition Theorem (Dilworth 1950) has played an important role in motivating
research into posets. There are several elegant proofs; the one we present is due to F. Galvin.

Theorem 8.2 (Dilworth’s theorem). Suppose that the largest antichain in the poset P has
size r. Then P can be partitioned into r chains.

Proof (due to Galvin 1994). We use induction on the cardinality of P . Let a be a maximal element
of P , and let r be the size of a largest antichain in P ′ = P \{a}. Then P ′ is the union of r disjoint
chains C1, . . . , Cr. We have to show that P either contains an (r + 1)-element antichain or else is
the union of r disjoint chains. Now, every r-element antichain in P ′ consists of one element from
each Ci. Let ai be the maximal element in Ci which belongs to some r-element antichain in P ′.
It is easy to see that A = {a1, . . . , ar} is an antichain in P ′. If A ∪ {a} is an antichain in P , we
are done: we have found an antichain of size r + 1). Otherwise, we have a > ai for some i. Then
K = {a} ∪ {x ∈ Ci : x ≤ ai} is a chain in P , and there are no r-element antichains in P \ K (since
ai was the maximal element of Ci participating in such an antichain), whence P \ K is the union
of r − 1 chains. �

To recognize the power of this theorem, let us show that it contains Hall’s Marriage Theorem ??
as a special case!

Suppose that S1, . . . , Sm are sets satisfying Hall’s condition, i.e., |S(I)| ≥ |I| for all I ⊆
{1, . . . , m}, where S(I) :=

⋃
i∈I Si. We construct a poset P as follows. The points of P are the

elements of X := S1 ∪ · · · ∪ Sm and symbols y1, . . . , ym, with x < yi if x ∈ Si, and no other
comparabilities. It is clear that X is an antichain in P . We claim that there is no larger antichain.
To show this, let A be an antichain, and set I := {i : yi ∈ A}. Then A contains no point of S(I),
for if x ∈ Si then x is comparable with yi, and hence, A cannot contain both of these points.
Hence, Hall’s condition implies that |A| ≤ |I| + |X| − |S(I)| ≤ |X|, as claimed.

Now, Dilworth’s theorem implies that P can be partitioned into |X| chains. Since the antichain
X is maximal, each of the chains in the partition must contain a point of X. Let the chain through
yi be {xi, yi}. Then (x1, . . . , xm) is a desired system of distinct representatives: for xi ∈ Si (since
xi < yi) and xi 6= xj (since the chains are disjoint).

In general, Dilworth’s theorem says nothing more about the chains, forming the partition,
except that they are mutually disjoint. However, if we consider special posets then we can extract
more information about the partition. To illustrate this, let us consider now the poset 2X whose
points are all subsets of an n-element set X partially ordered by set inclusion. De Bruijn, Teng-
bergen, and Kruyswijk (1952) have shown that 2X can be partitioned into disjoint chains that are
also “symmetric.”

Let C = {A1, . . . , Ak} be a chain in 2X , i.e., A1 ⊂ A2 ⊂ . . . ⊂ Ak. This chain is symmetric if
|A1| + |Ak| = n and |Ai+1| = |Ai| + 1 for all i = 1, . . . , k − 1. “Symmetric” here means symmetric
positioned about the middle level n

2 . Symmetric chains with k = n are maximal. Maximal chains
are in one-to-one correspondence with the permutations of the underlying set: every permutation
(x1, . . . , xn) gives the maximal chain

{x1} ⊂ {x1, x2} ⊂ . . . ⊂ {x1, . . . , xn}.

Theorem 8.3. The family of all subsets of an n-element set can be partitioned into
(

n
⌊n/2⌋

)

mutually disjoint symmetric chains.

Proof. Take an n-element set X, and assume for a moment that we already have some
partition of 2X into symmetric chains. Every such chain contains exactly one set from the middle
level; hence there are

(
n

⌊n/2⌋
)

chains in that partition.

Let us now prove that such a partition is possible at all. We argue by the induction on n = |X|.
Clearly the result holds for the one point set X. So, suppose that it is true for all sets with fewer
points then n. Pick a point x ∈ X, and let Y := X \ {x}. By induction, we can partition 2Y into
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symmetric chains C1, . . . , Cr. Each of these chains over Y

Ci := A1 ⊂ A2 ⊂ . . . ⊂ Ak

produce the following two chains over the whole set X:

C′
i := A1 ⊂ A2 ⊂ . . . ⊂ Ak−1 ⊂ Ak ⊂ Ak ∪ {x}

C′′
i := A1 ∪ {x} ⊂ A2 ∪ {x} ⊂ . . . ⊂ Ak−1 ∪ {x}.

These chains are symmetric since

|A1| + |Ak ∪ {x}| = (|A1| + |Ak|) + 1 = (n − 1) + 1 = n

and
|A1 ∪ {x}| + |Ak−1 ∪ {x}| = (|A1| + |Ak−1|) + 2 = (n − 2) + 2 = n.

Is this a partition? It is indeed. If A ⊆ Y then only C′
i contains A where Ci is the chain in 2Y

containing A. If A = B ∪ {x} where B ⊆ Y then B ∈ Ci for some i. If B is the maximal element
of Ci then C′

i is the only chain containing A, otherwise A is contained only in C′′
i . �

2. Application: the memory allocation problem

The following problem arises in information storage and retrieval. Suppose we have some list
(a sequence) L = (a1, a2, . . . , am) of not necessarily distinct elements of some set X. We say that
this list contains a subset A if it contains A as a subsequence of consecutive terms, that is, if

A = {ai, ai+1, . . . , ai+|A|−1}
for some i. A sequence is universal for X if it contains all the subsets of X. For example, if
X = {1, 2, 3, 4, 5} then the list

L = (1 2 3 4 5 1 2 4 1 3 5 2 4)

of length m = 13 is universal for X.
What is the length of a shortest universal sequence for an n-element set? Since any two sets

of equal cardinality must start from different places of this string, the trivial lower bound for the

length of universal sequence is
(

n
⌊n/2⌋

)
, which is about

√
2

πn 2n, according to Stirling’s formula (??).

A trivial upper bound for the length of the shortest universal sequence is obtained by considering
the sequence obtained simply by writing down each subset one after the other. Since there are 2n

subsets of average size n/2, the length of the resulting universal sequence is at most n2n−1. Using
Dilworth’s theorem, we can obtain a universal sequence, which is n times (!) shorter than this
trivial one.

Theorem 8.4 (Lipski 1978). There is a universal sequence for {1, . . . , n} of length at most
2
π 2n.

Proof. We consider the case when n is even, say n = 2k (the case of odd n is similar). Let
S = {1, . . . , k} be the set of the first k elements and T = {k + 1, . . . , 2k} the set of the last k
elements. By Theorem ??, both S and T have symmetric chain decompositions of their posets of
subsets into m =

(
k

k/2

)
symmetric chains: 2S = C1∪· · ·∪Cm and 2T = D1∪· · ·∪Dm. Corresponding

to the chain

Ci = {x1, . . . , xj} ⊂ {x1, . . . , xj , xj+1} ⊂ . . . ⊂ {x1, . . . , xh} (j + h = k)

we associate the sequence (not the set!) Ci = (x1, x2, . . . xh). Then every subset of S occurs
as an initial part of one of the sequences C1, . . . , Cm. Similarly let D1, . . . , Dm be sequences
corresponding to the chains D1, . . . , Dm. If we let Di denote the sequence obtained by writing Di

in reverse order, then every subset of T occurs as a final part of one of the Di. Next, consider the
sequence

L = D1C1D1C2 . . . D1Cm . . . DmC1DmC2 . . . DmCm.

We claim that L is a universal sequence for the set {1, . . . , n}. Indeed, each of its subsets A can
be written as A = E ∪ F where E ⊆ S and F ⊆ T . Now F occurs as the final part of some Df

and E occurs as the initial part of some Ce; hence, the whole set A occurs in the sequence L as
the part of Df Ce. Thus, the sequence L contains every subset of {1, . . . , n}. The length of the
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sequence L is at most km2 = k
(

k
k/2

)2
. Since, by Stirling’s formula,

(
k

k/2

)
∼ 2k

√
2

kπ , the length of

the sequence is km2 ∼ k 2
kπ · 22k = 2

π 2n. �

3. Sperner’s theorem

A set system F is an antichain (or Sperner system) if no set in it contains another: if A, B ∈ F
and A 6= B then A 6⊆ B. It is an antichain in the sense that this property is the other extreme
from that of the chain in which every pair of sets is comparable.

Simplest examples of antichains over {1, . . . , n} are the families of all sets of fixed cardinality
k, k = 0, 1, . . . , n. Each of these antichains has

(
n
k

)
members. Recognizing that the maximum of(

n
k

)
is achieved for k = ⌊n/2⌋, we conclude that there are antichains of size

(
n

⌊n/2⌋
)
. Are these

antichains the largest ones?
The positive answer to this question was found by Emanuel Sperner in 1928, and this result

is known as Sperner’s Theorem.

Theorem 8.5 (Sperner 1928). Let F be a family of subsets of an n element set. If F is an
antichain then |F| ≤

(
n

⌊n/2⌋
)
.

A considerably sharper result, Theorem ?? below, is due to Lubell (1966). The same result was
discovered by Meshalkin (1963) and (not so explicitly) by Yamamoto (1954). Although Lubell’s
result is also a rather special case of an earlier result of Bollobás (see Theorem ?? below), inequality
(??) has become known as the LYM inequality.

Theorem 8.6 (LYM Inequality). Let F be an antichain over a set X of n elements. Then

(45)
∑

A∈F

(
n

|A|

)−1

≤ 1.

Note that Sperner’s theorem follows from this bound: recognizing that
(

n
k

)
is maximized when

k = ⌊n/2⌋, we obtain

|F| ·
(

n

⌊n/2⌋

)−1

≤
∑

A∈F

(
n

|A|

)−1

≤ 1.

We will give an elegant proof of Theorem ?? due to Lubell (1966) together with one of its
reformulations which is pregnant with further extensions.

First proof. For each subset A, exactly |A|!(n−|A|)! maximal chains over X contain A. Since none
of the n! maximal chains meet F more than once, we have

∑
A∈F |A|!(n − |A|)! ≤ n!. Dividing

this inequality by n! we get the desired result. �

Second proof. The idea is to associate with each subset A ⊆ X, a permutation on X, and count
their number. For an a-element set A let us say that a permutation (x1, x2, . . . , xn) of X contains
A if {x1, . . . , xa} = A. Note that A is contained in precisely a!(n − a)! permutations. Now if
F is an antichain, then each of n! permutations contains at most one A ∈ F . Consequently,∑

A∈F a!(n − a)! ≤ n!, and the result follows. To recover the first proof, simply identify a per-
mutation (x1, x2, . . . , xn) with the maximal chain {x1} ⊂ {x1, x2} ⊂ . . . ⊂ {x1, x2 . . . , xn} = X.

�

4. The Bollobás theorem

The following theorem due to B. Bollobás is one of the cornerstones in extremal set theory.
Its importance is reflected, among other things, by the list of different proofs published as well
as the list of different generalizations. In particular, this theorem implies both Sperner’s theorem
and the LYM inequality.

Theorem 8.7 (Bollobás’ theorem). Let A1, . . . , Am be a-element sets and B1, . . . , Bm be b-

element sets such that Ai ∩ Bj = ∅ if and only if i = j. Then m ≤
(

a+b
a

)
.

This is a special case of the following result.
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Theorem 8.8 (Bollobás 1965). Let A1, . . . , Am and B1,. . ., Bm be two sequences of sets such
that Ai ∩ Bj = ∅ if and only if i = j. Then

(46)

m∑

i=1

(
ai + bi

ai

)−1

≤ 1,

where ai = |Ai| and bi = |Bi|.

As we already mentioned, due to its importance, there are several different proofs of this
theorem. We present two of them.

First proof. Our goal is to prove that (??) holds for every family F = {(Ai, Bi) : i = 1, . . . , m} of
pairs of sets such that Ai ∩ Bj = ∅ precisely when i = j. Let X be the union of all sets Ai ∪ Bi.
We argue by induction on n = |X|. For n = 1 the claim is obvious, so assume it holds for n − 1
and prove it for n. For every point x ∈ X, consider the family of pairs

Fx := {(Ai, Bi \ {x}) : x 6∈ Ai}.

Since each of these families Fx has less than n points, we can apply the induction hypothesis for
each of them, and sum the corresponding inequalities (??). The resulting sum counts n − ai − bi

times the term
(

ai+bi

ai

)−1
, corresponding to points x 6∈ Ai ∪ Bi, and bi times the term

(
ai+bi−1

ai

)−1
,

corresponding to points x ∈ Bi; the total is ≤ n. Hence we obtain that

m∑

i=1

(n − ai − bi)

(
ai + bi

ai

)−1

+ bi

(
ai + bi − 1

ai

)−1

≤ n.

Since
(

k−1
l

)
= k−l

k

(
k
l

)
, the i-th term of this sum is equal to n ·

(
ai+bi

ai

)−1
. Dividing both sides by

n we get the result. �

Second proof. Lubell’s method of counting permutations. Let, as before, X be the union of all
sets Ai ∪ Bi. If A and B are disjoint subsets of X then we say that a permutation (x1, x2, . . . , xn)
of X separates the pair (A, B) if no element of B precedes an element of A, i.e., if xk ∈ A and
xl ∈ B imply k < l.

Each of the n! permutations can separate at most one of the pairs (Ai, Bi), i = 1, . . . , m.
Indeed, suppose that (x1, x2, . . . , xn) separates two pairs (Ai, Bi) and (Aj , Bj) with i 6= j, and
assume that max{k : xk ∈ Ai} ≤ max{k : xk ∈ Aj}. Since the permutation separates the pair
(Aj , Bj),

min{l : xl ∈ Bj} > max{k : xk ∈ Aj} ≥ max{k : xk ∈ Ai}
which implies that Ai ∩ Bj = ∅, contradicting the assumption.

We now estimate the number of permutations separating one fixed pair. If |A| = a and |B| = b
and A and B are disjoint then the pair (A, B) is separated by exactly

(
n

a + b

)
a!b!(n − a − b)! = n!

(
a + b

a

)−1

permutations. Here
(

n
a+b

)
counts the number of choices for the positions of A ∪ B in the permu-

tation; having chosen these positions, A has to occupy the first a places, giving a! choices for the
order of A, and b! choices for the order of B; the remaining elements can be chosen in (n − a − b)!
ways.

Since no permutation can separate two different pairs (Ai, Bi), summing up over all m pairs
we get all permutations at most once

m∑

i=1

n!

(
ai + bi

ai

)−1

≤ n!

and the desired bound (??) follows. �
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Tuza (1984) observed that Bollobás’s theorem implies both Sperner’s theorem and the LYM
inequality. Let A1, . . . , Am be an antichain over a set X. Take the complements Bi = X \ Ai and
let ai = |Ai| for i = 1, . . . , m. Then bi = n − ai and by (??)

m∑

i=1

(
n

|Ai|

)−1

=

m∑

i=1

(
ai + bi

ai

)−1

≤ 1.

Due to its importance, the theorem of Bollobás was extended in several ways.

Theorem 8.9 (Tuza 1985). Let A1, . . . , Am and B1, . . . , Bm be collections of sets such that
Ai ∩ Bi = ∅ and for all i 6= j either Ai ∩ Bj 6= ∅ or Aj ∩ Bi 6= ∅ (or both) holds. Then for any real
number 0 < p < 1, we have

m∑

i=1

p|Ai|(1 − p)|Bi| ≤ 1.

Proof. Let X be the union of all sets Ai ∪ Bi. Choose a subset Y ⊆ X at random in such a
way that each element x ∈ X is included in Y independently and with the same probability p. Let
Ei be the event that Ai ⊆ Y ⊆ X\Bi. Then for their probabilities we have Pr [Ei] = p|Ai|(1−p)|Bi|

for every i = 1, . . . , m (see Exercise ??). We claim that, for i 6= j, the events Ei and Ej cannot
occur at the same time. Indeed, otherwise we would have Ai ∪ Aj ⊆ Y ⊆ X \ (Bi ∪ Bj), implying
Ai ∩ Bj = Aj ∩ Bi = ∅, which contradicts our assumption.

Since the events E1, . . . , Em are mutually disjoint, we conclude that Pr [E1] + · · · + Pr [Em] =
Pr [E1 ∪ · · · ∪ Em] ≤ 1, as desired. �

The theorem of Bollobás also has other important extensions. We do not intend to give a
complete account here; we only mention some of these results without proof. More information
about Bollobás-type results can be found, for example, in a survey by Tuza (1994).

A typical generalization of Bollobás’s theorem is its following “skew version.” This result was
proved by Frankl (1982) by modifying an argument of Lovász (1977) and was also proved in an
equivalent form by Kalai (1984).

Theorem 8.10. Let A1, . . . , Am and B1, . . ., Bm be finite sets such that Ai ∩ Bi = ∅ and
Ai ∩ Bj 6= ∅ if i < j. Also suppose that |Ai| ≤ a and |Bi| ≤ b. Then m ≤

(
a+b

a

)
.

We also have the following “threshold version” of Bollobás’s theorem.

Theorem 8.11 (Füredi 1984). Let A1, . . . , Am be a collection of a-sets and B1, . . . , Bm be a

collection of b-sets such that |Ai ∩ Bi| ≤ s and |Ai ∩ Bj | > s for every i 6= j. Then m ≤
(

a+b−2s
a−s

)
.

5. Strong systems of distinct representatives

Recall that a system of distinct representatives for the sets S1, S2, . . . , Sk is a k-tuple (x1, x2, . . . , xk)
where the elements xi are distinct and xi ∈ Si for all i = 1, 2, . . . , k. Such a system is strong if we
additionally have xi 6∈ Sj for all i 6= j.

Theorem 8.12 (Füredi–Tuza 1985). In any family of more than
(

r+k
k

)
sets of cardinality at

most r, at least k + 2 of its members have a strong system of distinct representatives.

Proof. Let F = {A1, . . . , Am} be a family of sets, each of cardinality at most r. Suppose
that no k + 2 of these sets have a strong system of distinct representatives. We will apply the
theorem of Bollobás to prove that then m ≤

(
r+k

k

)
. Let us make an additional assumption that

our sets form an antichain, i.e., that no of them is a subset of another one. By Theorem ?? it is
enough to prove that, for every i = 1, . . . , m there exists a set Bi, such that |Bi| ≤ k, Bi ∩ Ai = ∅
and Bi ∩ Aj 6= ∅ for all j 6= i.

Fix an i and let Bi = {x1, . . . , xt} be a minimal set which intersects all the sets Aj \ Ai,
j = 1, . . . , m, j 6= i. (Such a set exists because none of these differences is empty.) By the
minimality of Bi, for every ν = 1, . . . , t there exists a set Sν ∈ F such that Bi ∩ Sν = {xν}. Fix
an arbitrary element yi ∈ Ai. Then (yi, x1, . . . , xt) is a strong system of distinct representatives
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for t + 1 sets Ai, S1, . . . , St. By the indirect assumption, we can have at most k + 1 such sets.
Therefore, |Bi| = t ≤ k, as desired.

In the case when our family F is not an antichain, it is enough to order the sets so that
Ai 6⊆ Aj for i < j, and apply the skew version of Bollobás’s theorem. �

6. Union-free families

A family of sets F is called r-union-free if A0 6⊆ A1 ∪ A2 ∪ · · · ∪ Ar holds for all distinct
A0, A1, . . . , Ar ∈ F . Thus, antichains are r-union-free for r = 1.

Let T (n, r) denote the maximum cardinality of an r-union-free family F over an n-element
underlying set. This notion was introduced by Kautz and Singleton (1964). They proved that

Ω(1/r2) ≤ log2 T (n, r)

n
≤ O(1/r).

This result was rediscovered several times in information theory, in combinatorics by Erdős, Frankl,
and Füredi (1985), and in group testing by Hwang and Sós (1987). Dyachkov and Rykov (1982)
obtained, with a rather involved proof, that

log2 T (n, r)

n
≤ O(log2 r/r2).

Recently, Ruszinkó (1994) gave a purely combinatorial proof of this upper bound. Shortly after,
Füredi (1996) found a very elegant argument, and we present it below.

Theorem 8.13 (Füredi 1996). Let F be a family of subsets of an n-element underlying set
X, and r ≥ 2. If F is r-union-free then |F| ≤ r +

(
n
t

)
where

t :=

⌈
(n − r)

/(r + 1

2

)⌉
.

That is,

log2 |F|/n ≤ O
(
log2 r/r2) .

Proof. Let Ft be the family of all members of F having their own t-subset. That is, Ft

contains all those members A ∈ F for which there exists a t-element subset T ⊆ A such that
T 6⊆ A′ for every other A′ ∈ F . Let Tt be the family of these t-subsets; hence |Tt| = |Ft|. Let
F0 := {A ∈ F : |A| < t}, and let T0 be the family of all t-subsets of X containing a member of
F0, i.e.,

T0 := {T : T ⊆ X, |T | = t and T ⊃ A for some A ∈ F0}.

The family F is an antichain. This implies that Tt and T0 are disjoint. The family F0 is also an
antichain, and since t < n/2, we know from Exercise ?? that |F0| ≤ |T0|. Therefore,

(47) |F0 ∪ Ft| ≤ |Tt| + |T0| ≤
(

n

t

)
.

It remains to show that the family

F ′ := F \ (F0 ∪ Ft)

has at most r members. Note that A ∈ F ′ if and only if A ∈ F , |A| ≥ t and for every t-subset
T ⊆ A there is an A′ ∈ F such that A′ 6= A and A′ ⊇ T . We will use this property to prove that
A ∈ F ′, A1, A2, . . . , Ai ∈ F (i ≤ r) imply

(48) |A \ (A1 ∪ · · · ∪ Ai)| ≥ t(r − i) + 1.

To show this, assume the opposite. Then the set A \ (A1 ∪ · · · ∪ Ai) can be written as the union of
some (r − i) t-element sets Ti+1, . . . Tr. Therefore, A lies entirely in the union of A1, . . . , Ai and
these sets Ti+1, . . . , Tr. But, by the choice of A, each of the sets Tj lies in some other set Aj ∈ F
different from A. Therefore, A ⊆ A1 ∪ · · · ∪ Ar, a contradiction.
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Now suppose that F ′ has more than r members, and take any r+1 of them A0, A1, . . . , Ar ∈ F ′.
Applying (??) we obtain

|
r⋃

i=0

Ai| = |A0| + |A1 \ A0| + |A2 \ (A0 ∪ A1)| + · · ·

+|Ar \ (A0 ∪ A1 ∪ · · · ∪ Ar−1)|
≥

(
tr + 1

)
+
(
t(r − 1) + 1

)
+
(
t(r − 2) + 1

)
+ · · · +

(
t · 0 + 1

)

= t · r(r + 1)

2
+ r + 1 = t

(
r + 1

2

)
+ r + 1.

By the choice of t, the right-hand side exceeds the total number of points n, which is impossible.
Therefore, F ′ cannot have more than r distinct members. Together with (??), this yields the
desired upper bound on |F|. �

Exercises

Ex 8.1. Let F be an antichain consisting of sets of size at most k ≤ n/2. Show that |F| ≤
(

n
k

)
.

Ex 8.2. Derive from Bollobás’s theorem the following weaker version of Theorem ??. Let
A1, . . . , Am be a collection of a-element sets and B1, . . . , Bm be a collection of b-element sets such
that |Ai ∩ Bi| = t for all i, and |Ai ∩ Bj | > t for i 6= j. Then m ≤

(
a+b−t

a−t

)
.

Ex 8.3. Show that the upper bounds in Bollobás’s and Füredi’s theorems (Theorems ?? and
??) are tight. Hint: Take two disjoint sets X and S of respective sizes a + b − 2s and s. Arrange the
s-element subsets of X in any order: Y1, Y2, . . .. Let Ai = S ∪ Yi and Bi = S ∪ (X \ Yi).

Ex 8.4. Use the binomial theorem to prove the following. Let 0 < p < 1 be a real number,
and C ⊂ D be any two fixed subsets of {1, . . . , n}. Then the sum of p|A|(1 − p)n−|A| over all sets
A such that C ⊆ A ⊆ D, equals p|C|(1 − p)n−|D|.

Ex 8.5. (Frankl 1986). Let F be a k-uniform family, and suppose that it is intersection free,

i.e., that A ∩ B 6⊂ C for any three sets A, B and C of F . Prove that |F| ≤ 1 +
(

k
⌊k/2⌋

)
. Hint: Fix a

set B0 ∈ F , and observe that {A ∩ B0 : A ∈ F , A 6= B0} is an antichain over B0.

Ex 8.6. Let A1, . . . , Am be a family of subsets of an n-element set, and suppose that it is
convex in the following sense: if Ai ⊆ B ⊆ Aj for some i, j, then B belongs to the family. Prove

that the absolute value of the sum
∑m

i=1(−1)|Ai| does not exceed
(

n
⌊n/2⌋

)
. Hint: Use the chain

decomposition theorem. Observe that the contribution to the sum from each of the chains is of the form
±(1 − 1 + 1 − 1 . . .), and so this contribution is 1, −1 or 0.

Ex 8.7. Let x1, . . . , xn be real numbers, xi ≥ 1 for each i, and let S be the set of all numbers,
which can be obtained as a linear combinations α1x1 + . . . + αnxn with αi ∈ {−1, +1}. Let
I = [a, b) be any interval (in the real line) of length b − a = 2. Show that |I ∩ S| ≤

(
n

⌊n/2⌋
)
. Hint:

Associate with each such sum ξ = α1x1 + . . . + αnxn the corresponding set Aξ = {i : αi = +1} of indices
i for which αi = +1. Show that the family of sets Aξ for which ξ ∈ I, forms an antichain and apply
Sperner’s theorem. Note: Erdős (1945) proved a more general result that if b − a = 2t then |I ∩ S|
is less than or equal to the sum of the t largest binomial coefficients

(
n
i

)
.

Ex 8.8. Let P be a finite poset and suppose that the largest chain in it has size r. We know
(see Theorem ??) that P can be partitioned into r antichains. Show that the following argument
also gives the desired decomposition: let A1 be the set of all maximal elements in P ; remove this
set from P , and let A2 be the set of all maximal elements in the reduced set P \ A1, etc.

Ex 8.9. Let F = {A1, . . . , Am} and suppose that

|Ai ∩ Aj | <
1

r
min{|Ai|, |Aj |} for all i 6= j.

Show that F is r-union-free.
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Ex 8.10. Let F = {A1, . . . , Am} be an r-union-free family. Show that then
⋃

i∈I Ai 6= ⋃j∈J Aj

for any two distinct non-empty subsets I, J of size at most r.





CHAPTER 9

Blocking Sets and the Duality

In this chapter we will consider one of the most basic properties of set systems — their duality.
The dual of a family F consists of all (minimal under set-inclusion) sets that intersect all members
of F . Dual families play an important role in many applications, boolean function complexity
being just one example.

1. Duality

A blocking set of a family F is a set T that intersects (blocks) every member of F . A blocking
set of F is minimal if none of its proper subsets is such. (Minimal blocking sets are also called
transversals of F .) The family of all minimal blocking sets of F is called its dual and is denoted
by b (F).

Proposition 9.1. For every family F we have b (b (F)) ⊆ F . Moreover, if F is an antichain
then b (b (F)) = F .

Proof. To prove the first claim, take a set B ∈ b (b (F)). Observe that none of the sets
A \ B with A ∈ F can be empty: Since B is a minimal blocking set of b (F), it cannot contain
any member A of F as a proper subset, just because each member of F is a blocking set of b (F ).
Assume now that B 6∈ F . Then, for each set A ∈ F , there is a point xA ∈ A \ B. The set
{xA : A ∈ F} of all such points is a blocking set of F , and hence, contains at least one minimal
blocking set T ∈ b (F). But this is impossible, because then B must intersect the set T which, by
it definition, can contain no element of B.

To prove the second claim, let F be an antichain, and take any A ∈ F . We want to show A
is in b (b (F)). Each element of b (F) intersects A, so A is a blocking set for b (F). Therefore A
contains (as a subset) some minimal blocking set B ∈ b (b (F)). Since b (b (F)) is a subset of F
(by the first part of the proof), the set B must belong to F . Hence, A and its subset B are both
in F . But F is an antichain, therefore A = B, so A ∈ b (b (F)). �

Let us consider the following problem of “keys of the safe” (Berge 1989). An administrative
council is composed of a set X of individuals. Each of them carries a certain weight in decisions,
and it is required that only subsets A ⊆ X carrying a total weight greater than some threshold
fixed in advance, should have access to documents kept in a safe with multiply locks. The minimal
“coalitions” which can open the safe constitute an antichain F . The problem consists in determin-
ing the minimal number of locks necessary so that by giving one or more keys to every individual,
the safe can be opened if and only if at least one of the coalitions of F is present.

Proposition 9.2. For every family F of minimal coalitions, |b (F) | locks are enough.

Proof. Let b (F) = {T1, . . . , Tℓ}. Then give the key of the i-th lock to all the members of
Ti. It is clear that then every coalition A ∈ F will have the keys to all ℓ locks, and hence, will be
able to open the safe. On the other hand, if some set B of individuals does not include a coalition
then, by Proposition ??, the set B is not a blocking set of b (F), that is, B ∩ Ti = ∅ for some i.
But this means that people in B lack the i-th key, as desired. �

A family F is called self-dual if b (F) = F .
For example, the family of all k-element subsets of a (2k −1)-element set is self-dual. Another

example is the family of r + 1 sets, one of which has r elements and the remaining r sets have 2
elements (see Fig. ??).

87
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.  .  .1 2 r

Figure 1. Example of a self-dual family.

What other families are self-dual? Our nearest goal is to show that a family is self-dual if and
only if it is intersecting and not 2-colorable. Let us first recall the definition of these two concepts.

A family is intersecting if any two of its sets have a non-empty intersection. The chromatic
number χ(F) of F ⊆ 2X is the smallest number of colors necessary to color the points in X so
that no set of F of cardinality > 1 is monochromatic. It is clear that χ(F) ≥ 2 (as long as F is
non-trivial, i.e., contains at least one set with more than one element).

The families with χ(F) = 2 are of special interest and are called 2-colorable. In other words,
F is 2-colorable iff there is a subset S such that neither S nor its complement X \ S contain a
member of F . It turns out that χ(F) > 2 is a necessary condition for a family F to be self-dual.

For families of sets F and G, we write F ≻ G if every member of F contains at least one
member of G.

Proposition 9.3. (i) A family F is intersecting if and only if F ≻ b (F).
(ii) χ(F) > 2 if and only if b (F) ≻ F .

Proof. (i) If F is intersecting then every A ∈ F is also a blocking set of F , and hence,
contains at least one minimal blocking set. Conversely, if F ≻ b (F) then every set of F contains
a blocking set of F , and hence, intersects all other sets of F .

(ii) Let us prove that χ(F) > 2 implies b (F) ≻ F . If not, then there must be a blocking set
T of F which contains no set of F . But its complement X \ T also contains no set of F , since
otherwise T would not block all the members of F . Thus (T, X \ T ) is a 2-coloring of F with no
monochromatic set, a contradiction with χ(F) > 2.

For the other direction, assume that b (F) ≻ F but χ(F) = 2. By the definition of χ(F) there
exists a set S such that neither S nor X \ S contain a set of F . This, in particular, means that
S is a blocking set of F which together with b (F) ≻ F implies that S ⊇ A for some A ∈ F , a
contradiction. �

Corollary 9.4. Let F be an antichain. Then the following three conditions are equivalent:

(1): b (F) = F ;
(2): F is intersecting and χ(F) > 2;
(3): both F and b (F) are intersecting.

Proof. Equivalence of (1) and (2) follows directly from Proposition ??. Equivalence of (1)
and (3) follows from the fact that both F and b (F) are antichains. �

2. The blocking number

Recall that the blocking number τ(F) of a family F is the minimum number of elements in a
blocking set of F , that is,

τ(F) := min {|T | : T ∩ A 6= ∅ for every A ∈ F } .

We make two observations concerning this characteristic:

If F contains a k-matching, i.e., k mutually disjoint sets, then τ(F) ≥ k.
If F is intersecting, then τ(F) ≤ minA∈F |A|.

A family F can have many smallest blocking sets, i.e., blocking sets of size τ(F). The following
result says how many. The rank of a family F is the maximum cardinality of a set in F .

Theorem 9.5 (Gyárfás 1987). Let F be a family of rank r, and let τ = τ(F). Then the
number of blocking sets of F with τ elements is at most rτ .
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Proof. We will prove by backward induction on i that every i-element set I is contained in
at most rτ−i τ -element blocking sets. It is obvious for i = τ and the case i = 0 gives the theorem.
If i < τ then there exists a set A ∈ F such that A ∩ I = ∅ (because |I| < τ(F)). Now apply
the induction hypothesis for the sets I ∪ {x}, x ∈ A. Observe that every blocking set T of F ,
containing the set I, must contain at least one of the extended sets I ∪ {x}, with x ∈ A (because
I ∩ A = ∅ whereas T ∩ A 6= ∅). By the induction hypothesis, each of the sets I ∪ {x} with x ∈ A,
is contained in at most rτ−(i+1) τ -element blocking sets of F . Thus, the set I itself is contained
in at most |A| · rτ−i−1 ≤ rτ−i τ -element blocking sets, as desired. �

Considering τ pairwise disjoint sets of size r shows that Theorem ?? is best possible.

Corollary 9.6 (Erdős–Lovász 1975). Let F be an intersecting r-uniform family with τ(F) =
r. Then |F| ≤ rr.

Proof. Each A ∈ F is a blocking set of size r. �

3. Helly-type theorems

In terms of the blocking number τ , the simplest Helly-type result for families of sets (Theo-
rem ??) says that if F is r-uniform and each set of ≤ r +1 of its members intersect then τ(F) = 1.
This result can be generalized as follows.

Theorem 9.7 (Lovász 1979). Let F be r-uniform. If each collection of k members (k ≥ 2) of
F intersect then τ(F) ≤ (r − 1)/(k − 1) + 1.

Proof. By construction. For j = 1, . . . , k we will select j sets A1, . . . , Aj in F such that

(49) 1 ≤ |A1 ∩ · · · ∩ Aj | ≤ r − (j − 1)(τ(F) − 1),

which for j = k gives the desired upper bound on τ = τ(F).
For j = 1 take A1 ∈ F arbitrarily.
Assume A1, . . . , Aj have been selected (j ≤ k − 1). The set A1 ∩ · · · ∩ Aj intersects every set

of F (why?), thus |A1 ∩ · · · ∩ Aj | ≥ τ(F). Take a subset S ⊆ A1 ∩ · · · ∩ Aj with |S| = τ − 1.
Since |S| < τ(F), there must be a set Aj+1 ∈ F such that S ∩ Aj+1 = ∅ (this set is different from
A1, . . . , Aj since S intersects all of them). Thus

|A1 ∩ · · · ∩ Aj ∩ Aj+1| ≤ |A1 ∩ · · · ∩ Aj ∩ S| = |A1 ∩ · · · ∩ Aj − S|
= |A1 ∩ · · · ∩ Aj | − (τ − 1) ≤ r − (j − 1)(τ − 1) − τ + 1 = r − j(τ − 1).

�

For graphs (i.e., for 2-uniform families) Helly’s theorem (Theorem ??) says that, if in a finite
graph any three edges share a common vertex, then this graph is a star. Erdős, Hajnal, and Moon
(1964) generalized this easy observation about graphs in a different direction. A set of vertices
S covers a set of edges F ⊆ E of a graph G = (V, E) if every edge in F has at least one of its
endpoints in S.

Theorem 9.8. If each family of at most
(

s+2
2

)
edges of a graph can be covered by s vertices,

then all edges can.

The complete graph on s + 2 vertices shows that this bound is best possible. Graphs are 2-
uniform families. The question was how to generalize the result to r-uniform families for arbitrary
r. The conjecture was easy to formulate: the formula

(
s+r

r

)
. This turns out to be the correct

answer.

Theorem 9.9 (Bollobás 1965). If each family of at most
(

s+r
r

)
members of an r-uniform

family can be blocked by s points then all members can.

Proof. Let F be an r-uniform family, satisfying the assumption of the theorem, and suppose
that τ(F) ≥ s + 1. Then there is a subfamily F ′ = {A1, . . . , Am} ⊆ F such that τ(F ′) = s + 1
and F ′ is τ -critical, that is,

τ(F ′ \ {Ai}) ≤ s
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for all i = 1, . . . , m. Our goal is to show that m ≤
(

r+s
s

)
, contradicting the assumption (that every

subfamily with so few members can be blocked by s points).
Since τ(F ′) = s + 1 and F ′ is τ -critical, for each i = 1, . . . , m, the family F ′ \ {Ai} has a

blocking set Bi of size s. Hence, Aj ∩ Bi 6= ∅ for all j 6= i. Moreover, Ai ∩ Bi = ∅ since Bi has
too few elements to intersect all the members of F ′. Thus, we can apply the Bollobás theorem
(Theorem ??) with a1 = . . . = am = r and b1 = . . . = bm = s, which yields

m ·
(

s + r

s

)−1

=
m∑

i=1

(
ai + bi

ai

)−1

≤ 1,

and the desired upper bound on m follows. �

4. Blocking sets and decision trees

Blocking sets play an important role in the theory of boolean functions. In the next sections
we will present some results in that direction.

Fix an arbitrary boolean function f(x1, . . . , xn). Given a vector a = (a1, . . . , an) in {0, 1}n,
a certificate for a (with respect to the function f) is a subset S ⊆ [n] = {1, . . . , n} of positions
such that f(b) = f(a) for all vectors b ∈ {0, 1}n with bi = ai for all i ∈ S. That is, if we set the
variables xi with i ∈ S to the corresponding bits of a, then the function will take the value f(a)
independent of the values of other variables. The certificate complexity of f on a vector a, C(f, a),
is the minimum size |S| of a certificate S for a. Define

C1(f) = max{C(f, a) : f(a) = 1} and C0(f) = max{C(f, a) : f(a) = 0} .

That is, C1(f) is the smallest number k such that, for every input a with f(a) = 1, there is a
subset S of |S| ≤ k positions such that, if we set xi := ai for all i ∈ S, then the function f takes
value 1 independent of the values of other variables.

Let Fi be the family of all certificates for inputs a ∈ f−1(i), i = 0, 1. Then we have the
following cross-intersection property:

(50) S ∩ T 6= ∅ for all S ∈ F0 and T ∈ F1.

Proof. Assume that there is a certificate S for a vector a ∈ f−1(0) and a certificate T for a
vector b ∈ f−1(1) such that S ∩ T = ∅. Take a vector c ∈ {0, 1}n such that ci = ai for all i ∈ S,
ci = bi for all i ∈ T , and ci = 0 for all i 6∈ S ∪ T . Since S is a certificate for a, and since vector c
coincides with a in all position i ∈ S, we have that f(c) = f(a) = 0. But by the same reason we
also have that f(c) = f(b) = 1, a clear contradiction. �

One can describe the certificates of a given boolean function f by so-called “decision trees.”
A decision tree for a boolean function f(x1, . . . , xn) is a binary tree whose internal nodes have

labels from x1, . . . , xn and whose leaves have labels from {0, 1}. If a node has label xi then the
test performed at that node is to examine the i-th bit of the input. If the result is 0, one descends
into the left subtree, whereas if the result is 1, one descends into the right subtree. The label of
the leaf so reached is the value of the function (on that particular input). The depth of a decision
tree is the number of edges in a longest path from the root to a leaf, or equivalently, the maximum
number of bits tested on such a path. Let DT (f) denote the minimum depth of a decision tree
computing f .

It is not difficult to show (do this!) that, for every boolean function f , we have that

max{C0(f), C1(f)} ≤ DT (f) .

This upper bound is, however, not optimal: there are boolean functions f for which

max{C0(f), C1(f)} ≤
√

DT (f) .

Such is, for example, the monotone boolean function f(X) on n = m2 boolean variables defined
by: f =

∧m
i=1

∨m
j=1 xij . For this function we have C0(f) = C1(f) = m but DT (f) = m2 (see

Exercise ??), implying that DT (f) = C0(f) · C1(f). It turns out that the example given above is,
in fact, the worst possible case.
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Theorem 9.10. For every boolean function f ,

DT (f) ≤ C0(f) · C1(f) .

Proof. Induction on the number of variables n. If n = 1 then the inequality is trivial.
Let (say) f(0, . . . , 0) = 0; then some set Y of k ≤ C0(f) variables can be chosen such that by

fixing their value to 0, the function f is 0 independently of the other variables. We can assume
w.l.o.g. that the set

Y = {x1, . . . , xk}
of the first k variables has this property.

Take a complete deterministic decision tree T0 of depth k on these k variables. Each of its
leaves corresponds to a unique input a = (a1, . . . , ak) ∈ {0, 1}k reaching this leaf. Replace such a
leaf by a minimal depth deterministic decision tree Ta for the sub-function

fa := f(a1, . . . , ak, xk+1, . . . , xn) .

Obviously, D0(fa) ≤ C0(f) and D1(fa) ≤ C1(f). We claim that the latter inequality can be
strengthened:

(51) C1(fa) ≤ C1(f) − 1

The argument is essentially the same as that in the proof of (??). Take an arbitrary input
(ak+1, . . . , an) of fa which is accepted by fa. Together with the bits (a1, . . . , ak), this gives an
input of the whole function f with f(a1, . . . , an) = 1. According to the definition of the quantity
C1(f), there must be a set Z = {xi1

, . . . , xim
} of m ≤ C1(f) variables such that fixing them to

the corresponding values xi1
= ai1

, . . . , xim
= aim

, the value of f becomes 1 independently of the
other variables. A simple (but crucial) observation is that

(52) Y ∩ Z 6= ∅.

Indeed, if Y ∩ Z = ∅ then the value of f(0, . . . , 0, ak+1, . . . , an) should be 0 because fixing the
variables in Y to 0 forces f to be 0, but should be 1, because fixing the variables in Z to the
corresponding values of ai forces f to be 1, a contradiction.

By (??), only |Z \ Y | ≤ m − 1 of the bits of (ak+1, . . . , an) must be fixed to force the sub-
function fa to obtain the constant function 1. This completes the proof of (??).

Applying the induction hypothesis to each of the sub-functions fa with a ∈ {0, 1}k, we obtain

DT (fa) ≤ C0(fa) · C1(fa) ≤ C0(f)(C1(f) − 1) .

Altogether,

DT (f) ≤ k + max
a

DT (fa) ≤ C0(f) + C0(f)(C1(f) − 1) = C0(f)C1(f) .

�

5. Blocking sets and monotone circuits

A boolean function f(x1, . . . , xn) is monotone if f(x1, . . . , xn) = 1 and xi ≤ yi for all i, imply
f(y1, . . . , yn) = 1. A monotone circuit is a sequence f1, . . . , ft of monotone boolean functions,
called gates, each of which is either one of the variables x1, . . . , xn or is obtained from some
previous gates via an And or Or operation. That is, each gate fi has either the form fi = xl for
some 1 ≤ l ≤ n, or one of the forms f = g ∨ h or f = g ∧ h for some g, h ∈ {0, 1, f1, . . . , fi−1}.
The size of a circuit is the number t of gates in it. The function computed by such a circuit is the
last function ft.

The problem (known as the lower bounds problem) is, given an explicit boolean function, to
prove that it cannot be computed by a circuit of small size. It is clear that every function can be
computed by a circuit of size exponential in the number of variables. However, even in the case
of monotone circuits, it is difficult to show that some function is indeed hard, i.e., requires many
gates.

In this section we will show that, using some combinatorial properties of blocking sets, one
may obtain exponential lower bounds in a relatively easy and direct way.
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A monotone k-CNF (conjunctive normal form) is an And of an arbitrary number of monotone
clauses, each being an Or of at most k variables. Dually, a monotone k-DNF is an Or of an
arbitrary number of monomials, each being an And of at most k variables. Note that in k-CNFs
we allow clauses shorter than k.

In an exact k-CNF we require that all clauses have exactly k distinct variables; exact k-DNF is
defined similarly. For two boolean functions f and g in n variables, we write f ≤ g if f(x) ≤ g(x)
for all input vectors x. For a CNF/DNF C we will denote by |C| the number of clauses/monomials
in it.

Our goal is to show that complex monotone functions, that is, monotone functions requiring
large monotone circuits cannot be “simple” in the sense that they cannot be approximated by
small CNFs and DNFs. The proof of this is based on the following “switching lemma” allowing us
to switch between CNFs and DNFs, and vice versa.

Lemma 9.11 (Monotone Switching Lemma). For every s-CNF f0 there is an r-DNF f1 and
an exact (r + 1)-DNF D such that

(53) f1 ≤ f0 ≤ f1 ∨ D and |D| ≤ sr+1 .

Dually, for every r-DNF f1 there is an s-CNF f0 and an exact (s + 1)-CNF C such that

(54) f0 ∧ C ≤ f1 ≤ f0 and |C| ≤ rs+1 .

Proof. We prove the first claim (the second is dual). Let f0 = C1 ∧ · · · ∧ Cℓ be an s-CNF;
hence, each clause Ci has |Ci| ≤ s variables. It will be convenient to identify clauses and monomials
with the sets of indices of their variables.

We associate with the CNF f0 the following tree T of fan-out at most s. The first node of
T corresponds to the first clause C1, and the outgoing |C1| edges are labeled by the variables
from C1. Suppose we have reached a node v, and let M be the monomial consisting of the labels
of edges on the path from the root to v. If M intersects all the clauses of f0, then v is a leaf.
Otherwise, let Ci be the first clause such that M ∩ Ci = ∅. Then the node v has |Ci| outgoing
edges labeled by the variables in Ci.

Note that each path from the root to a leaf of T corresponds to a monomial of f0 (since each
such path intersects all clauses). More important is that also the converse holds: each monomial
of f0 must contain all labels of at least one path from the root to a leaf. Thus, we have just
represented the DNF of f0 as a tree, implying that T (x) = f0(x) for all input vectors x ∈ {0, 1}n.
But some paths (monomials) may be longer than r + 1. So, we now cut off these long paths.

Namely, let f1 be the Or of all paths of length at most r ending in leafs, and D be the set of
all paths of length exactly r + 1. Observe that:

(i) every monomial of f1 is also a monomial of f0, and
(ii) every monomial of f0, which is not a monomial of f1, must contain (be an extension of) at

least one monomial of D.

For every input x ∈ {0, 1}n, we have f1(x) ≤ f0(x) by (i), and f0(x) ≤ f1(x) ∨ D(x) by (ii).
Finally, we also have that |D| ≤ sr+1, because every node of T has fan-out at most s. �

Most important in the Switching Lemma is that the (r+1)-DNF D, correcting possible errors,
contains only sr+1 monomials instead of all

(
n

r+1

)
possible monomials.

We now give a general lower bounds criterion for monotone circuits.

Definition 9.12. Let f(x1, . . . , xn) be a monotone boolean function. We say that f is t-
simple if for every pair of integers 1 ≤ r, s ≤ n − 1 there exists an exact (s + 1)-CNF C, an exact
(r + 1)-DNF D, and a subset I ⊆ {1, . . . , n} of size |I| ≤ s such that

[a]|C| ≤ t · rs+1 and |D| ≤ t · sr+1, and either C ≤ f or f ≤ D ∨ ∨i∈I xi (or
both) hold.

Theorem 9.13 (Lower bounds criterion). If a monotone boolean function can be computed by
a monotone circuit of size t, then it is t-simple.
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(a):(b): Proof. Given a monotone circuit, the idea is to approximate every intermediate gate
(more exactly – the function computed at the gate) by an s-CNF and an r-DNF, and to show that
when doing so we do not introduce too many errors. If the function computed by the whole circuit
is not t-simple, then it cannot be approximated well by such a CNF/DNF pair meaning that every
such pair must make many errors. Since the number of errors introduced at each separate gate is
small, the total number of gates must be large. To make as few errors at each gate as possible we
will use the Switching Lemma (Lemma ??) which allows us to approximate an s-CNF by small
r-DNFs and vice versa.

Let F (x1, . . . , xn) be a monotone boolean function, and suppose that F can be computed by
a monotone circuit of size t. Our goal is to show that the function F is t-simple. To do this, fix
an arbitrary pair of integers 1 ≤ s, r ≤ n − 1.

Let f = g ∗ h be a gate in our circuit. By an approximator of this gate we will mean a pair
f0, f1, where f0 is an s-CNF (a left approximator of f) and f1 is an r-DNF (a right approximator
of f) such that f1 ≤ f0.

We say that such an approximator f0, f1 of f introduces a new error on input x ∈ {0, 1}n

if the approximators of g and of h did not make an error on x, but the approximator of f does.
That is, g0(x) = g1(x) = g(x) and h0(x) = h1(x) = h(x), but either f0(x) 6= f(x) or f1(x) 6= f(x).

We define approximators inductively as follows.

Case 1: f is an input variable, say, f = xi. In this case we take f0 = f1 := xi. It is clear that
this approximator introduces no errors.

Case 2: f is an And gate, f = g ∧h. In this case we take f0 := g0 ∧h0 as the left approximator of
f ; hence, f0 introduces no new errors. To define the right approximator of f we use Lemma ?? to
convert f0 into an r-DNF f1; hence, f1 ≤ f0. Let Ef be the set of inputs on which f1 introduces
a new error, i.e.,

Ef := {x : f(x) = f0(x) = 1 but f1(x) = 0} .

By Lemma ??, all these errors can be “corrected” by adding a relatively small exact (r + 1)-DNF:
there is an exact (r + 1)-DNF D such that |D| ≤ sr+1 and D(x) = 1 for all x ∈ Ef .

Case 3: f is an Or gate, f = g ∨ h. This case is dual to Case 2. We take f1 := g1 ∨ h1 as the
right approximator of f ; hence, f1 introduces no new errors. To define the left approximator of f
we use Lemma ?? to convert f1 into an s-CNF f0; hence, f1 ≤ f0. Let Ef be the set of inputs on
which f0 introduces a new error, i.e.,

Ef := {x : f(x) = f1(x) = 0 but f0(x) = 1} .

By Lemma ??, all these errors can be “corrected” by adding a relatively small exact (s + 1)-CNF:
there is an exact (s + 1)-CNF C such that |C| ≤ rs+1 and C(x) = 0 for all x ∈ Ef .

Proceeding in this way we will reach the last gate of our circuit computing the given function
F . Let F0, F1 be its approximator, and let E be the set of all inputs x ∈ {0, 1}n on which F differs
from at least one of the functions F0 or F1. Since at input gates (= variables) no error was made,
for every such input x ∈ E, the corresponding error must be introduced at some intermediate
gate. That is, for every x ∈ E there is a gate f such that x ∈ Ef (approximator of f introduces
an error on x for the first time). But we have shown that, for each gate, all these errors can be
corrected by adding an exact (s + 1)-CNF of size at most rs+1 or an exact (r + 1)-DNF of size at
most sr+1. Since we have only t gates, all such errors x ∈ E can be corrected by adding an exact
(s + 1)-CNF C of size at most t · rs+1 and an exact (r + 1)-DNF D of size at most t · sr+1, that
is, for all inputs x ∈ {0, 1}n, we have

C(x) ∧ F0(x) ≤ F (x) ≤ F1(x) ∨ D(x) .

This already implies that the function F is t-simple. Indeed, if the CNF F0 is empty (i.e., if
F0 ≡ 1) then C ≤ F , and we are done. Otherwise, F0 must contain some clause S of length at
most s, say, S =

∨
i∈I xi for some I of size |I| ≤ s. Since F0 ≤ S, the condition F1 ≤ F0 implies

F ≤ F1 ∨ D ≤ F0 ∨ D ≤ S ∨ D, as desired. This completes the proof of Theorem ??. �
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In applications, boolean functions f are usually defined as set-theoretic predicates. In this
case we say that f accepts a set S ⊆ {1, . . . , n} if and only if f accepts its incidence vector.

A set S is a positive input for f if f(S) = 1, and a negative input if f(S) = 0, where S is the
complement of S. Put otherwise, a positive (negative) input is a set of variables which, if assigned
the value 1 (0), forces the function to take the value 1 (0) regardless of the values assigned to the
remaining variables. Note that one set S can be both positive and negative input! For example,
if f(x1, x2, x3) outputs 1 iff x1 + x2 + x3 ≥ 2, then S = {1, 2} is both positive and negative input
for f , because f(1, 1, x3) = 1 and f(0, 0, x3) = 0.

To translate the definition of t-simplicity of f (Definition ??) in terms of positive/negative
inputs, note that if C is a CNF, then C ≤ f means that every negative input of f must contain
at least one clause of C (looked at as set of indices of its variables). Similarly, f ≤ D ∨∨i∈I xi

means that every positive input must either intersect the set I or contain at least one monomial
of D.

We begin with the simplest example. We will also present a more respectable applications—a

2Ω(n1/4) lower bound—but this special case already demonstrates the common way of reasoning
pretty well.

Let us consider a monotone boolean function ∆m, whose input is an undirected graph on m
vertices, represented by n =

(
m
2

)
variables, one for each possible edge. The value of the function is

1 if and only if the graph contains a triangle (three incident vertices). Clearly, there is a monotone
circuit of size O(m3) computing this function: just test whether any of

(
m
3

)
triangles is present in

the graph. Thus, the following theorem is tight, up to a poly-logarithmic factor.

Theorem 9.14. Any monotone circuit, detecting whether a given m-vertex graph is triangle-
free, must have Ω

(
m3/ log4 m

)
gates.

Proof. Let t be the minimal number for which ∆m is t-simple. By Theorem ??, it is enough
to show that t ≥ Ω

(
m3/ log4 m

)
. For this proof we take

s := ⌊5 log2 m⌋ and r := 1 .

According to the definition of t-simplicity, we have only two possibilities.

Case 1: Every positive input for ∆m either intersects a fixed set I of s edges, or contains at least
one of L ≤ tsr+1 = ts2 2-element sets of edges R1, . . . , RL.

As positive inputs for ∆m we take all triangles, i.e., graphs on m vertices with exactly one
triangle; we have

(
m
3

)
such graphs. At most s(m − 2) of them will have an edge in I. Each of the

remaining triangles must contain one of ts2 given pairs of edges Ri. Since two edges can lie in at
most one triangle, we conclude that, in this case,

t ≥
(

m
3

)
− s(m − 2)

s2 = Ω
(
m3/ log4 m

)
.

Case 2: Every negative input for ∆m contains at least one of trs+1 = t sets of edges S1, . . . , St,
each of size |Si| = s + 1.

In this case we consider the graphs E = E1 ∪ E2 consisting of two disjoint non-empty cliques
E1 and E2 (we look at graphs as sets of their edges). Each such graph E is a negative input for
∆m, because its complement is a bipartite graph, and hence, has no triangles. The number of
such graphs is a half of the number 2m of all binary strings of length m excluding 0 and 1. Hence,
We have 2m−1 − 1 such graphs, and each of them must contain at least one of the sets S1, . . . , St.
Every of these sets of edges Si is incident to at least

√
2s vertices, and if E ⊇ Si then all these

vertices must belong to one of the cliques E1 or E2. Thus, at most 2m−
√

2s − 1 of our negative
inputs E can contain one fixed set Si, implying that, in this case,

t ≥ 2m−1 − 1

2m−
√

2s − 1
≥ 2

√
2s−1 ≥ 23 log m ≥ m3 .

Thus, in both cases, t ≥ Ω
(
m3/ log4 m

)
, and we are done. �
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Our next example is the following monotone boolean function introduced by Andreev (1985).
Let q ≥ 2 be a prime power, and set d := ⌊(q/ ln q)1/2/2⌋. Consider q × q (0, 1) matrices A =
(ai,j). Given such a matrix A, we are interested in whether it contains a graph of a polynomial
h : GF (q) → GF (q), that is, whether ai,h(i) = 1 for all rows i ∈ GF (q).

Let fn be a monotone boolean function in n = q2 variables such that fn(A) = 1 iff A contains
a graph of at least one polynomial over GF (q) of degree at most d − 1. That is,

fn(X) =
∨

h

∧

i∈GF (q)

xi,h(i) ,

where h ranges over all polynomials over GF (q) of degree at most d − 1. Since we have at most qd

such polynomials, the function fn can be computed by a monotone boolean circuit of size at most

qd+1, which is at most nO(d) = 2O(n1/4
√

ln n). We will now show that this trivial upper bound is
almost optimal.

Theorem 9.15. Any monotone circuit computing the function fn has size at least 2Ω(n1/4
√

ln n).

Proof. Take a minimal t for which the function fn is t-simple. Since n = q2 and (by our

choice) d = Θ(n1/4
√

ln n), it is enough by Theorem ?? to show that t ≥ qΩ(d). For this proof we
take

s := ⌈d ln q⌉ and r := d ,

and look at input matrices as bipartite q × q graphs. In the proof we will essentially use the
well-known fact that no two distinct polynomials of degree at most d − 1 can coincide on d points.
According to the definition of t-simplicity, we have only two possibilities.

Case 1: Every positive input for fn either intersects a fixed set I of at most s edges, or contains
at least one of L ≤ tsr+1 (r + 1)-element sets of edges R1, . . . , RL.

Graphs of polynomials of degree at most d − 1 are positive inputs for fn. Each set of l
(1 ≤ l ≤ d) edges is contained in either 0 or precisely qd−l of such graphs. Hence, at most sqd−1

of these graphs can contain an edge in I, and at most qd−(r+1) of them can contain any of the
given graphs Ri. Therefore, in this case we again have

t ≥
(

1 − s

q

)
qd

sr+1 · qd−(r+1)
≥
(q

s

)Ω(r)
≥ qΩ(d) .

Case 2: Every negative input for fn contains at least one of K ≤ trs+1 (s + 1)-element sets of
edges S1, . . . , SK .

Let E be a random bipartite graph, with each edge appearing in E independently with
probability γ := (2d ln q)/q. Since there are only qd polynomials of degree at most d − 1, the
probability that the complement of E will contain the graph of at least one of them does not
exceed qd(1 − γ)q ≤ q−d, by our choice of γ. Hence, with probability at least 1 − q−d, the graph E

is a negative input for f . On the other hand, each of the sets Si is contained in E with probability
γ|Si| = γs+1. Thus, in this case,

t ≥ 1 − q−d

rs+1γs+1 ≥
(

q

2d2 ln q

)Ω(s)

≥ 2Ω(s) ≥ qΩ(d) ,

where the third inequality holds for all d ≤ (q/ ln q)1/2/2.
We have proved that the function f can be t-simple only if t ≥ qΩ(d). By Theorem ??, this

function cannot be computed by monotone circuits of size smaller than qΩ(d). �

Exercises

Ex 9.1. The independence number α(F) of a family F ⊆ 2X is defined as the maximum
cardinality |S| of a set S ⊆ X which does not contain any member of F . Prove that α(F) =
|X| − τ(F).

Ex 9.2. Let T be a minimal blocking set of a family F . Show that, for every x ∈ T , there
exists an A ∈ F such that T ∩ A = {x}.
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Ex 9.3. Show that the solution to Proposition ?? is optimal: if F is an antichain, then at
least |b (F) | locks are also necessary.

Ex 9.4. Let F be an r-uniform family and suppose that τ(F \ {A}) < τ(F) for all A ∈ F .

Prove that |F| ≤
(

r+τ(F)−1
r

)
. Hint: Observe that, for each A ∈ F , there is a set B of size τ(F) − 1

which is disjoint from A but intersects all other members of F ; apply the Bollobás theorem (Theorem ??).

Ex 9.5. Let F and H be antichains over some set X. Prove that:

(i) H = b (F) if and only if for every coloring of the points in X in Red and in Blue, either F has
a Red set (i.e., all points in this set are red), or (exclusive) H has a Blue set.

(ii) F ≻ H if and only if b (H) ≻ b (F).

Ex 9.6. Consider the following family F . Take k disjoint sets V1, . . . , Vk such that |Vi| = i for
i = 1, . . . , k. The members of F are all the sets of the form Vi ∪ T , where T is any set such that
|T | = k − i and |T ∩ Vj | = 1 for all j = i + 1, . . . , k. Show that this family is self-dual, i.e., that
F = b (F). (This construction is due to Erdős and Lovász.)

Ex 9.7. A pair of sets (A, B) separates a pair of elements (x, y) if x ∈ A \ B and y ∈ B \ A. A
family F = {A1, . . . , Am} of subsets of X = {x1, . . . , xn} is a complete separator if every pair of
elements in X is separated by at least one pair of sets in F . Let F∗ be the family of all non-empty
sets Xi := {j : xi ∈ Aj}. Prove that F is a complete separator if and only if F∗ is an antichain.
Hint: Xi 6⊆ Xj means that there exists k such that k ∈ Xi and k 6∈ Xj , i.e., that xi ∈ Ak and xj 6∈ Ak.

Ex 9.8. Let F be a family of rank r. Show that then, for any s ≥ 1, the family F has at most
rs minimal blocking sets of size s.

Ex 9.9. Prove that any decision tree for the function f =
∧m

i=1

∨m
j=1 xij has depth m2. Hint:

Take an arbitrary decision tree for f and construct a path from the root by the following “adversary” rule.
Suppose we have reached a node v labeled by xij . Then follow the outgoing edge marked by 1 if and only
if all the variables xil with l 6= j were already tested before we reached the node v.

Ex 9.10. The storage access function is a boolean function f(x, y) on n + k variables x =
(x0, . . . , xn−1) and y = (y0, . . . , yk−1) where n = 2k, and is defined as follows: f(x, y) := xint(y),

where int(y) :=
∑k−1

i=0 yi2
i is the integer whose binary representation is the vector y. Prove that

f is a (k + 1)-DNF function although some of its minterms have length 2k. Hint: For the first claim
observe that the value of f only depends on k + 1 bits y0, . . . , yk−1 and xint(y). For the lower bound,
consider the monomial x0x1 · · · xn−1 and show that it is a minterm of f .

Ex 9.11. A partial b–(n, k, λ) design is a family F of k-element subsets of {1, . . . , n} such
that any b-element set is contained in at most λ of its members. We can associate with each such
design F a monotone boolean function fF such that fF (S) = 1 if and only if S ⊇ F for at least
one F ∈ F . Assume that ln |F| < k − 1 and that each element belongs to at most N members of
F . Use Theorem ?? to show that for every integer a ≥ 2, every monotone circuit computing fF
has size at least

ℓ := min

{
1

2

(
k

2b ln |F|

)a

,
|F| − a · N

λ · ab
,

}
.

Hint: Take s = a, r = b and show that under this choice of parameters, the function fF can be t-simple
only if t ≥ ℓ. When doing this, note that the members of F are positive inputs for fF . To handle the case
of negative inputs, take a random subset in which each element appears independently with probability
p = (1 + ln |F|)/k, and show that its complement can contain a member of F with probability at most
|F|(1 − p)k ≤ e−1.

Ex 9.12. Derive Theorem ?? from the previous exercise. Hint: Observe that the family of all qd

graphs of polynomials of degree at most d − 1 over Fq forms a partial b–(n, k, λ) design with parameters
n = q2, k = q and λ = qd−b.

Ex 9.13. Andreev (1987) has shown how, for any prime power q ≥ 2 and d ≤ q, to construct
an explicit family D of subsets of {1, . . . , n} which, for every b ≤ d + 1, forms a partial b–(n, k, λ)
design with parameters n = q3, k = q2, λ = q2d+1−b and |D| = q2d+1. Use Exercise ?? to
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show that the corresponding boolean function fD requires monotone circuits of size exponential
in Ω

(
n1/3−o(1)

)
.

Ex 9.14. (due to Berkowitz). A k-threshold is a monotone boolean function
T n

k (x1, . . . , xn) which outputs 1 if and only if the input vector x = (x1, . . . , xn) has weight at
least k, i.e., if |x| := x1 + · · · + xn ≥ k. Show that

T n−1
k (x1, . . . , xi−1, xi+1, . . . , xn) = xi,

for all inputs (x1, . . . , xn) such that x1 + · · · + xn = k.

Ex 9.15. A boolean function f is a slice function if there is some 0 ≤ k ≤ n such that for
every input x ∈ {0, 1}n,

f(x) =

{
0 if |x| < k;
1 if |x| > k.

That is, f can be non-trivial only on inputs with exactly k ones; in this case we also say that f is
the k-slice function. Use the previous exercise and the fact that the threshold function T n

k has a
monotone circuit of size O(n2) to prove that for such functions, using the negations cannot help
much. Namely, prove that if a slice function f has a non-monotone circuit of size ℓ, then f can
also be computed by a monotone circuit of size at most ℓ + O(n3).





CHAPTER 10

Density and Universality

In many applications (testing logical circuits, construction of k-wise independent random
variables, etc.), vector sets A ⊆ {0, 1}n with the following property play an important role:

For any subset of k coordinates S = {i1, . . . , ik} the projection of A onto the indices in
S contains all possible 2k configurations.

Such sets are called (n, k)-universal. If the same holds not for all but only for at least one subset
S of k indices, then A is called (n, k)-dense. The maximal number k, for which A is (n, k)-dense,
is also known as the Vapnik–Chervonenkis dimension of A.

Given n and k, the problem is to find a universal (or dense) set A with as few vectors as
possible. In this chapter we will discuss several approaches to its solution.

1. Dense sets

Given a vector v = (v1, . . . , vn), its projection onto a set of coordinates S = {i1, . . . , ik} is the
vector v↾S := (vi1

, . . . , vik
). The projection of a set of vectors A ⊆ {0, 1}n onto S is the set of

vectors A↾S := {v↾S : v ∈ A}. Thus, A is (n, k)-dense iff A↾S = {0, 1}k for at least one subset of
k coordinates S.

It is clear that every (n, k)-dense set must contain at least 2k vectors. On the other hand, if
A is the set of all vectors in {0, 1}n with less than k ones, then A has

H(n, k) :=

k−1∑

i=0

(
n

i

)

vectors but is not (n, k)-dense. It turns out, however, that every larger set already is (n, k)-
dense! This interesting fact, whose applications range from probability theory to computational
learning theory, was discovered independently by three sets of authors in remarkable simultaneity:
Perles and Shelah (see Shelah 1972), Sauer (1972), and Vapnik and Chervonenkis (1971). No less
remarkable is the range of contexts in which the results arose: logic, set theory, and probability
theory.

Theorem 10.1. If A ⊆ {0, 1}n and |A| > H(n, k) then A is (n, k)-dense.

Proof. Induction on n and k. If k = 1 then A has at least two different vectors and hence
is (n, 1)-dense. For the induction step take an arbitrary set A ⊆ {0, 1}n of size |A| > H(n, k).
Let B be the projection of A onto the first n − 1 coordinates, and C be the set of all vectors u in
{0, 1}n−1 for which both vectors (u, 0) and (u, 1) belong to A. A simple but crucial observation is
that

|A| = |B| + |C|.
Now, if |B| > H(n − 1, k) then the set B is (n − 1, k)-dense by induction, and hence the whole
set A is also (n, k)-dense. If |B| ≤ H(n − 1, k) then, using the identity

(
n
i

)
−
(

n−1
i

)
=
(

n−1
i−1

)
(see

Proposition ??) we obtain

|C| = |A| − |B| > H(n, k) − H(n − 1, k)

=

k−1∑

i=0

(
n

i

)
−

k−1∑

i=0

(
n − 1

i

)
=

k−2∑

i=0

(
n − 1

i

)

= H(n − 1, k − 1).

99
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By the induction hypothesis, the set C is (n − 1, k − 1)-dense, and since C × {0, 1} lies in A, the
whole set A is also (n, k)-dense. �

2. Hereditary sets

Alon (1983) and Frankl (1983) have independently made an intriguing observation that for
results like Theorem ??, we can safely restrict our attention to sets with a very special structure.

A set A ⊆ {0, 1}n is hereditary or downwards closed if v ∈ A and u ≤ v implies u ∈ A. (Here,
as usual, u ≤ v means that ui ≤ vi for all i.) Thus, being hereditary means that we can arbitrarily
switch 1s to 0s, and the resulting vectors will still belong to the set.

For a set S ⊆ {1, . . . , n} of coordinates, let tS(A) denote the number of vectors in the projection
A↾S . If v is a vector and i is any of its coordinates, then the i-th neighbor of v is the vector vi→0

obtained from v by switching its i-th bit to 0; if this bit is 0 then we let vi→0 = v.

Theorem 10.2. For every subset A of the n-cube {0, 1}n there is a hereditary subset B such
that |B| = |A| and tS(B) ≤ tS(A) for all sets S of coordinates.

Before we prove this result, observe that it immediately implies Theorem ??: if B is hereditary
and |B| > H(n, k), then B must contain a vector v with at least k ones, and so, must contain all
the 2k vectors obtained from v by changing any subset of these ones to zeroes.

Proof. If A itself is hereditary, there is nothing to do. Otherwise, we have some “bad”coordinates,
i.e., coordinates i such that vi→0 6∈ A for some v ∈ A. To correct the situation, we will apply for
each such bad coordinate i, the following transformation Ti. Take a vector v ∈ A with vi = 1,
and see if vi→0 belongs to A. If so, do nothing; otherwise, replace the vector v in A by vi→0.
Apply this transformation as long as possible, and let B denote the resulting set. It is clear that
|B| = |A|. We also claim that tS(B) ≤ tS(A) for every S ⊆ {1, . . . , n}.

Indeed, if i 6∈ S then tS(B) = tS(A), and we are done. Suppose that i ∈ S and let S′ = S \{i}.
Assume, for notational convenience, that i was the first coordinate, i.e., that i = 1. Now, if
tS(B) ≥ tS(A) + 1, this can happen only when A has two vectors x = (1, u, w1) and y = (1, u, w2)

with u ∈ {0, 1}S′

and w1 6= w2, and such that exactly one of them, say x, was altered by Ti.
That is, the S-projection of B contains both vectors (1, u) and (0, u), whereas (0, u) does not
appear in the S-projection of A. But this is impossible because the fact that the other vector
y = (1, u, w2) was not altered by Ti means that its i-th neighbor (0, u, w2) belongs to A, and hence
vector (0, u) must appear among the vectors in the S-projection of A. This contradiction proves
that tS(B) ≤ tS(A).

Thus, starting with A, we can apply the transformations Ti along all n coordinates i = 1, . . . , n,
and obtain the set B = Tn(Tn−1(· · · T1(A) · · · )), which is hereditary, has the same number of
vectors as the original set A and satisfies the condition tS(B) ≤ tS(A) for all S. �

Frankl (1983) observed that this result also has other interesting consequences. For a set
A ⊆ {0, 1}n, let ts(A) = max tS(A) over all S ⊆ {1, . . . , n} with |S| = s; hence, tn(A) = |A|.

Theorem 10.3 (Bondy 1972). If |A| ≤ n then tn−1(A) = |A|.
Proof. We will give a direct proof of this result in Sect. ??; here we show that it is a

consequence of Theorem ??.
By this theorem we may assume that A is hereditary. If A is empty, there is nothing to prove.

Otherwise, A must contain the all-0 vector. Hence, at least one of n unit vectors

ei = (0, . . . , 0, 1, 0, . . . , 0),

with the 1 in the i-th coordinate, does not belong to A. As A is hereditary, this implies that
|A| = tn(A) = tS(A) for S = {1, . . . , n} \ {i}. �

Bollobás (see Lovász 1979, Problem 13.10) extended this result to larger sets.

Theorem 10.4. If |A| ≤ ⌈ 3
2 n⌉ then tn−1(A) ≥ |A| − 1.
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Proof. By Theorem ?? we may assume that A is hereditary. If there is an i such that ei 6∈ A,
then again tn−1(A) = |A|, and we are done. Otherwise, A contains the all-0 vector and all unit
vectors e1, . . . , en. Let A′ be the set of all vectors in A with precisely two 1s. Each such vector
covers only two of the unit vectors. Therefore, some ei must remain uncovered, for otherwise we
would have |A| ≥ 1 + n + ⌈n/2⌉ > ⌈ 3

2 n⌉. But this means that ei is the only vector in A with 1 in
the i-th coordinate, implying that for S = {1, . . . , n} \ {i}, tS(A) = |A \ {ei}| = |A| − 1. �

Combining Theorem ?? with the deep Kruskal–Katona theorem about the shadows of arbi-
trary families of sets (see Theorem ?? below), Frankl (1983) derived the following general result,
which is the best possible whenever t divides n (see Exercise ??). We state it without proof.

Theorem 10.5 (Frankl 1983). If A ⊆ {0, 1}n and |A| ≤ ⌈n(2t − 1)/t⌉, then tn−1(A) ≥
|A| − 2t−1 + 1.

The following result concerning the intersection of hereditary sets, due to Kleitman, has many
generalizations and applications (see, for example, Exercise ?? and Theorem ??):

Theorem 10.6 (Kleitman 1966). Let A, B be downwards closed subsets of {0, 1}n. Then

|A ∩ B| ≥ |A| · |B|
2n

.

Proof. Apply induction on n, the case n = 0 being trivial. For ǫ ∈ {0, 1}, set cǫ = |Aǫ| and
dǫ = |Bǫ|, where

Aǫ := {(a1, . . . , an−1) : (a1, . . . , an−1, ǫ) ∈ A}
and

Bǫ := {(b1, . . . , bn−1) : (b1, . . . , bn−1, ǫ) ∈ B} .

Then

|A ∩ B| = |A0 ∩ B0| + |A1 ∩ B1|
≥ (c0d0 + c1d1)/2n−1 (by induction)

= (c0 + c1)(d0 + d1)/2n + (c0 − c1)(d0 − d1)/2n.

Since sets A, B are downwards closed, we have A1 ⊆ A0 and B1 ⊆ B0, implying that (c0 −c1)(d0 −
d1) ≥ 0. Since c0 + c1 = |A| and d0 + d1 = |B|, we are done. �

3. Matroids and approximation

Given a family F of subsets of some finite set X, called the ground-set, and a weight function
assigning each element x ∈ X a non-negative real number w(x), the optimization problem for F
is to find a member A ∈ F whose weight w(A) =

∑
x∈A w(x) is maximal. For example, given a

graph G = (V, E) with non-negative weights on edges, we might wish to find a matching (a set of
vertex-disjoint edges) of maximal weight. In this case X = E is the set of edges, and members of
F are matchings. As it happens in many other situations, the resulting family is hereditary, that
is, A ∈ F and B ⊆ A implies B ∈ F .

In general, some optimization problems are extremely hard—the so-called “NP-hard prob-
lems.” In such situations one is satisfied with an “approximative” solution, namely, with a member
A ∈ F whose weight is at least 1/k times the weight of an optimal solution, for some real constant
k ≥ 1.

One of the simplest algorithms to solve an optimization problem is the greedy algorithm. It
first sorts the elements x1, x2, . . . , xn of X by weight, heaviest first. Then it starts with A = ∅ and
in the i-th step adds the element xi to the current set A if and only if the result still belongs to F .
A basic question is: for what families F can this trivial algorithm find a good enough solution?

Namely, say that a family F is greedy k-approximative if, for every weight function, the weight
of the solution given by the greedy algorithm is at least 1/k times the weight of an optimal solution.
Note that being greedy 1-approximative means that for such families the greedy algorithm always
finds an optimal solution.

Given a real number k ≥ 1, what families are greedy k-approximative?
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In the case k = 1 (when greedy is optimal) a surprisingly tight answer was given by introducing
a notion of “matroid.” This notion was motivated by the following “exchange property” in linear
spaces: If A, B are two sets of linearly independent vectors, and if |B| > |A|, then there is a vector
b ∈ B \ A such that the set A ∪ {b} is linearly independent.

Now let F be a family of subsets of some finite set X; we call members of F independent
sets. A k-matroid is a hereditary family F satisfying the following k-exchange property: For every
two independent sets A, B ∈ F , if |B| > k|A| then there exists b ∈ B \ A such that∗ A + b is
independent (belongs to F). Matroids are k-matroids for k = 1.

Matroids have several equivalent definitions. One of them is in terms of maximum independent
sets. Let F be a family of subsets of X (whose members we again call independent sets), and
Y ⊆ X. An independent set A ∈ F is a maximum independent subset of Y (or a basis of Y in F)
if A ⊆ Y and A + x 6∈ F for all x ∈ Y \ A. A family is k-balanced if for every subset Y ⊆ X and
any two of its maximum independent subsets A, B ⊆ Y we have that |B| ≤ k|A|.

Lemma 10.7. A hereditary family is k-balanced if and only if it is a k-matroid.

Proof. (⇐) Let Y ⊆ X, and let A, B ⊆ Y be two sets in F that are maximum independent
subsets of Y . Suppose that |B| > k|A|. Then by the k-exchange property, we can add some
element b of B \ A to A and keep the result A + b in F . But since A and B are both subsets of Y ,
the set A + b is also a subset of Y and thus A is not maximum independent in Y , a contradiction.

(⇒) We will show that if F does not satisfy the k-exchange property, then it is not k-balanced.
Let A and B be two independent sets such that |B| > k|A| but no element of B \ A can be added
to A to get a result in F . We let Y be A∪B. Now A is a maximum independent set in Y , since we
cannot add any of the other elements of Y to it. The set B may not be a maximum independent
set in Y , but if it isn’t there is some subset B′ of Y that contains it and is maximum independent
in Y . Since this set is at least as big as B, it is strictly bigger than k|A| and we have a violation
of the k-balancedness property. �

For k = 1, the (⇐) direction of the following theorem was proved by Rado (1942), and the
(⇒) direction by Edmonds (1971).

Theorem 10.8. A hereditary family is greedy k-approximative if and only if it is a k-matroid.

Proof. (⇐) Let F be a k-matroid over some ground-set X. Fix an arbitrary weight function,
and order the elements of the ground-set X according to their weight, w(x1) ≥ w(x2) ≥ . . . ≥
w(xn). Let A be the solution given by the greedy algorithm, and B an optimal solution. Our goal
is to show that w(B)/w(A) ≤ k.

Let Yi := {x1, . . . , xi} be the set of the first i elements considered by the greedy algorithm.
The main property of the greedy algorithm is given by the following simple claim.

Claim 10.9. For every i, the set A ∩ Yi is a maximum independent subset of Yi.

Proof. Suppose that the independent set A ∩ Yi is not a maximum independent subset of
Yi. Then there must exist an element xj ∈ Yi \ A (an element not chosen by the algorithm) such
that the set A ∩ Yi + xj is independent. But then A ∩ Yj−1 + xj (as a subset of an independent
set) is also independent, and should have been chosen by the algorithm, a contradiction. �

Now let Ai := A ∩ Yi. Since Ai \ Ai−1 is either empty or is equal to {xi},

w(A) = w(x1)|A1| +

n∑

i=2

w(xi)(|Ai| − |Ai−1|)

=

n−1∑

i=1

(w(xi) − w(xi+1))|Ai| + w(xn)|An| .

∗Here and in what follows, A + b will stand for the set A ∪ {b}.
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Similarly, letting Bi := B ∩ Yi, we get

w(B) =

n−1∑

i=1

(w(xi) − w(xi+1))|Bi| + w(xn)|Bn| .

Using the inequality (a + b)/(x + y) ≤ max{a/x, b/y} we obtain that w(B)/w(A) does not exceed
|Bi|/|Ai| for some i. By Claim ??, the set Ai is a maximum independent subset of Yi. Since Bi is
also a (not necessarily maximum) independent subset of Yi, the k-balancedness property implies
that |Bi| ≤ k|Ai|. Hence, w(B)/w(A) ≤ |Bi|/|Ai| ≤ k, as desired.

(⇒) We will prove that if our family F fails to satisfy the k-exchange property, then there is
some weight function on which the greedy algorithm fails to approximate an optimal solution by
a factor of 1/k.

Suppose there are two sets A and B in F , with |B| > k|A|, such that no element of B \ A
can be added to A while keeping the result in F . Let m = |A|. Take any two positive numbers
a and b such that 0 < a − b ≤ 1/k. Define the weight function as follows: elements in A have
weight m + a, elements in B \ A have weight m + b, and other elements have weight 0. Then
the greedy algorithm tries elements of weight m + a first, gets all m of them, but then is stuck
because no element of weight m+b fits; hence, the total score of the greedy algorithm is m(m+a).
But the optimum is at least the total weight (m + b)|B| ≥ (m + b)(km + 1) of elements in B.
Thus, the greedy algorithm can (1/k)-approximate this particular optimization problem only if
(m + b)(km + 1) ≤ km(m + a), or equivalently, if k(a − b) ≥ 1 + b/m. But this is impossible
because a − b ≤ 1/k and b > 0. �

When trying to show that a given family is a k-matroid, the following somewhat easier to
verify property, suggested by Mestre (2006), is often useful. We say that a family F is k-extendible
if for every sets A ⊂ B ∈ F and for every element x 6∈ B the following holds: If the set A + x is
independent then the set B + x can be made independent by removing from B at most k elements
not in A, that is, there exists Y ⊆ B \ A such that |Y | ≤ k and the set B \ Y + x is independent.

Lemma 10.10. Every k-extendible hereditary family is a k-matroid.

Proof. Given two independent sets A and B with |B| > k|A|, we need to find an element
z ∈ B \ A such that the set A + z is independent. If A ⊂ B then we are done since all subsets of B
are independent. Suppose now that A 6⊆ B. The idea is to pick an element x ∈ A \ B and apply
the k-extendibility property to the sets C := A∩B and D := B to find a subset Y ⊆ D\C = B \A
with at most k elements such that the set B′ = B \ Y + x is independent. If A is still not a subset
of B′, then repeat the same procedure. Since, due to the condition Y ⊆ B \ A, at any step none
of the already added elements of A are removed, after at most |A \ B| steps we will obtain an
independent set B′ such that A ⊆ B′. From |B| > k|A|, we have that |B \ A| > k|A \ B|. Since
in each step at most k elements of B are removed, at least one element z ∈ B \ A must remain in
B′, that is, A is a proper subset of B′. But then the set A + z is independent, because B′ is such,
and we are done. �

In the case of matroids (k = 1) we also have the converse.

Lemma 10.11. Every matroid is 1-extendible.

Proof. Let F be a matroid. Given sets A ⊂ B ∈ F and an element x 6∈ B such that the set
A + x is independent, we need to find an element y ∈ B \ A such that B − y + x is independent.
If necessary, we can repeatedly apply the matroid property to add elements of B \ A to A until
we get a subset A′ such that A ⊆ A′ ⊂ B, A′ + x ∈ F and |A′ + x| = |B|. Since x 6∈ B, this
implies that B \ A′ consists of just one element y. But then B − y + x = A′ + x belongs to F , as
desired. �

It can be shown (see Exercise ??) that for k ≥ 2 the converse of Lemma ?? does not hold,
that is, not every k-matroid is k-extendible. Still, together with Theorem ??, Lemma ?? gives us
a handy tool to show that some unrelated optimization problems can be approximated quite well
by using the trivial greedy algorithm.
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Example 10.12 (Maximum weight f -matching). Given a graph G = (V, E) with non-negative
weights on edges and degree constraints f : V → N for vertices, an f -matching is a set of edges
M such that for all v ∈ V the number degM (v) of edges in M incident to v is at most f(v). The
corresponding optimization problem is to find an f -matching of maximal weight.

In this case we have a family F whose ground-set is the set X = E of edges of G and f -
matchings are independent sets (members of F). Note that F is already not a matroid when
f(v) = 1 for all v ∈ V : if A = {a, b} and B = {{c, a}, {b, d}} are two matchings, then |B| > |A|
but no edge of B can be added to A. We claim that this family is 2-extendible, and hence, is a
2-matroid.

To show this, let A+x and B be any two f -matchings, where A ⊂ B and x = {u, v} is an edge
not in B. If B + x is an f -matching, we are done. If not, then degB(u) = f(u) or degB(v) = f(v)
(or both). But we know that degA(u) < f(u) and degA(v) < f(v), for otherwise A + x would not
be an f -matching. Thus, we can remove at most two edges of B not in A so that the resulting
graph plus the edge x forms a f -matching.

Example 10.13 (Maximum weight traveling salesman problem). We are given a complete
directed graph with non-negative weights on edges, and we must find a maximum weight Hamil-
tonian cycle, that is, a cycle that visits every vertex exactly once. This problem is very hard: it
is a so-called “NP-hard” problem. On the other hand, using Theorem ?? and Lemma ?? we can
show that the greedy algorithm can find a Hamiltonian cycle whose weight is at least one third of
the maximum possible weight of a Hamiltonian cycle.

The ground-set X of our family F in this case consists of the directed edges of the complete
graph. A set is independent if its edges form a collection of vertex-disjoint paths or a Hamiltonian
cycle. It is enough to show that F is 3-extendible.

To show this, let A + x and B be any two members of F , where A ⊂ B and x = (u, v) is an
edge not in B. First remove from B the edges (if any) out of u and into v. There can be at most
two such edges, and neither of them can belong to A since otherwise A + (u, v) would not belong
to F . If we add (u, v) to B then every vertex has in-degree and out-degree at most one. Hence,
the only reason why the resulting set may not belong to F is that there may be a non-Hamiltonian
cycle which uses (u, v). But then there must be an edge in the cycle, not in A, that we can remove
to break it: if all edges, except for (u, v), of the cycle belong to A, then A + (u, v) contains a
non-Hamiltonian cycle and could not belong to F . Therefore we need to remove at most three
edges in total.

4. The Kruskal–Katona theorem

A neighbor of a binary vector v is a vector which can be obtained from v by flipping one of
its 1-entries to 0. A shadow of a set A ⊆ {0, 1}n of vectors is the set ∂(A) of all its neighbors. A
set A is k-regular if every vector in A contains exactly k 1-entries. Note that in this case ∂(A) is
(k − 1)-regular.

A basic question concerning shadows is the following one: What can one say about |∂(A)| in
terms of the total number |A| of vectors in a k-regular set A?

In general one cannot improve on the trivial upper bound |∂(A)| ≤ k|A|. But what about
lower bounds? The question is non-trivial because one and the same vector with k − 1 ones may
be a neighbor of up to n − k + 1 vectors in A. Easy counting shows that

|∂(A)| ≥ k

n − k + 1
|A| =

|A|(
n
k

)
(

n

k − 1

)
.

This can be shown by estimating the number N of pairs (u, v) of vectors such that v ∈ A and u is
a neighbor of v. Since every v ∈ A has exactly k neighbors, we have that N = k|A|. On the other
hand, every vector u with k − 1 ones can be a neighbor of at most n − k + 1 vectors of A. Hence,
k|A| = N ≤ (n − k + 1)|∂(A)|, and the desired lower bound on |∂(A)| follows.

Best possible lower bounds on |∂(A)| were obtained by Kruskal (1963) and Katona (1966).
The idea, again, is to show that the minimum of |∂(A)| over all sets A with |A| = m is achieved
by sets of a very special structure, and use the Pascal identity for binomial coefficients

(
x
k

)
=
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x(x − 1) · · · (x − k + 1)/k!: for every real number x ≥ k

(55)

(
x

k − 1

)
+

(
x

k

)
=

(
x + 1

k

)
.

In Proposition ?? we gave a combinatorial proof of this identity in the case when x is a natural
number. The case when x is not necessarily an integer can be shown by a simple algebraic
manipulation:

(
x

k − 1

)
+

(
x

k

)
=

x!

(x − (k − 1))!(k − 1)!
+

x!

(x − k)!k!

=
kx! + (x + 1 − k)x!

(x + 1 − k)!k!
=

(
x + 1

k

)
.

The following lemma allows us to restrict our attention to sets with a very special structure.
For a set of vectors A ⊆ {0, 1}n, let A0 and A1 denote the sets of vectors in A starting, respectively,
with 0 and 1. Hence, A = A0 ∪ A1. Let also ei denote the vector in {0, 1}n with exactly one
1-entry in the i-th position.

Proposition 10.14. For every set B ⊆ {0, 1}n there is a set A ⊆ {0, 1}n of the same size
such that |∂(B)| ≥ |∂(A)| and

(56) ∂(A0) + e1 ⊆ A1 .

That is, if we take a vector v in A with v1 = 0, flip any of its 1s to 0 and at the same time
flip its first bit to 1, then the obtained vector will again belong to A.

Proof. For 1 < j ≤ n, the j-th shift of B is the set sj(B) of vectors defined as follows. First,
we include in sj(B) all vectors v ∈ B1. For the vectors v ∈ B0 we look whether vj = 1. If yes, we
include in sj(B) the vector v ⊕ e1 ⊕ ej (obtained from vector v by flipping its 1-st and j-th bits),
but only if this vector does not already belong to B; if v ⊕ e1 ⊕ ej belongs to B, we include in
sj(B) the vector v itself. This last requirement ensures that |sj(B)| = |B| for every 1 < j ≤ n.
For example, if

B =

1 0 1 0
1 1 0 1
0 1 1 0
0 1 0 1

then s2(B) =

1 0 1 0
1 1 0 1
0 1 1 0
1 0 0 1

We claim that the shifting operation preserves the neighborhood. Namely, for every 1 < j ≤ n,

∂(sj(B)) ⊆ sj(∂(B)) .

The following diagram sketches the proof idea:

(0 . . . 1 . . . 1 . . .)
shift−−−→ (1 . . . 0 . . . 1 . . .)

↓ neighbor ↓ neighbor

(0 . . . 1 . . . 0 . . .)
shift−−−→ (1 . . . 0 . . . 0 . . .)

If we repeatedly apply the shift operators sj , j = 2, . . . , n to B, the number of vectors containing
1 in the first position increases, so that after a finite number of applications the shifts must
therefore cease to make any change. We have then obtained a new set A of the same size as B,
with sj(A) = A for each j ≥ 2, and with |∂(B)| ≥ |∂(A)|. We claim that A satisfies (??).

To show this, take a vector u ∈ ∂(A0). Then u + ej belongs to A0 for some j ≥ 2, and hence,
u + e1 belongs to sj(A) = A. �

We first state and prove a slightly weaker but much more handy version of the Kruskal–Katona
theorem.

Theorem 10.15. If A ⊆ {0, 1}n is k-regular, and if

|A| ≥
(

x

k

)
= x(x − 1) · · · (x − k + 1)/k!
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for some real number x ≥ k, then

(57) |∂(A)| ≥
(

x

k − 1

)
.

Note that this is the best possible: If A ⊆ {0, 1}n is the set of all
(

n
k

)
vectors with exactly k

ones, then |∂(A)| =
(

n
k−1

)
.

Proof (due to Lovász 1979). By Proposition ??, we can assume that A satisfies (??). Consider the
set

A0 := {(0, w) : (1, w) ∈ A}
obtained from A1 by flipping the first bit from 1 to 0. Note that |A0| = |A1|. Observe also that

(58) |∂(A)| ≥ |A0| + |∂(A0)| .

Indeed, vectors in the set A0 are neighbors of A by the definition of this set. Moreover, each
neighbor of A0 plus the unit vector e1 is also a neighbor of A.

We now argue by double induction on k and m = |A|. For k = 1 and m arbitrary, (??) holds
trivially.

For the induction step, we first use the fact that A has a special structure—namely, satisfies
(??)—to show that |A0| cannot be smaller than

(
x−1
k−1

)
. To show this, assume the opposite. Then

|A0| = |A| − |A1| = |A| − |A0| >

(
x

k

)
−
(

x − 1

k − 1

)
=

(
x − 1

k

)
,

and so, by induction, |∂(A0)| ≥
(

x−1
k−1

)
. But then (??) implies that

|A0| = |A1| ≥
(

x − 1

k − 1

)
,

a contradiction. Hence, |A0| ≥
(

x−1
k−1

)
.

Since A0 is (k − 1)-regular, the induction hypothesis yields |∂(A0)| ≥
(

x−1
k−2

)
. Together with

(??) this implies

|∂(A)| ≥ |A0| + |∂(A0)| ≥
(

x − 1

k − 1

)
+

(
x − 1

k − 2

)
=

(
x

k − 1

)
,

as desired. �

To state the Kruskal–Katona theorem in its original form, we write m = |A| in k-cascade
form:

(59) m =

(
ak

k

)
+

(
ak−1

k − 1

)
+ · · · +

(
as

s

)

where ak > ak−1 > . . . > as ≥ s ≥ 1 are integers. Such a representation of m can be obtained
as follows. Let ak be the maximal integer for which

(
ak

k

)
≤ m. Then choose ak−1 as the largest

integer for which
(

ak−1

k−1

)
≤ m−

(
ak

k

)
. If ak−1 ≥ ak, then we would have m ≥

(
ak

k

)
+
(

ak

k−1

)
=
(1+ak

k

)
,

contradicting the maximality of ak. Therefore ak−1 < ak. Continuing this process we eventually
reach a stage where the choice of as for some s ≥ 2 actually gives an equality,

(
as

s

)
= m −

(
ak

k

)
−
(

ak−1

k − 1

)
− · · · −

(
as+1

s + 1

)
,

or we get right down to choosing a1 as the integer such that
(

a1

1

)
≤ m −

(
ak

k

)
− · · · −

(
a2

2

)
<

(
a1 + 1

1

)

in which case we have

0 ≤ m −
(

ak

k

)
− · · · −

(
a1

1

)
< 1 ,

so that

m =

(
ak

k

)
+ · · · +

(
a1

1

)
.
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It can be shown by induction (do this!) that the representation (??) is unique.

Theorem 10.16 (Kruskal–Katona Theorem). If A ⊆ {0, 1}n is k-regular, and if

|A| =

(
ak

k

)
+

(
ak−1

k − 1

)
+ · · · +

(
as

s

)

then

|∂(A)| ≥
(

ak

k − 1

)
+

(
ak−1

k − 2

)
+ · · · +

(
as

s − 1

)
.

We leave the proof as an exercise. It is the same as that of Theorem ?? with
(

x
k

)
and

(
x

k−1

)

replaced by the corresponding sums of binomial coefficents.
The representation (??) of m = |A| in the k-cascade form seems somewhat magical. To

interpret this representation, let us consider the so-called colexicographic order (or colex order) of
vectors in {0, 1}n. This order is defined by letting u ≺ v iff there is an i such that ui = 0, vi = 1
and uj = vj for all j > i. Note that the only difference from the more standard lexicographic order

is that we now scan the strings from right to left. For example, the colex order of all
(5

3

)
= 10

vectors in {0, 1}5 with exactly 3 ones is (with the “smallest” vector on the top):

1 1 1 0 0
1 1 0 1 0
1 0 1 1 0
0 1 1 1 0
1 1 0 0 1
1 0 1 0 1
0 1 1 0 1
1 0 0 1 1
0 1 0 1 1
0 0 1 1 1

Let En
k denote the k-th slice of the binary n-cube, that is, the set of all vectors in {0, 1}n with

exactly k ones.

Proposition 10.17. If the m-th vector in the colex order of En
k contains 1s in positions

a1 + 1 < a2 + 1 < . . . < ak + 1 then

m =

(
ak

k

)
+

(
ak−1

k − 1

)
+ · · · +

(
a1

1

)
.

Proof. Let v be the m-th vector in the colex order of En
k . To reach v we must skip all vectors

whose k-th 1 appears before position ak + 1, and there are
(

ak

k

)
of these. Some vectors with last

(rightmost) 1 in position ak may also precede v. These are the vectors whose first k −1 1s precede
position ak−1 + 1, and there are

(
ak−1

k−1

)
of these. Arguing further in this way gives the result. �

By the same argument one can show that the shadow of the first m =
∑k

i=1

(
ai

i

)
vectors

in the colex order of En
k consists of the first ∂k(m) :=

∑k
i=1

(
ai

i−1

)
vectors in the colex order of

En
k−1. Thus, the Kruskal–Katona theorem says that the shadow of a family of m vectors in En

k is
minimized by the set consisting of the first m vectors in the colex ordering on En

k−1. Furthermore,
the size of the shadow is ∂k(m).

5. Universal sets

The (n, k)-density of a set of vectors means that its projection on at least one set of k coordi-
nates gives the whole binary k-cube. We now consider a stronger property – (n, k)-universality –
where we require that the same holds for all subsets of k coordinates.

Of course, the whole cube {0, 1}n is (n, k)-universal for every k ≤ n. This is the trivial case.
Do there exist smaller universal sets? Note that 2k is a trivial lower bound.

Using the probabilistic argument it can be shown that there exist (n, k)-universal sets of size
only k2k log n (see Theorem ??).
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This result tells us only that small universal sets exist, but gives us no idea of how to construct
them. In this section we will show how to construct explicit sets in {0, 1}n which only have size n
and are (n, k)-universal as long as k2k <

√
n. The construction employs some nice combinatorial

properties of so-called Paley graphs.
In this section we introduce one property of (bipartite) graphs which is equivalent to the

universality property of 0-1 vectors. In the next section we will describe an explicit construction
of such graphs based on the famous theorem of Weil (1948) regarding character sums.

By a bipartite graph with parts of size n we will mean a bipartite graph G = (V1, V2, E) with
|V1| = |V2| = n. We say that a node y ∈ V2 is a common neighbor for a set of nodes A ⊆ V1 if y
is joined to each node of A. Dually, a node y ∈ V2 is a common non-neighbor for a set of nodes
B ⊆ V1 if y is joined to no node of B. Given two disjoint subsets A and B of V1, we denote by
v(A, B) the number of nodes in V2 which are common neighbors for A, and at the same time are
common non-neighbors for B. That is, v(A, B) is the number of nodes in V2 joined to each node
of A and to no node of B.

Definition 10.18. A bipartite graph G = (V1, V2, E) satisfies the isolated neighbor condition
for k if v(A, B) > 0 for any two disjoint subsets A, B ⊆ V1 such that |A| + |B| = k.

Such graphs immediately yield (n, k)-universal sets of 0-1 strings:

Proposition 10.19. Let G be a bipartite graph with parts of size n and C be the set of
columns of its incidence matrix. If G satisfies the isolated neighbor condition for k then C is
(n, k)-universal.

Proof. Let G = (V1, V2, E) and M = (mx,y) be the adjacency matrix of G. That is, M has
n rows labeled by nodes x from V1, n columns labeled by nodes y from V2, and mx,y = 1 if and
only if (x, y) ∈ E.

Let S = {i1, . . . , ik} be an arbitrary subset of k rows of M and v = (vi1
, . . . , vik

) be an
arbitrary (column) vector in {0, 1}k. Each row of M corresponds to a node in V1. Let A be the set
of nodes in V1 corresponding to the 1-coordinates of v, and B be the set of nodes corresponding
to the 0-coordinates of v. Since |A| + |B| = |S| = k and our graph satisfies the isolated neighbor
condition for k, there must be a node y ∈ V2 which is joined to each node of A and to no node
of B. But this means that the values of the y-th column of M at rows from S coincide with the
corresponding values of the vector v, as desired. �

6. Paley graphs

Here we will show how to construct explicit bipartite graphs satisfying the isolated neighbor
condition for k close to log n.

A bipartite Paley graph is a bipartite graph Gq = (V1, V2, E) with parts V1 = V2 = Fq for q
odd prime congruent to 1 modulo 4; two nodes, x ∈ V1 and y ∈ V2, are joined by an edge if and
only if x − y is a non-zero square in Fq, i.e., if x − y = z2 mod q for some z ∈ Fq, z 6= 0. The
condition q ≡ 1 mod 4 is only to ensure that −1 is a square in the field (see Exercise ??), so that
the resulting graph is undirected.

Given two disjoint sets of nodes A, B ⊆ V1, let v(A, B), as before, denote the number of nodes
in V2 joined to each node of A and to no node of B. It turns out that for |A|+ |B| = k < (log q)/3,
this number is very close to q/2k, independent of what the sets A, B actually are.

Theorem 10.20. Let Gq = (V1, V2, E) be a bipartite Paley graph with q ≥ 9, and A, B be
disjoint sets of nodes in V1 such that |A| + |B| = k. Then

(60)
∣∣∣v(A, B) − 2−kq

∣∣∣ ≤ k
√

q.

In particular, v(A, B) > 0 as long as k2k <
√

q.

This result is a slight modification of a similar result of Bollobás and Thomason (1981) about
general (non-bipartite) Paley graphs; essentially the same result was proved earlier by Graham
and Spencer (1971). The proof is based on the theorem of Weil (1948) regarding character sums.
Its special case states the following.
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Let χ be the quadratic residue character in Fq: χ(x) = x(q−1)/2. That is, χ(x) = 1 if x is a
non-zero square in Fq, χ(x) = −1 if x is non-square, and χ(0) = 0. Also, χ(x · y) = χ(x) · χ(y).

Theorem 10.21 (Weil 1948). Let f(t) be a polynomial over Fq which is not the square of
another polynomial, and has precisely s distinct zeros. Then

∣∣∣∣
∑

x∈Fq

χ
(
f(x)

)∣∣∣∣ ≤ (s − 1)
√

q.

We omit the proof of this important result. Weil’s original proof relied heavily on several
ideas from algebraic geometry. Since then other (but still complicated) proofs have been found;
the interested reader can find the details in (Schmidt 1976).

With Weil’s result, the above stated property of Paley graphs can be derived by easy compu-
tations.

Proof of Theorem ??. Recall that (x, y) is an edge in Gq if and only if χ(x − y) = 1. Say that a
node x ∈ V2 is a copy of a node y ∈ V1 if both these nodes correspond to the same element of Fq;
hence, each node of V2 is a copy of precisely one node in V1. Moreover, no x is joined to its copy
y since then χ(x − y) = χ(0) = 0.

Let A′ and B′ be the set of all copies of nodes in A and, respectively, in B. Also let U :=
V2 \ (A′ ∪ B′). Define

g(x) :=
∏

a∈A

(
1 + χ(x − a)

) ∏

b∈B

(
1 − χ(x − b)

)

and observe that, for each node x ∈ U , g(x) is non-zero if and only if x is joined to every node in
A and to no node in B, in which case it is precisely 2k. Hence,

(61)
∑

x∈U

g(x) = 2k · v∗(A, B),

where v∗(A, B) is the number of those nodes in U which are joined to each node of A and to no
node of B.

Expanding the expression for g(x) and using the fact that χ(x · y) = χ(x) · χ(y), we obtain

g(x) = 1 +
∑

C

(−1)|C∩B|χ
(
fC(x)

)
,

where fC(x) denotes the polynomial
∏

c∈C(x − c), and the sum is over all non-empty subsets C
of A ∪ B. By Weil’s theorem,

∣∣∣∣
∑

x∈Fq

χ
(
fC(x)

)∣∣∣∣ ≤ (|C| − 1)
√

q.

Hence,
∣∣∣∣
∑

x∈Fq

g(x) − q

∣∣∣∣ ≤
∑

C

(|C| − 1)
√

q =
√

q

k∑

s=2

(
k

s

)
(s − 1)

=
√

q
(
(k − 2)2k−1 + 1

)
.

Here the last equality follows from the identity
∑k

s=1 s
(

k
s

)
= k2k−1 (see Exercise ??).

The summation above is over all nodes x ∈ V2 = Fq. However, for every node x ∈ A′ ∪ B′,
g(x) ≤ 2k−1, and the nodes of A′ ∪ B′ can contribute at most

∣∣∣∣
∑

x∈A′∪B′

g(x)

∣∣∣∣ ≤ k · 2k−1.

Therefore, ∣∣∣∣
∑

x∈U

g(x) − q

∣∣∣∣ ≤ √
q
(
(k − 2)2k−1 + 1

)
+ k · 2k−1.
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Dividing both sides by 2k and using (??), together with the obvious estimate v(A, B)−v∗(A, B) ≤
|A′ ∪ B′| = k, we conclude that

(62)
∣∣∣v(A, B) − 2−kq

∣∣∣ ≤ k
√

q

2
− √

q +

√
q

2k
+

k

2
+ k,

which does not exceed k
√

q as long as q ≥ 9. �

Theorem ?? together with Proposition ?? give us, for infinitely many values of n, and for every
k such that k2k <

√
n, an explicit construction of (n, k)-universal sets of size n. In Sect. ?? we

will show how to construct such sets of size nO(k) for arbitrary k using some elementary properties
of linear codes.

7. Full graphs

We have seen that universal sets of 0-1 strings correspond to bipartite graphs satisfying the
isolated neighbor condition. Let us now ask a slightly different question: how many vertices must
a graph have in order to contain every k-vertex graph as an induced subgraph? Such graphs are
called k-full. That is, given k, we are looking for graphs of small order (the order of a graph is
the number of its vertices) which contain every graph of order k as an induced subgraph.

Note that if G is a k-full graph of order n then
(

n
k

)
is at least the number of non-isomorphic

graphs of order k, so
(

n

k

)
≥ 2(k

2)/k!

and thus

n ≥ 2(k−1)/2.

On the other hand, for every k it is possible to exhibit a k-full graph of order n = 2k. This nice
construction is due to Bollobás and Thomason (1981).

Let Pk be a graph of order n = 2k whose vertices are subsets of {1, . . . , k}, and where two
distinct vertices A and B are joined if and only if |A ∩ B| is even; if one of the vertices, say A,
is an empty set then we join B to A if and only if |B| is even. Note that the resulting graph is
regular: each vertex has degree 2k−1 − 1.

Theorem 10.22 (Bollobás–Thomason 1981). The graph Pk is k-full.

Proof. Let G be a graph with vertex set {v1, v2, . . . , vk}. We claim that there are sets
A1, A2, . . . , Ak uniquely determined by G, such that

Ai ⊆ {1, . . . , i}, i ∈ Ai,

and, for i 6= j,

|Ai ∩ Aj | is even if and only if vi and vj are joined in G.

Indeed, suppose we have already chosen the sets A1, A2, . . . , Aj−1. Our goal is to choose the
next set Aj which is properly joined to all the sets A1, A2, . . . , Aj−1, that is, |Aj ∩ Ai| must be
even precisely when vj is joined to vi in G. We will obtain Aj as the last set in a sequence
B1 ⊆ B2 ⊆ . . . ⊆ Bj−1 = Aj , where, for each 1 ≤ i < j, Bi is a set properly joined to all sets
A1, A2, . . . , Ai.

As the first set B1 we take either {j} or {1, j} depending on whether vj is joined to v1 or
not. Having the sets B1, . . . , Bi−1 we want to choose a set Bi. If vj is joined to vi then we set
Bi = Bi−1 or Bi = Bi−1 ∪ {i} depending on whether |Bi−1 ∩ Ai| is even or odd. If vj is not joined
to vi then we act dually. Observe that our choice of whether i is in Bi will effect |Bi ∩ Ai| (since
i ∈ Ai) but none of |Bi ∩ Al|, l < i (since Al ⊆ {1, . . . , l}). After j − 1 steps we will obtain the
desired set Bj−1 = Aj . �
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Exercises

Ex 10.1. Let A ⊆ {0, 1}n be (n, k)-dense and suppose that no vector in A has more than r
ones. Prove that some two vectors in A have at most r − k ones in common.

Ex 10.2. (Alon 1986). Let A be a 0-1 matrix of 2n rows and n columns, the i-th row being
the binary representation of i − 1 (1 ≤ i ≤ 2n). Show that for any choice of k distinct columns of
A and any choice of k bits, there are exactly 2n−k rows of A that have the j-th chosen bit in the
j-th chosen column.

Ex 10.3. Let A ⊆ {0, 1}n, |A| = n. By induction on k prove that, for every k = 1, 2, . . . , n−1,
there exist k coordinates such that the projection of A onto these coordinates has more than k
vectors. For k = n − 1 this is the well-known Bondy’s theorem (Theorem ??).

Ex 10.4. (Chandra et al. 1983). Prove the following (n, k)-universality criterion for the case
k = 2. Given a set A ⊆ {0, 1}n of m = |A| vectors, look at it as an m × n matrix, whose rows
are the vectors of A. Let v1, . . . , vn ∈ {0, 1}m be the columns of this matrix, and let v1, . . . , vn

be their complements, i.e., vi is obtained from vi by switching all its bits to the opposite values.
Prove that A is (n, 2)-universal if and only if all the vectors v1, . . . , vn, v1, . . . , vn are different and
form an antichain in {0, 1}m, i.e., are mutually incomparable.

Ex 10.5. Let A ⊆ {0, 1}n, |A| = m. Look at A as an m × n matrix, and let FA be the family
of those subsets of {1, . . . , m}, whose incidence vectors are columns of this matrix. Show that A
is (n, k)-universal if and only if the family FA is k-independent in the following sense: for every k

distinct members S1, . . . , Sk of FA all 2k intersections
⋂k

i=1 Ti are non-empty, where each Ti can

be either Si or its complement Si.

Ex 10.6. Show that the converse of Proposition ?? also holds: if the set of rows of the incidence
matrix of a given bipartite graph is (n, k)-universal then the graph satisfies the isolated neighbor
condition for k.

Ex 10.7. Let p be a prime with p ≡ 1 mod 4. Show that −1 is a square in the field Fp. Hint:
Let P be the product of all nonzero elements of Fp. If −1 is not a square, then x2 = −1 has no solutions;
so, the set of all p − 1 nonzero elements of Fp can be divided into (p − 1)/2 pairs such that the product of
the elements in each pair is −1; hence P = 1. On the other hand, for any x 6= ±1 there exists exactly one
y 6= x with xy = 1, so all the elements of Fp \ {−1, 0, +1} can be divided into pairs so that the product of
elements in each pair is 1; hence, P = −1, a contradiction.

Ex 10.8. Recall that a set A ⊆ {0, 1}n of vectors is downwards closed if v ∈ A and u ≤ v
implies u ∈ A. Similarly, say that a set is upwards closed if v ∈ A and u ≥ v implies u ∈ A. Show
that Kleitman’s theorem (Theorem ??) implies the following: Let A, B be upwards closed and C
downwards closed subsets of {0, 1}n. Then

|A ∩ B| ≥ |A| · |B|
2n

and

|A ∩ C| ≤ |A| · |C|
2n

.

Hint: For the first inequality, apply Kleitman’s theorem to the complements of A and B. For the second
inequality, take B := {0, 1}n \ C, and apply the first inequality to the pair A, B to get

|A| − |A ∩ C| = |A ∩ B| ≥ 2−n|A|(2n − |C|).

Ex 10.9. Show that the lower bound tn−1(A) ≥ |A| − 2t−1 + 1 given in Theorem ?? is the
best possible whenever t divides n. Hint: Split {1, . . . , n} into n/t disjoint subsets S1, . . . , Sn/t with
|Si| = t and define A to be the set of all vectors v 6= 0 such that vj = 0 for all j 6∈ Si.

Ex 10.10. Let F be a matroid over a ground-set X, and Y ⊆ X. Recall that a maximum
independent subset of Y is a member A ∈ F such that A ⊆ Y and A + x 6∈ F for all x ∈ Y \ A.
Use the exchange property of matroids to show that if Z ⊆ Y then every maximal independent
set in Z can be extended to a maximal independent set in Y .
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Ex 10.11. Let F be a matroid over a ground-set X. By Lemma ??, we know that, for every
subset Y ⊆ X, all independent subsets of Y have the same number of elements. This number
r(Y ) is callled the rank of the set Y within F . Use Exercise ?? to show that then the rank
function is submodular: for every subsets Y, Z ⊆ X, r(Y ∪ Z) + r(Y ∩ Z) ≤ r(Y ) + r(Z). Hint:
|B ∩ Y | + |B ∩ Z| = |B ∩ (Y ∪ Z)| + |B ∩ (Y ∩ Z)|.

Ex 10.12. Let X = Y ∪ {x} where |Y | = k + 2 and x 6∈ Y . Let F be a hereditary family
whose only maximum independent sets are the set Y and all 2-element sets {x, y} with y ∈ Y .
Show that F is a k-matroid, but is not k-extendible.

Ex 10.13. Show that the intersection of k matroids is a k-matroid. Hint: Show that the
intersection of k 1-extendible systems is k-extendible and use Lemma ??.



CHAPTER 11

Witness Sets and Isolation

Given a set A of distinct 0-1 vectors and a vector u in A, how many bits of u must we know in
order to distinguish it from the other vectors in A? Such a set of bits is a witness for the fact that
u 6∈ A \ {u}. In this chapter we will give some basic estimates on the size of these witnesses. We
will also consider a related problem of how to isolate an object within a given universum according
to its weight. Finally, we will describe the so-called “dictator paradox” saying that, if the society
fulfills some simple “democracy axioms,” then there will always be an individual (a dictator?)
whose options prevail against all options.

1. Bondy’s theorem

Let A ⊆ {0, 1}n be a set of m distinct 0-1 vectors of length n. A set S ⊆ {1, . . . , n} of
coordinates is a witness for a vector u in A if for every other v ∈ A there exists a coordinate in
S on which u differs from v. We may also say that exposing the entries of u corresponding to S
uniquely determines u among vectors in A. The minimum size of a witness for u in A is denoted
by wA(u) (or by w(u), if the underlying set A is clear from the context).

It is easy to show that every set of m vectors contains a vector whose witness has size at most
log2 m (see Exercise ??). On the other hand, it is obvious that wA(u) ≤ |A| − 1 for any A and
u ∈ A, and a simple example shows that this is tight: if A consists of the all-0 vector 0n and the
n vectors with precisely one 1, then wA(0n) = n.

The following result, due to Bondy (1972), shows that if we take only m ≤ n vectors, then all
the vectors will already have one and the same witness of size at most m − 1. The projection of a
vector v = (v1, . . . , vn) onto a set of coordinates S = {i1, . . . , ik} is the vector v↾S := (vi1

, . . . , vik
).

The projection of a set of vectors A is the set A↾S = {v↾S : v ∈ A}.

Theorem 11.1 (Bondy 1972). For every set A of 0-1 vectors there exists a set S of at most
|A| − 1 coordinates such that all the vectors {v↾S : v ∈ A} are distinct.

Proof. Suppose that A is a counterexample, that is, |A↾S | < |A| for every set S of at most
|A| − 1 coordinates. Let S be a maximal set of coordinates for which |A↾S | ≥ |S| + 1. Since
|A↾S | ≤ |A| − 1, at least two vectors u 6= v ∈ A must coincide on S. Take a coordinate i 6∈ S on
which these two vectors differ, and set T := S ∪ {i}. Since the vectors u,v coincide on S but differ
on T , the projection A↾T must have at least one more vector than A↾S ; hence,

|A↾T | ≥ |A↾S | + 1 ≥ |S| + 2 = |T | + 1,

a contradiction with the maximality of S. �

Given k, how large must a set A be in order to be sure that at least one of its vectors will
have no witness of size ≤ k? It is clear that any such set A must have more than 2k vectors; this
is a trivial lower bound. A trivial upper bound is 2n. The following simple observation shows that
much fewer vectors are enough.

Proposition 11.2. In every set of more than 2k
(

n
k

)
0-1 vectors of length n there is a vector

which has no witness of size k.

Proof. Let A be a set of 0-1 vectors of length n, and assume that every vector in it has a
witness of size k. Then each vector u ∈ A has its own set Su of k coordinates on which this vector
differs from all other vectors in A. That is, we can assign to each vector u ∈ A its “pattern” – a set
Su of k bits and the projection u↾S of u onto this set – so that different vectors will receive different

113
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patterns, i.e., if u 6= v then either Su 6= Sv or Su = Sv but u and v differ on some coordinate in
Su. There are

(
n
k

)
possible subsets of k coordinates and, on each of these sets, vectors can take

no more than 2k possible values. Thus, there are at most
(

n
k

)
2k possible patterns and, since each

vector in A must have its own pattern, we conclude that |A| ≤
(

n
k

)
2k. �

2. Average witnesses

Since the worst-case witness sets may have to be large, it is natural to consider the average
witness size:

wave(A) :=
1

|A|
∑

u∈A

wA(u).

The same example, as in the previous section, shows that the gap between the worst-case witness
size and the average witness size may be exponential: if A is the set of n + 1 vectors with at most
one 1, then wave(A) = 2n/(n + 1) ≤ 2, but in the all-0 vector all n bits must be exposed.

How large can wave(A) be as a function of |A|? The following result of Kushilevitz, Linial,
Rabinovitch, and Saks (1996) says that the average witness size of any set does not exceed the
square root of its size, and that this bound is almost optimal.

Theorem 11.3. For every set A of m 0-1 vectors, wave(A) ≤ 2m1/2. On the other hand, for
infinitely many numbers m, there exists a set A of m 0-1 vectors such that wave(A) ≥ 1

2
√

2
m1/2.

Proof. Upper bound. Take an arbitrary set A of m vectors and order its vectors u1, u2, . . . , um

by decreasing value of their smallest witness size: w(u1) ≥ w(u2) ≥ · · · ≥ w(um). Consider the

sum of the first k largest values
∑k

i=1 w(ui) for a value k soon to be set. Find a set T of at most
k−1 coordinates as guaranteed by Bondy’s theorem applied to the set {u1, . . . , uk} and expose the
T -coordinates in all vectors of A. By the property of T , vectors u1, . . . , uk are already mutually
distinguished. The T -coordinates of every vector uj with j > k, distinguish uj from all u1, . . . , uk,
except, perhaps, one ui (because no two of the vectors u1, . . . , uk coincide on T ). It is possible
to expose a single additional bit in ui to distinguish ui from uj . Apply this step for every uj ,
j > k. Consequently, each of u1, . . . , uk is distinguished from every other vector in A. No more
than m − k additional bits get exposed in this process, so:

(63)

k∑

i=1

w(ui) ≤ k(k − 1) + m − k = k2 − 2k + m.

In particular, it follows that w(uk) ≤ k − 2 + m/k.
Putting these two observations together we get

m∑

i=1

w(ui) =

k∑

i=1

w(ui) +

m∑

i=k+1

w(ui)

≤ (k2 − 2k + m) + (m − k)
(

k − 2 +
m

k

)
.

Pick k := m1/2; the above inequality then yields
∑m

i=1 w(ui) ≤ 2m3/2, which means that wave(A) ≤
2m1/2, as desired.

Lower bound. We will explicitly construct a set A ⊆ {0, 1}n which achieves the lower bound. Let
p be a prime and consider a projective plane PG(2, p) of order p (see Sect. ??). Such a plane
consists of n = p2 + p + 1 points P = {1, . . . , n} and n subsets of points L1, . . . , Ln ⊆ P (called
lines) satisfying the following three conditions: (i) each line has exactly p + 1 points; (ii) every
two lines intersect in exactly one point, and (iii) exactly p + 1 lines meet in one point.

We consider n-dimensional vectors where the coordinates correspond to points of P , and define
A ⊆ {0, 1}n to be the family of m = 2n binary vectors, of which n are the incidence vectors of
lines of PG(2, p), and another n are all unit vectors, i.e., incidence vectors of all singletons {i},
i ∈ P .

For a vector u ∈ A, corresponding to a line L, w(u) = 2, since it suffices to expose the
coordinates corresponding to any two points on L. Such a pair distinguishes u from all singletons,
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Figure 1. Exposed bits are in boldface; a vector u follows vector v if u is below v.

and since distinct lines share exactly one point, this pair also distinguishes u from the incidence
vectors of other lines.

On the other hand, w(u) = p + 2 if u = (0, . . . , 0, 1, 0, . . . , 0) corresponds to a singleton point
i ∈ P . To distinguish u from the incidence vector of a line L containing i, a zero in u should be
exposed in a coordinate that corresponds to a point on L other than i. There are p+1 lines, whose
pairwise intersection is {i}, so to distinguish u from all of them, at least p + 1 distinct 0-entries
should be exposed. To distinguish u from other singletons, the 1-entry should be exposed as well
(the alternative being to expose all p2 + p 0-entries).

Putting things together, we get

wave(A) =
1

|A|
∑

u∈A

w(u) =
1

2n
(2n + (p + 2)n) =

p + 4

2
≥ n1/2

2
√

2
.

�

The next natural problem concerning 0-1 vectors is the following question about the distribu-
tion of their witness sizes:

Given an integer t, 1 ≤ t ≤ m, and a set of m vectors, how many of its vectors
have a witness of size at least (or at most) t?

If we know nothing more about the set except for its size, the question turns out to be
difficult. Still, Kushilevitz et al. (1996) have found the following interesting partial solutions (see
also Exercise ??):

Lemma 11.4. Let A be a set of m distinct 0-1 vectors. Then

(a) for any t ≤ m at most t of vectors in A have a minimal witness of size at least t + m/t − 2;
(b) for any t ≤ √

m at least t2 − t of vectors in A have a witness of size at most 2t + log2 m.

Proof. The first claim (a) follows from the proof of the upper bound in Theorem ??: let k
be the number of vectors u ∈ A for which w(u) ≥ t + m/t − 2, and apply (??).

To prove the second claim (b), reorder the vectors in A as follows: split the vectors into
two groups according to their first coordinate, and let the vectors of the smaller group (i.e., of
the group containing at most half of the vectors) precede those in the larger. Expose the first
coordinate in all vectors of the smaller group. Proceed recursively in the same manner on each
group separately (by looking at next coordinates), and so on, until each group reduces to a single
vector (see Fig. ??). Observe that:

(i) each vector is distinguished from all those following it (but not necessarily from those preceding
it);

(ii) no vector has more than log2 m bits exposed (since each time one bit is exposed in at most
one-half of the vectors of a current group).
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Let B be the set of the first t2 vectors. Applying the first claim (a) to this set, we conclude
that at most t of its vectors have a witness of size at least 2t. Therefore, at least t2 − t of the
vectors in B can be distinguished from other members of B at the cost of exposing at most 2t
additional bits in each of them. We call these vectors good. By (i) and (ii), at the cost of exposing
at most log2 m bits, each good vector v is already distinguished from all the vectors in A following
it. On the other hand, all the vectors preceding v belong to B, and hence, v is distinguished also
from them by at most 2t additional bits. Thus, we have at least t2 − t good vectors v and for each
of them, wA(v) ≤ 2t + log2 m. �

3. The isolation lemma

Let X be some set of n points, and F be a family of subsets of X. Let us assign a weight
w(x) to each point x ∈ X and let us define the weight of a set E to be w(E) =

∑
x∈E w(x). It

may happen that several sets of F will have the minimal weight. If this is not the case, i.e., if
minE∈F w(E) is achieved by a unique E ∈ F , then we say that w is isolating for F .

The following lemma, due to K. Mulmuley, U. Vazirani, and V. Vazirani (1987), says that –
independent of what our family F actually is – a randomly chosen w is isolating for F with large
probability.

Lemma 11.5. Let F be a family of subsets of an n-element set X. Let w : X → {1, . . . , N}
be a random function, each w(x) independently and uniformly chosen over the range. Then

Pr [w is isolating for F ] ≥ 1 − n

N
.

Proof (Spencer 1995). For a point x ∈ X, set

α(x) = min
E∈F ; x6∈E

w(E) − min
E∈F ; x∈E

w(E \ {x}).

A crucial observation is that evaluation of α(x) does not require knowledge of w(x). As w(x) is
selected uniformly from {1, . . . , N},

Pr [w(x) = α(x)] ≤ 1/N,

so that
Pr [w(x) = α(x) for some x ∈ X] ≤ n/N.

But if w had two minimal sets A, B ∈ F and x ∈ A \ B, then

min
E∈F ;x6∈E

w(E) = w(B),

min
E∈F ;x∈E

w(E \ {x}) = w(A) − w(x),

so w(x) = α(x). Thus, if w is not isolating for F then w(x) = α(x) for some x ∈ X, and we have
already established that the last event can happen with probability at most n/N . �

4. Isolation in politics: the dictator paradox

One of the problems of politics involves averaging out individual preferences to reach decisions
acceptable to society as a whole. In this section we will prove one isolation-type result due to
Arrow (1950) which shows that, under some simple “democracy axioms” this is indeed a difficult
task.

The simple process of voting can lead to surprisingly counterintuitive paradoxes. For example,
if three people vote for three candidates, giving the rankings x < y < z, y < z < x, z < x < y,
then a majority prefers y to x (x < y), x to z (z < x) but also z to y (y < z). In general, we have
the following situation.

Suppose that I = {1, . . . , n} is a society consisting of a set of n individuals. These individuals
are to be offered a choice among a set X of options, for example, by a referendum. We assume
that each individual i has made her/his mind up about the relative worth of the options. We can
describe this by a total order <i on X, for each i ∈ I, where x <i y means that the individual i
prefers option y to option x. So, after a referendum we have a set R = {<1, . . . , <n} of total orders
on X. A social choice function F takes such a set of total orders as input and comes up with a
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“social preference” on X, i.e., with some total order < on X. Being total means, in particular,
that the order < is transitive: if x < y and y < z then x < z.

Given a social choice function F , a dictator is an individual i0 ∈ I such that for every referen-
dum, the resulting social preference < coincides with the preference <i0

of this individual. That
is, for any given set of total orders R = {<1, . . . , <n}, the social choice function will output the
order <i0

, independent of preferences <i made by other individuals i 6= i0.
Arrow’s theorem asserts that, if the choice function F fulfills some natural “democracy ax-

ioms,” then there will always be a dictator! That is, once we fix some social choice function F ,
then there will be an individual (a dictator?) whose options prevail against all options.

Let us consider the following three natural democracy axioms:

(A1) If x < y (in the social preference), then the same remains true if the individual preferences
are changed in y’s favor.

(A2) If Y ⊆ X is a set of options and if during two referendums no individual changes his/her
mind about the options within the set Y (i.e. no one changes his mind about y < y′ or
y′ < y for y, y′ that are both in Y ), then the society also don’t changes its mind about these
options.

(A3) For any distinct options x, y ∈ X, there is some system of individual preferences for which
the corresponding social preference has x < y. That is, it should be possible for society to
prefer y to x if enough individuals do so.

Theorem 11.6. If |X| ≥ 3 then for every social choice function, satisfying the three democracy
axioms above, there is a dictator.

Proof. We follow the elegant argument from Cameron (1994). Suppose that we have a social
choice function. If (x, y) is an ordered pair of distinct options, we say that a set J of individuals is
(x, y)-decisive if, whenever all members of J prefer y to x, then so does the social order; formally,
if x <i y for all i ∈ J , then x < y. Further, we say that J is decisive if it is (x, y)-decisive for some
distinct x, y ∈ X.

Let J be a minimal decisive set. It follows from (A1)–(A3) that, for any distinct options
x, y ∈ X, if every individual prefers y to x then so does the social order. Hence, J 6= ∅. Suppose
that J is (x, y)-decisive, and let i0 be a member of J .

Claim 11.7. J = {i0}.

To prove the claim, suppose the opposite and let J ′ := J \ {i0} and K := I \ J . Let v be an
option in X different from x and y (remember that |X| ≥ 3). Consider the individual preferences
<i, i ∈ I for which

x <i0
y <i0

v
v <i x <i y for all i ∈ J ′

y <j v <j x for all j ∈ K

Then x < y, since all members of the (x, y)-decisive set J think so, and y < v, since if v < y
then J ′ would be (v, y)-decisive (nobody outside J ′ thinks so), contradicting the minimality of
J . Hence x < v. But then {i0} is (x, v)-decisive, since nobody else agrees with this order. By
minimality of J , we have J = {i0}, as desired.

Claim 11.8. i0 is a dictator.

We have to prove that {i0} is (u, v)-decisive for any pair of different options u 6= v. The case
when u = x is covered by the (proof of) Claim ??, and we are left with two possible situations:
either v = x or neither v = x nor u = x. The argument in both cases is similar.

Case 1: u 6= x and v 6= x.
Consider individual preferences in which

u <i0
x <i0

v
v <j u <j x for all j 6= i0



118 11. WITNESS SETS AND ISOLATION

Then u < x (because everybody thinks so) and x < v (because i0 thinks so and, by Claim ??, is
(x, v)-decisive for any v 6= x); hence u < v, and {i0} is (u, v)-decisive because nobody else agrees
with this order.

Case 2: v = x.
Take z 6∈ {u, x} and consider individual preferences in which

u <i0
z <i0

x
z <j x <j u for all j 6= i0

Then u < z (because i0 thinks so and both u, z differ from x) and z < x (because everybody
thinks so); hence u < x, and {i0} is (u, x)-decisive.

This completes the proof of the claim, and thus, the proof of the theorem. �

Exercises

Ex 11.1. Bondy’s theorem (Theorem ??) implies that, if we take n binary vectors of length
n, then all these vectors differ on some set of n − 1 bits. Does this hold for n + 1 vectors?

Ex 11.2. Prove that every set of m vectors contains a vector whose witness has size at most
log2 m.

Ex 11.3. Generalize Lemma ?? as follows. Let A be a set of m 0-1 vectors. For an integer l,
1 ≤ l ≤ m, let

f(m, l) = min {k : k ≥ 1 and k + m/k ≥ l + 2} .

Prove that:

(a) at most f(m, l) vectors in A have a minimal witness of size at least l;
(b) for any k ≤ m, at least k − f(k, l − log2 m) vectors in A have witness of size at most l.

Ex 11.4. Lemma ?? isolates the unique set with the minimal weight. With what probability
will there be a unique set with the maximal weight?

Ex 11.5. Prove that Lemma ?? also holds when the weight of a set is defined to be the product
of the weights of its elements.



CHAPTER 12

Designs

The use of combinatorial objects, called designs, originates from statistical applications. Let
us assume that we wish to compare v varieties of wines. In order to make the testing procedure
as fair as possible it is natural to require that:

(a) each participating person tastes the same number (say k) of varieties so that each person’s
opinion has the same weight;

(b) each pair of varieties is compared by the same number (say λ) of persons so that each variety
gets the same treatment.

One possibility would be to let everyone taste all the varieties. But if v is large, this is very im-
practical (if not dangerous, as in the case of wines), and the comparisons become rather unreliable.
Thus, we should try to design the experiment so that k < v.

Definition 12.1. Let X = {1, . . . , v} be a set of points (or varieties). A (v, k, λ) design over
X is a collection D of distinct subsets of X (called blocks) such that the following properties are
satisfied:

(1) each set in D contains exactly k points;
(2) every pair of distinct points is contained in exactly λ blocks.

The number of blocks is usually denoted by b. If we replace (2) by the following property:

(2’) every t-element subset of X is contained in exactly λ blocks,

then the corresponding family is called a t–(v, k, λ) design. A Steiner system S(t, k, v) is a t–
(v, k, λ)-design with λ = 1. A design, in which b = v (i.e., the number of blocks and points is the
same) is often called symmetric.

1. Regularity

In every design, every pair of points lies in the same number of blocks. It is easy to show that
then the same also holds for every single point. A family of sets F is r-regular if every point lies
in exactly r sets; r is the replication number of F .

Theorem 12.2. Let D be a (v, k, λ) design containing b blocks. Then D is r-regular with the
replication number r satisfying the equations

(64) r(k − 1) = λ(v − 1).

and

(65) bk = vr.

Proof. Let a ∈ X be fixed and assume that a occurs in ra blocks. We count in two ways the
cardinality of the set

{(x, B) : B ∈ D; a, x ∈ B; x 6= a} .

For each of the v − 1 possibilities for x (x 6= a) there are exactly λ blocks B containing both a
and x. The cardinality of the set is therefore (v − 1)λ. On the other hand, for each of the ra

blocks B containing a, the element x ∈ B \ {a} can be chosen in |B| − 1 = k − 1 ways. Hence
(v − 1)λ = ra(k − 1). This shows that ra is independent of the choice of a and proves (??).

To prove the second claim we count in two ways the cardinality of the set

{(x, B) : B ∈ D, x ∈ B}.

119
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For each x ∈ X the block B can be chosen in r ways. On the other hand, for each of the b blocks
B the element x ∈ B can be chosen in k ways. Hence vr = bk, as desired. �

Thus, every design is an r-regular family with the parameter r satisfying both equations (??)
and (??). It turns out that for regularity the second condition (??) is also sufficient. The proof
presented here is due to David Billington (see Cameron 1994).

Theorem 12.3. Let k < v and b ≤
(

v
k

)
. If bk = vr then there is an r-regular family F of

k-subsets of {1, . . . , v} with |F| = b.

Proof. There is a simple way to make a k-uniform family F “more regular.” (We have
already used a similar argument in the proof of Theorem ?? to make a given set of binary vectors
“more hereditary.”)

Let rx be the replication number of x, the number of sets of F which contain x. (In our
previous notation this is the degree d(x) of a point in the family F . Here we follow the notation
which is usual in the design theory.)

If rx > ry, then there must exist a (k − 1)-set A, containing neither x nor y, such that
{x} ∪ A ∈ F and {y} ∪ A 6∈ F . Now form a new family F ′ by removing {x} ∪ A from F and
including {y}∪A in its place. In the new family, r′

x = rx −1, r′
y = ry +1, and all other replication

numbers are unaltered. Starting with any family of k-sets, we reach by this process a family in
which all the replication numbers differ by at most 1 (an almost regular family), containing the
same number of sets as the original family. By double counting, the average replication number is

1

v

∑
rx =

1

v

∑

A∈F
|A| =

bk

v
;

and an almost regular family whose average replication number is an integer must be regular. �

2. Finite linear spaces

Sometimes it is possible to show that a design has at least as many blocks as it has points. The
well-known Fisher’s Inequality (Theorem ??) implies that if D is a (v, k, λ) design then |D| ≥ v
(see Exercise ??). Many generalizations exist. For example, the Petrenjuk–Ray-Chaudhuri–Wilson
Inequality (Petrenjuk 1968, Ray-Chaudhuri, and Wilson 1975) states that, if D is a 2s–(v, k, λ)
design with v ≥ k + s then |D| ≥

(
v
s

)
. Both results can be obtained using the linear algebra

method (cf. Exercise ??).
Some of these results, however, may be proved by direct double counting. Such, for example,

is the argument due to Conway for the case of “finite linear spaces.” (Do not confuse these linear
spaces with those from Analysis.)

A (finite) linear space over a set X is a family L of its subsets, called lines, such that:

- every line contains at least two points, and
- any two points are on exactly one line.

Theorem 12.4 (De Bruijn–Erdős 1948). If L is a linear space over X then |L| ≥ |X|, with
equality iff any two lines share exactly one point.

Proof (due to J. Conway). Let b = |L| ≥ 2 and v = |X|. For a point x ∈ X, let rx, as above, be
its replication number, i.e., the number of lines in L containing x. If x 6∈ L then rx ≥ |L| because
there are |L| lines joining x to the points on L. Suppose b ≤ v. So, for x 6∈ L, we have

b(v − |L|) ≥ v(b − rx) .

Hence

b =
∑

L∈L
1 =

∑

L∈L

∑

x:x6∈L

1

v − |L| ≤ b

v

∑

L∈L

∑

x:x6∈L

1

b − rx

=
b

v

∑

x∈X

∑

L:x6∈L

1

b − rx
=

b

v

∑

x∈X

1 = b,
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and this implies that all inequalities are equalities so that b = v, and rx = |L| whenever x 6∈ L.
�

There are several methods to construct (symmetric) designs. In the next two sections we will
study two of them: one comes from “difference sets” in abelian groups, and the other from “finite
geometries.” The third important construction, which arises from Hadamard matrices, will be
described in Chap. ?? (see Theorem ??).

3. Difference sets

Let Zv be an additive Abelian group of integers modulo v. We can look at Zv as the set of
integers {0, 1, . . . , v − 1} where the sum is modulo v.

Definition 12.5. Let 2 ≤ k < v and λ ≥ 1. A (v, k, λ) difference set is a k-element subset
D = {d1, d2, . . . , dk} ⊆ Zv such that the collection of values di − dj (i 6= j) contains every element
in Zv \ {0} exactly λ times.

Since the number of pairs (i, j) with i 6= j equals k(k − 1) and these give each of the v − 1
nonzero elements λ times as a difference, it follows that

(66) λ(v − 1) = k(k − 1).

If D is a difference set, we call the set

a + D := {a + d1, a + d2, . . . , a + dk}
a translate of D. Notice that our assumption k < v together with (??) implies that all the
translates of a difference set are different. Indeed, if a + D = D for some a 6= 0, then there is a
permutation π of {1, . . . , k} so that π(i) 6= i and a + di = dπ(i) for all i. Hence, a can be expressed
as a difference dπ(i) − di in k ways; but λ < k by (??) and our assumption that k < v.

Theorem 12.6. If D = {d1, d2, . . . , dk} is a (v, k, λ) difference set then the translates

D, 1 + D, . . . , (v − 1) + D

are the blocks of a symmetric (v, k, λ) design.

Proof. We have v blocks over v points. Since, clearly, every one of the translates contains
k points, it is sufficient to show that every pair of points is contained in exactly λ blocks. Let
x, y ∈ Zv, x 6= y. Suppose that x, y ∈ a + D for some a ∈ Zv. Then x = a + di and y = a + dj

for some pair i 6= j. Also, we have di − dj = x − y = d. Now, there are exactly λ pairs i 6= j such
that di − dj = d, and for each such pairs, there is exactly one a for which x, y ∈ a + D, namely,
a = x − di = y − dj . �

Let us now describe one construction of difference sets. Squares (or quadratic residues) in Zv

are the elements a2 for a ∈ Zv.

Theorem 12.7. If v is a prime power and v ≡ 3 mod 4, then the nonzero squares in Zv form
a (v, k, λ) difference set with k = (v − 1)/2 and λ = (v − 3)/4.

The condition v ≡ 3 mod 4 is only used to ensure that −1 is not a square in Zv, i.e., that
−1 6≡ a2 mod v for all a ∈ Zv. This fact follows from elementary group theory, and we omit its
proof here.

Proof. Let D be the set of all nonzero squares, and k = |D|. First, observe that k = (v−1)/2.
Indeed, the nonzero squares in Zv are the elements a2 for a ∈ Zv \ {0}. But for every such a the
equation x2 = a2 has two different solutions x = ±a. So, every pair (+a, −a) gives rise to only
one square. This means that exactly half of the nonzero elements in Zv are squares, and hence
k = (v − 1)/2.

By the remark above, −1 is not a square in Zv. Hence, if S is the set of all nonzero squares then
−S = {−s : s ∈ S} is exactly the set of nonsquares. For any s ∈ S, the pair (x, y) ∈ S ×S satisfies
the equation x − y = 1 if and only if the pair (sx, sy) ∈ S × S satisfies the equation sx − sy = s,
or equivalently, if and only if the pair (sy, sx) ∈ S × S satisfies the equation sy − sx = −s. This
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Figure 1. The Fano plane with 7 lines and 3 points on a line

shows that all nonzero squares s ∈ S and all nonsquares −s ∈ −S have the same number λ of
representations as a difference of two nonzero squares. We can compute λ from the equation (??),
which gives λ = k(k − 1)/(v − 1) = (v − 3)/4. �

4. Projective planes

Let L ⊆ 2X be a linear space with |L| = b and |X| = v. By Theorem ??, b ≥ v. In this
section we will consider linear spaces with b = v and with an additional requirement that every
line has the same number, say q + 1, of points. Then L turns into a symmetric (v, k, λ) design
with λ = 1 and k = q + 1. Such a design is known as a projective plane of order q. (The reason
for taking the block size of the form k = q + 1 is that, for any prime power q, such a design has a
very transparent construction using the Galois field Fq; we will give this construction below.) By
Theorem ??, we have v = b = q2 + q + 1.

Projective planes have many applications. They are particularly useful to show that some
bounds in Extremal Set Theory are optimal (cf., for example, Lemma ?? and Theorems ??, ??).
Due to their importance, projective planes deserve a separate definition.

Definition 12.8. A projective plane of order q consists of a set X of q2 +q +1 elements called
points, and a family L of subsets of X called lines, having the following properties:

- Every line has q + 1 points.
- Every two points lie on a unique line.

The only possible projective plane of order q = 1 is a triangle. For q = 2, the unique projective
plane of order q is the famous Fano plane (see Fig. ??).

Additional properties of projective planes are summarized as follows:

Proposition 12.9. A projective plane of order q has the properties:

(i) Any point lies on q + 1 lines.
(ii) There are q2 + q + 1 lines.
(iii) Any two lines meet in a unique point.

Proof. (i) Take a point x. There are q(q + 1) points different from x; each line through x
contains q further points, and there are no overlaps between these lines (apart from x). So, there
must be q + 1 lines through x.

(ii) Counting in two ways the pairs (x, L) with x ∈ L, we obtain
|L| · (q + 1) = (q2 + q + 1) · (q + 1), so |L| = q2 + q + 1.

(iii) Let L1 and L2 be lines, and x a point of L1. Then the q + 1 points of L2 are joined to
x by different lines; since there are only q + 1 lines through x, they all meet L2 in a point; in
particular, L1 meets L2. �

A nice property of projective planes is their duality. Let (X, L) be a projective plane of order
q, and let M = (mx,L) be its incidence matrix. That is, M is n by n 0-1 matrix, the rows and
columns of which correspond to points and lines, and mx,L = 1 iff x ∈ L. Each row and column
of M has exactly q + 1 ones, and any two rows and any two columns share exactly one 1.
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4.1. The construction. The standard construction for projective planes of any prime order
q ≥ 2 is the following.

Let V be the set of all vectors (x0, x1, x2) of elements of Fq, where x0, x1, x2 are not all zero.
We identify the vectors that can be obtained from each other by multiplying by a nonzero element
of Fq, and call each such collection of vectors a point. That is, points of our plane are sets

[x0, x1, x2] = {(cx0, cx1, cx2) : c ∈ Fq, c 6= 0}
of q − 1 vectors in V . There are (q3 − 1)/(q − 1) = q2 + q + 1 such sets, and hence, so many points.
The line L(a0, a1, a2), where (a0, a1, a2) ∈ V , is defined to be the set of all those points [x0, x1, x2]
for which

(67) a0x0 + a1x1 + a2x2 = 0.

How many points does such a line L(a0, a1, a2) have?
Because (a0, a1, a2) ∈ V , this vector has at least one nonzero component; say a0 6= 0. There-

fore, the equation (??) has exactly q2 − 1 solutions (x0, x1, x2) ∈ V : for arbitrary x1, x2, not both
zero, this equation uniquely determines x0. Since each [x0, x1, x2] consists of q − 1 vectors, there
are exactly (q2 − 1)/(q − 1) = q + 1 points [x0, x1, x2] satisfying (??). In other words: there are
exactly q + 1 points on each line. So, it remains to verify that any two points lie on a unique line.

To show this, let [x0, x1, x2] and [y0, y1, y2] be two distinct points. How many lines contain
both these points? For each such line L(a0, a1, a2),

a0x0 + a1x1 + a2x2 = 0,

a0y0 + a1y1 + a2y2 = 0.

Without loss of generality x0 6= 0. Then a0 = −a1x1/x0 −a2x2/x0, and we can replace the second
equation by

(68) a1

(
y1 − y0

x0
x1

)
+ a2

(
y2 − y0

x0
x2

)
= 0.

If

y1 − y0

x0
x1 = y2 − y0

x0
x2 = 0

then (y0, y1, y2) = (cx0, cx1, cx2) with c = y0/x0, and hence, [y0, y1, y2] = [x0, x1, x2], which is
impossible since we consider distinct points. Therefore, at least one of them, say y1 − (y0/x0)x1,
is nonzero. Then for arbitrary nonzero a2, both a1 and a0 are uniquely determined by (??) and
the first equation; and if (a0, a1, a2) is a solution then (ca0, ca1, ca2) for c 6= 0 are all the solutions.
Consequently, every two different points [x0, x1, x2] and [y0, y1, y2] are contained in a unique line,
as desired.

The constructed projective plane is usually denoted by PG(2, q).

4.2. Bruen’s theorem. A blocking set in a projective plane is a set of points which intersects
every line. The smallest (with respect to the set–theoretic inclusion) blocking sets are just the
lines (show this!). This is why blocking sets containing a line are called trivial.

What can be said about the size of non-trivial blocking sets? Lines themselves have q + 1
points, and these are trivial blocking sets. Can we find a non-trivial blocking set with, say q + 2
or q + 3 points? The fundamental result due to Bruen (1970) says that any non-trivial blocking
set in a projective plane of order q must have at least q +

√
q + 1 points, and this lower bound is

tight when q is a square (that is, for square q blocking sets of this size exist). For the prime order
q, Blokhuis (1994) improved Bruen’s bound to 3(q + 1)/2 (which is also optimal).

Theorem 12.10 (Bruen 1970). Let B be a non-trivial blocking set in a projective plane of
order q. Then |B| ≥ q +

√
q + 1.

This result captures a very interesting property of projective planes: if we take any set of at
most q +

√
q points, then either it contains a line or avoids a line (the third is impossible!).
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Proof. Let |B| = q + m, and assume that m ≤ √
q + 1. We will show that |B| = q +

√
q + 1.

Let li be the number of lines containing precisely i points of B. Counting lines, point-line pairs
(x, L) with x ∈ B ∩ L, and triples (x, y, L) with x 6= y in B ∩ L, we obtain

m∑

i=1

li = q2 + q + 1

m∑

i=1

i · li = |B|(q + 1) every point lies in q + 1 lines

m∑

i=1

i(i − 1)li = |B|(|B| − 1) two points lie on exactly one line.

Since m ≤ √
q + 1, we have that i − √

q − 1 ≤ 0 for all i = 1, . . . , m. This, in particular, implies
that

0 ≥
m∑

i=1

(i − 1)(i − √
q − 1)li

=
m∑

i=1

i(i − 1)li − (
√

q + 1)
m∑

i=1

i · li + (
√

q + 1)
m∑

i=1

li

= |B|(|B| − 1) − (
√

q + 1)|B|(q + 1) + (
√

q + 1)(q2 + q + 1)

= [|B| − (q +
√

q + 1)] · [|B| − (q
√

q + 1)] .

Since |B| ≤ q +
√

q + 1 (by our assumption), the second term is negative, implying that the first
one cannot be negative, that is, |B| ≥ q +

√
q + 1, as desired. �

5. Resolvable designs

Suppose D is a (v, k, λ) design over a set X. A parallel class in D is a subset of disjoint blocks
from D whose union is X. Observe that a parallel class contains v/k blocks, and every point of
X appears in exactly one of these blocks. Moreover, by (??) and (??), we have

r = |D|k/v = λ(v − 1)/(k − 1)

such classes, where r is the replication number of D (the number of blocks containing a given
point). A partition of D into r parallel classes is called a resolution, and a design is said to be
resolvable if it has at least one resolution.

Let us consider the following example from Anderson and Honkala (1997). We have a football
league of 2n teams and each team plays exactly once against every other team. We wish to arrange
the league schedule so that all the matches are played during 2n − 1 days, and on each day every
team plays one match. Is this possible?

What we are looking for is a resolvable (2n, 2, 1) design. For convenience, let our ground set
(of teams) be X = {∗, 1, . . . , 2n − 1}, where ∗ is some symbol different from 1, . . . , 2n − 1. Since
by (??), the replication number equals

r = λ(v − 1)/(k − 1) = 1 · (2n − 1)/(2 − 1) = 2n − 1,

we have to show how to partite the collection D of all 2-element subsets of X into 2n − 1 parallel
classes D1, . . . , D2n−1; the i-th class Di gives us the set of matches played at the i-th day.

Define {i, ∗} ∈ Di for all i ∈ X \ {∗}, and {a, b} ∈ Di, if

a + b ≡ 2i mod 2n − 1

for a, b ∈ X \ {∗}. Since 2n − 1 is odd, each 2-element subset of X belongs to a unique Di; and
the unique block in Di containing an element a ∈ X is {a, b} where b ≡ 2i − a mod 2n − 1 if a 6= i,
and {i, ∗} if a = i.
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Figure 2. Construction 1 applied to the Fano plane; L0 = {1, 2, 3} is the removed
line (the line at infinity).

5.1. Affine planes. An affine plane AG(2, q) of order q is a (q2, q, 1) design. By (??),
each point of this plane belongs to r = (q2 − 1)/(q − 1) = q + 1 lines, and by (??), we have
b = vr/k = q2 + q lines altogether. Put otherwise, an affine plane of order q has q2 points and
satisfies the following conditions:

- every line has q points;
- any two points lie on a unique line;
- any point lies on q + 1 lines;
- there are q2 + q lines.

Hence, the main difference from projective planes is that now we can have “parallel” lines,
i.e., lines which do not meet each other.

There are two basic constructions of affine planes.
Construction 1. An affine plane can be obtained from a projective plane by removing any

one of its lines. Let (X, L) be a projective plane of order q. Fix one of its lines L0 ∈ L and consider
the design (X ′, L′) where X ′ = X \ L0 and L′ = {L \ L0 : L ∈ L, L 6= L0} (see Fig. ??). It is easy
to verify (Exercise ??) that the obtained design (X ′, L′) is an affine plane of order q. The line
L0 is called the line at infinity. For each line L′ ∈ L′ of the affine plane there is a unique point
x ∈ L0 such that L′ ∪ {x} ∈ L; this point is called the infinite point of L′.

Construction 2. Let q be a prime power, and consider the set of points X = Fq × Fq. Let
D be the set of all blocks of the form

L(a, b) := {(x, y) ∈ X : y = ax + b}
and

L(c) := {(c, y) : y ∈ Fq},

where a, b, c ∈ Fq. We will show that D is a (q2, q, 1) design. Clearly, there are q2 points and
each block contains exactly q of them. Hence, we only need to show that every pair of points
(x1, y1), (x2, y2) ∈ Fq × Fq is contained in a unique block. If x1 = x2 then the unique block
containing this pair is L(x1). If x1 6= x2 then the system of equations y1 = ax1 + b, y2 = ax2 + b
has a unique solution (a, b); hence, the unique block containing that pair is L(a, b), and we are
done.

It can be shown that affine planes are resolvable designs (see Exercise ??): the parallel classes
are {L\{x} : x ∈ L} for x ∈ L0, in Construction 1, and {L(c) : c ∈ Fq} together with {L(a, b) : b ∈
Fq} for all a ∈ Fq, in Construction 2.

Exercises

Ex 12.1. Let D = {A1, . . . , Am} be a (v, k, λ) design over some set X with |X| = v. Use
Fisher’s inequality (Theorem ??) to show that |D| ≥ v. Hint: Consider the sets Sx = {i : x ∈ Ai}
and show that |Sx ∩ Sy| = λ for all x 6= y ∈ X.

Ex 12.2. Let D ⊆ 2X be a (v, k, λ) design with b blocks, and let r be its replication number
(i.e., each element occurs in r blocks). Prove that its complement D := {X \ B : B ∈ D} is a
(v, v − k, b − 2r + λ) design provided that b − 2r + λ > 0. Hint: A pair of elements x 6= y is contained
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in X \ B if and only if B contains neither x nor y. The number of blocks of D containing neither x nor y

is b − 2r + λ by the principle of inclusion and exclusion.

Ex 12.3. Show that the number b of blocks in a t–(v, k, λ) design is given by b = λ
(

v
t

)/(
k
t

)
.

Hint: Count in two ways the number of pairs (T, B) where T is a t-element set of points and B is a block.

Ex 12.4. Construct a projective plane PG(2, q) of order q = 3.

Ex 12.5. Show that, in a projective plane of order q, its lines are the only blocking sets of size
q + 1. Hint: See Exercise ??.

Ex 12.6. From the previous example we know that no set of q points intersects all the lines.
We can ask the dual question: are there sets of size q that intersect every non-trivial blocking set?
Show that there are no such sets and that the only sets of size q + 1 that intersect every blocking
set are the lines. Sketch: (due to Blokhuis): Take any set S of q points, and start with a line L0 not
intersecting this set. Delete one (suitable) point x ∈ L0 from that line, and add a point yi ∈ Li \ S on
every other line Li through the deleted point x. The resulting set (L0 \ {x}) ∪ {y1, . . . , yq} is blocking and
is disjoint from S. This blocking set might be trivial (i.e., contain a line), but it can be made non-trivial
by deleting some unnecessary point of the line we started with.

Ex 12.7. (due to Bruen). Let S be a nontrivial blocking set in a projective plane of order q.
Show that:

(i) |S| ≤ q2 − √
q, and

(ii) no line contains more than |S| − q points of S.

Hint: To (i): observe that the complement of S is also a nontrivial blocking set, and apply Bruen’s
theorem. To (ii): take a line L and a point x ∈ L \ S; there are q other lines through x and these lines
intersect S; argue that then |L ∩ S| + q ≤ |S|.

Ex 12.8. Let S be a set of q + 2 points in a projective plane of order q. Prove that every line,
that meets S, meets it twice.

Ex 12.9. Let S be a set of points in a projective plane of order q. Suppose that no three
points of S are colinear (i.e., lie on a line). Prove that then |S| ≤ q + 1 if q is odd, and |S| ≤ q + 2
if q is even. Hint: Fix a point x ∈ S; for each other point y ∈ S the pair x, y lies on one of q + 1 lines
(containing x), and these lines must be different for different y. This proves the odd case. For the even
case show that, if |S| = q + 2 then every line that meets S, meets it twice.

Ex 12.10. Color some q points of a projective plane of order q in red, and the rest in blue.
Prove that, for any two different sets A 6= B of red points, there is a set C of q blue points such
that A ∪ C is a blocking set but B ∪ C avoids at least one line. Hint: Take a point x ∈ A \ B,
and show that some two lines L1 and L2 meet in the (red) point x and have no more red points; take
C = L1 \ {x}.

Ex 12.11. Take a projective plane of order q, i.e., a design satisfying the conditions (P1)–(P5),
and apply the first construction from Sect. ?? to it. Show that the resulting design satisfies the
conditions (A1)–(A4).

Ex 12.12. Consider a (q2, q, 1) design, i.e., an affine plane of order q. Show that this design
is resolvable. More generally, let a parallel class be a set of mutually disjoint lines, and show the
following:

(i) each parallel class contains q lines;
(ii) there are q + 1 such classes;
(iii) any two lines from different classes meet in a point;
(iv) lines of each parallel class cover the whole point set.

Hint: Each parallel class contains exactly one line through any point; so, the q + 1 lines through a point
x contain representatives of all the classes.
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CHAPTER 13

The Basic Method

The general framework for the linear algebra method in combinatorics is the following: if
we want to come up with an upper bound on the size of a set of objects, associate them with
elements in a vector space V of relatively low dimension, and show that these elements are linearly
independent; hence, we cannot have more objects in our set than the dimension of V .

1. The linear algebra background

A field is a set F closed under addition, subtraction, multiplication and division by nonzero
element. By addition and multiplication, we mean commutative and associative operations which
obey distributive laws. The additive identity is called zero, and the multiplicative identity is called
unity. Examples of fields are reals R, rationals Q, and integers modulo a prime p. We will be
mostly concerned with finite fields. The cardinality of a finite field must be a power of a prime
and all finite fields with the same number of elements are isomorphic. Thus, for each prime power
q there is essentially one field F with |F| = q. This field is usually denoted as GF (q) or Fq.

A linear space (or vector space) V over a field F is an additive Abelian group (V, +, 0) closed
under (left) multiplication by elements of F (called scalars). It is required that this multiplication is
distributive with respect to addition in both V and F, and associative with respect to multiplication
in F. Elements of V are called vectors or points. Standard examples of vector spaces are subsets
V ⊆ Fn of vectors closed under the component-wise addition u + v = (u1 + v1, . . . , un + vn) and
multiplication by scalars λv = (λv1, . . . , λvn), λ ∈ F.

A linear combination of the vectors v1, . . . , vm is a vector of the form λ1v1 + . . . + λmvm with
λi ∈ F. A subspace of V is a nonempty subset of V, closed under linear combinations. The span
of v1, . . . , vm, denoted by span {v1, . . . , vm}, is the set of all linear combinations of these vectors.
A vector u depends on the vectors v1, . . . , vm if u ∈ span {v1, . . . , vm}. The vectors v1, . . . , vm are
linearly independent if none of them is dependent on the rest. Equivalently, the (in)dependence
can be defined as follows.

A linear relation among the vectors v1, . . . , vm is a linear combination that gives the zero
vector:

λ1v1 + . . . + λmvm = 0.

This relation is nontrivial if λi 6= 0 for at least one i. It is easy to see that the vectors v1, . . . , vm

are linearly independent if and only if no nontrivial relation exists between them. A basis of V is
a set of independent vectors which spans V . A fundamental fact in linear algebra says that any
two bases of V have the same cardinality; this number is called the dimension, dim V , of V .

A further basic fact is the so-called linear algebra bound (see any standard linear algebra book
for the proof):

Proposition 13.1. If v1, . . . , vk are linearly independent vectors in a vector space of dimen-
sion m then k ≤ m.

An important operation in vector spaces is the scalar product of two vectors. Given two
vectors u = (u1, . . . , un) and v = (v1, . . . , vn), their scalar product 〈u, v〉 (also called inner product
and denoted u · v) is defined by:

〈u, v〉 = u⊤ · v := u1v1 + · · · + unvn.

129
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Vectors u and v are orthogonal if 〈u, v〉 = 0; in this case one also writes u ⊥ v. If U ⊆ V is a
subspace of V then the dual (or orthogonal complement) is the subspace

U⊥ = {v ∈ V : 〈u, v〉 = 0 for all u ∈ U}.

The following useful equality connects the dimensions of two orthogonal subspaces.

Proposition 13.2. Let V be a finite dimensional linear space, and U ⊆ V be a subspace.
Then dim U + dim U⊥ = dim V.

A consequence of this is that, for every linear subspace U ⊆ Rn and every vector x ∈ U , there
are uniquely defined vectors u ∈ U and w ∈ U⊥ such that x = u + w. The vector u is then called
the projection of x onto U .

If A = (aij) is an m-by-n matrix over some field F and x is a vector in Fm, then x⊤ · A is the
vector in Fn whose j-th coordinate is the scalar product of x with the j-th column of A. Thus,
the rows of A are linearly independent if and only if x⊤ · A 6= 0 for all x 6= 0. Similarly, if y ∈ Fn,
then A · y is the vector in Fm whose i-th coordinate is the scalar product of y with the i-th row of
A.

The column rank of a matrix A is the dimension of the vector space spanned by its columns.
The row rank of A is the dimension of the vector space spanned by its rows. One of the first
nontrivial results in matrix theory asserts that the row and column ranks are equal; this common
value is the rank of A, denoted by rk(A). There are several equivalent definitions of the rank of
an m-by-n matrix A = (aij) over a given field F:

(a) rk(A) is the smallest r such that A = B · C for some m-by-r matrix B and r-by-n matrix C;
(b) rk(A) is the smallest r such that A can be written as a sum of r rank-1 matrices;
(c) rk(A) is the smallest r such that A is a matrix of scalar products of vectors in Fr: there exist

vectors u1, . . . , um and v1, . . . , vn in Fr such that aij =
〈
ui, vj

〉
.

Usually, the underlying field F will be clear from the context. If the field still needs to be specified,
we will write rkF(A) instead of rk(A).

The following inequalities hold for the rank:

(69) rk(A) − rk(B) ≤ rk(A + B) ≤ rk(A) + rk(B);

(70) rk(A) + rk(B) − n ≤ rk(AB) ≤ min {rk(A), rk(B)} ,

if A is an m-by-n and B an n-by-k matrix.
The determinant, det(A), of an n × n matrix A = (aij) is the sum of n! signed products

±a1i1
a2i2

· · · anin
, where (i1, i2, . . . , in) is a permutation of (1, 2, . . . , n), the sign being +1 or −1,

depending on whether the number of inversions of (i1, i2, . . . , in) is even or odd; an inversion
occurs when ir > is but r < s. It can be shown (do this!) that det(A) 6= 0 implies rk(A) = n.

If x = (x1, . . . , xn) denotes the vector of indeterminates, and b is a vector in Fm, then the
matrix equation A · x = b is a concise form of writing a system of m linear equations in variables
x1, . . . , xn:

ai1x1 + ai2x2 + · · · + ainxn = bi (i = 1, . . . , m).

We have the following useful criterion for such a system being solvable. Let a1, . . . , an ∈ Fm

denote the columns of A. Observe that A · x = x1a1 + x2a2 + · · · + xnan. It follows that the set
{A · x : x ∈ Fn} is a columns space of A, i.e., the set of all vectors spanned by the columns of
A. The system A · x = b is thus solvable if and only if b ∈ span {a1, . . . , an} or, equivalently, if
and only if rk(A) = rk([A|b]), where [A|b] denotes the m × (n + 1) matrix obtained by adding the
column b to A. A system A · x = b is homogeneous if b = 0. The set of solutions of A · x = 0 is
clearly a subspace (of all vectors that are orthogonal to all the rows of A) and, by Proposition ??,
its dimension is n − rk(A). We summarize this important result:

Proposition 13.3. Let A be an m × n matrix over a field F. Then the set of solutions of the
system of linear equations A · x = 0 is a linear subspace of dimension n − rk(A) of the space Fn.
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This subspace is called the kernel of A.
The norm (or length) of a vector v = (v1, . . . , vn) in Rn is the number

‖v‖ := 〈v, v〉1/2 =

( n∑

i=1

v2
i

)1/2

.

The following basic inequality, known as the Cauchy–Schwarz inequality, estimates the scalar
product of two vectors in terms of their norms (we have already used it in previous sections; now
we will prove it):

Proposition 13.4. For any real vectors u, v ∈ Rn,

| 〈u, v〉 | ≤ ‖u‖ · ‖v‖
with an equality iff u and v are linearly dependent.

When expressed explicitly, this inequality turns to:

(71)

( n∑

i=1

uivi

)2

≤
( n∑

i=1

u2
i

)( n∑

i=1

v2
i

)
.

Proof. We may assume that u 6= 0. For any constant λ ∈ R we have

0 ≤ 〈λu − v, λu − v〉 = 〈λu, λu − v〉 − 〈v, λu − v〉
= λ2〈u, u〉 − 2λ〈u, v〉 + 〈v, v〉.

Substituting λ = 〈u,v〉
〈u,u〉 we get

0 ≤ 〈u, v〉2

〈u, u〉2 〈u, u〉 − 2
〈u, v〉2

〈u, u〉 + 〈v, v〉 = 〈v, v〉 − 〈u, v〉2

〈u, u〉
Rearranging the last inequality, we get 〈u, v〉2 ≤ 〈u, u〉〈v, v〉 = ‖u‖2 · ‖v‖2. �

A scalar λ is an eigenvalue of a square real matrix A if the equation Ax = λx has a solution
x ∈ Rn, x 6= 0, which is the case iff the characteristic polynomial pA(z) = det (A − zI) has λ as
a root; here, I is a unit matrix with 1s on the diagonal, and 0s elsewhere. A non-zero x with
Ax = λx is called an eigenvector corresponding to the eigenvalue λ. Since pA has degree n, we
can have at most n (complex) eigenvalues. If the matrix A is symmetric, that is, A⊤ = A, then
all its eigenvalues are real numbers.

The following are standard facts about the eigenvalues of a real symmetric n × n matrix A =
(aij):

(1) A has exactly n (not necessarily distinct) real eigenvalues λ1 ≥ . . . ≥ λn.
(2) There exists a set of n eigenvectors x1, . . . , xn, one for each eigenvalue, that are normal-

ized and mutually orthogonal, that is, ‖xi‖ = 1 and 〈xi, xj〉 = 0 over the reals. Hence,
x1, . . . , xn form an orthonormal basis of Rn.

(3) The rank of A is equal to the number of its nonzero eigenvalues, including multiplicities:
rk(A) = |{i : λi 6= 0}|.

(4) The sum of all eigenvalues
∑n

i=1 λi is equal to the trace tr(A) =
∑n

i=1 aii.
(5) The product

∏n
i=1 λi of all eigenvalues is equal to det(A).

(6) Perron–Frobenius theorem: If A = (aij) is a real n × n matrix with non-negative entries
aij ≥ 0 and irreducible, then there is a real eigenvalue r of A such that

min
i

∑

j

aij ≤ r ≤ max
i

∑

j

aij

and any other eigenvalue λ satisfies |λ| ≤ r. A matrix is reducible if there is a subset
I ⊆ [n] such that aij = 0 for all i ∈ I and j 6∈ I. In particular, an adjacency matrix of a
graph is irreducible iff the graph is connected.
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There is also a general formula to compute eigenvalues explicitly. A weighted average of a
sequence x = (x1, . . . , xn) of numbers is a number

n∑

i=1

aixi with

n∑

i=1

ai = 1 .

We will use the following easy fact (prove it!): For every sequence x, any weighted average of x is
≥ mini xi and is ≤ maxi xi.

Theorem 13.5. The k-th largest eigenvalue of a symmetric n × n matrix A is

λk = max
dim U=k

min
x∈U

x⊤Ax

x⊤x
(72)

= min
dim U=k−1

max
x⊥U

x⊤Ax

x⊤x
.(73)

Here, the maximum/minimum is over all subspaces U of a given dimension, and over all
nonzero vectors x in the respective subspace. In particular, (??) yields:

(74) λ1 = max
x6=0

x⊤Ax

x⊤x
= max

‖x‖=1
x⊤Ax

and

(75) λ2 = max
x⊥1

x⊤Ax

x⊤x
= max

x⊥1,‖x‖=1
x⊤Ax ,

where 1 is the all-1 vector, and the second equality follows since we can replace x by x/‖x‖, since
the first maximum is over all nonzero vectors x.

Proof. We only prove the first equality (??)—the proof of the second one is analogous. First
of all, note that the quantity (known as the Rayleigh quotient)

fA(x) =
x⊤Ax

x⊤x

is invariant under replacing x by any nonzero multiple cx. Therefore, we can assume that x is
a unit vector, that is, ‖x‖ = 1 and hence x⊤x = 1 (by replacing x 7→ cx with c = 1/‖x‖, if
necessary).

Consider an orthonormal basis of eigenvectors u1, . . . , un. Any vector x in Rn can be written
as x =

∑n
i=1 aiu

i, and the expression x⊤Ax reduces to

x⊤Ax =

( n∑

i=1

aiu
i

)⊤
A

( n∑

i=1

aiu
i

)
=

n∑

i,j=1

〈ui, λjuj〉 =
n∑

i=1

a2
i λi ,

where the last equality follows because the scalar product of vectors ui and uj is 1 if i = j, and is
0 otherwise. By a similar argument, we have that x⊤x =

∑n
i=1 a2

i , and for unit vector x we get∑n
i=1 a2

i = 1. Thus, for each unit vector x, the expression fA(x) can be interpreted as a weighted
average of the eigenvalues.

Now consider the subspace U ⊆ Rn generated by the first k eigenvectors u1, . . . , uk. For any

unit vector x ∈ U , we get x⊤Ax =
∑k

i=1 a2
i λi and

∑k
i=1 a2

i = 1. The weighted average fA(x) of the
eigenvalues λ1 ≥ . . . ≥ λk is at least the smallest of the first k eigenvalues, so minx∈U fA(x) ≥ λk

holds for this special k-dimensional subspace U .
On the other hand, consider any subspace U of dimension k, and a subspace V of dimension

n − k + 1 generated by the last n − k + 1 eigenvectors uk, uk+1 . . . , un. These two subspaces
must have nontrivial intersection, that is, there must exist a nonzero vector z ∈ U ∩ V . By
normalization, we can assume that z =

∑n
j=k bjuj is a unit vector, z⊤z =

∑n
j=k b2

j = 1 and we

obtain fA(z) =
∑n

j=k b2
jλj ≤ λk, since fA(z) is a weighted average of the last n−k +1 eigenvalues

and the largest of these eigenvalues is λk. Consequently, minx∈U fA(x) ≤ fA(z) ≤ λk holds for
any k-dimensional subspace U . �
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The spectral norm of a matrix A is defined as

‖A‖ := max
x6=0

‖Ax‖
‖x‖ .

The name “spectral norm” comes from the fact that

‖A‖ = square root of the largest eigenvalue of A⊤A.

This holds because x⊤(A⊤A)x = 〈Ax, Ax〉 = ‖Ax‖2. The Frobenius norm of A is just the
Euclidean norm

‖A‖F :=
(∑

i,j

a2
ij

)1/2

of the corresponding vector of length n2. The following fact relates these two norms with the rank
over the reals.

Proposition 13.6. For every real matrix A,

‖A‖F√
rk(A)

≤ ‖A‖ ≤ ‖A‖F .

Proof. Observe that ‖A‖2
F is equal to the trace, that is, the sum of diagonal elements of

the matrix B = A⊤A. On the other hand, the trace of any real matrix is equal to the sum of its
eigenvalues. Hence, ‖A‖2

F =
∑n

i=1 λi where λ1 ≥ . . . ≥ λn are the eigenvalues of B. Since B has
only rk(B) = rk(A) = r non-zero eigenvalues, and since all eigenvalues of B are nonnegative, the
largest eigenvalue λ1 is bounded by ‖A‖2

F/r ≤ λ1 ≤ ‖A‖2
F. It remains to use the fact mentioned

above that ‖A‖ =
√

λ1. �

Let us now see how the linear algebra argument works in concrete situations.

2. Graph decompositions

A bipartite clique is a bipartite complete graph KA,B = (A ∪ B, E) with A ∩ B = ∅ and
E = A × B.

Let f(n) be the smallest number t such that the complete graph Kn on n vertices 1, 2, . . . , n
can be decomposed into t edge-disjoint bipartite cliques. It is not difficult to see that f(n) ≤ n−1.
Indeed, it is enough to remove the vertices 1, 2, . . . , n − 1 one-by-one, together with their incident
edges. This gives us a decomposition of Kn into edge-disjoint stars, that is, bipartite cliques
KAi,Bi

with Ai = {i} and Bi = {i + 1, . . . , n}, i = 1, . . . , n − 1.
This is, however, just one special decomposition and does not exclude better ones. Still, a

classical result of Graham and Pollak (1971) says that the trivial decomposition is in fact the best
one! This can be shown using linear algebra.

Theorem 13.7. The edges of Kn cannot be decomposed into fewer than n − 1 edge-disjoint
biartite cliques.

Proof (due to Trevberg 1982). We consider a more general question: What is the smallest number
t such that the sum of products

S(x) :=
∑

1≤i<j≤n

xixj

in indeterminates x = (x1, . . . , xn) can be written as the sum

S(x) =

t∑

i=1

(
∑

j∈Ai

xj) · (
∑

j∈Bi

xj) =

t∑

i=1

Li(x) · Ri(x)

of products-of-sums with Ai ∩ Bi = ∅ for all i = 1, . . . , t? To answer this question, set T (x) :=∑n
i=1 x2

i and observe that

( n∑

i=1

xi

)2
=

n∑

i=1

x2
i + 2

∑

i<j

xixj = T (x) + 2S(x) ,
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and hence,

(76) T (x) =
( n∑

i=1

xi

)2
− 2S(x) =

( n∑

i=1

xi

)2
− 2 ·

t∑

i=1

Li(x) · Ri(x) .

Consider now a homogeneous system of t + 1 linear equations over R:

L1(x) = 0 , . . . , Lt(x) = 0 , x1 + · · · + xn = 0

and assume that t ≤ n − 2. Then the system has more variables than equations, implying that it
must have a solution x ∈ Rn with x 6= 0. From

∑n
i=1 xi = 0 and Li(x) = 0 for all i = 1, . . . , t it

follows that, for this vector x, the right-hand side of (??) must be equal to 0. But the left-hand
side is not equal to 0, since x 6= 0 implies T (x) =

∑n
i=1 x2

i 6= 0. Thus, our assumption that
t ≤ n − 2 has led to a contradiction. �

3. Inclusion matrices

A celebrated result, due to Razborov (1987), says that the majority function cannot be com-
puted by constant depth circuits of polynomial size, even if we allow unbounded fanin And, Or
and Parity functions as gates. This result was obtained in two steps:

(i) show that functions, computable by small circuits, can be approximated by low degree poly-
nomials, and

(ii) prove that the majority function is hard to approximate by such polynomials.

The proof of (i) is probabilistic, and we will present it later (see Lemma ??). The proof of (ii)
employs the linear algebra argument, and we present it below.

The k-threshold function is a boolean function T n
k (x1, . . . , xn) which outputs 1 if and only if

at least k of the bits in the input vector are 1. A boolean function g(x1, . . . , xn) is a polynomial
of degree d over F2 if it can be written as a sum modulo 2 of products of at most d variables.

Lemma 13.8 (Razborov 1987). Let n/2 ≤ k ≤ n. Every polynomial of degree at most 2k−n−1
over F2 differs from the k-threshold function on at least

(
n
k

)
inputs.

Proof (due to Lovász–Shmoys–Tardos 1995). Let g be a polynomial of degree d ≤ 2k − n − 1 over
F2 and let U denote the set of all vectors where it differs from T n

k . Let A denote the set of all 0-1
vectors of length n containing exactly k ones. By our choice of d, the coordinate-wise And a ∧ b
of any two vectors a, b ∈ A must contain at least d + 1 ones.

Consider the 0-1 matrix M = (ma,u) whose rows are indexed by the members of A, columns
are indexed by the members of U , and ma,u = 1 if and only if a ≥ u. For two vectors a and b we
denote by a ∧ b the coordinate-wise And of these vectors. Our goal is to prove that the columns
of M span the whole linear space; since the dimension of this space is |A| =

(
n
k

)
, this will mean

that we must have |U | ≥
(

n
k

)
columns.

The fact that the columns of M span the whole linear space follows directly from the following
claim saying that every unit vector lies in the span.

Claim 13.9. Let a ∈ A and Ua = {u ∈ U : ma,u = 1}. Then, for every b ∈ A,

∑

u∈Ua

mb,u =

{
1 if b = a;
0 if b 6= a.

Proof. By the definition of Ua, we have (all sums are over F2):
∑

u∈Ua

mb,u =
∑

u∈U
u≤a∧b

1 =
∑

x≤a∧b

(T n
k (x) + g(x)) =

∑

x≤a∧b

T n
k (x) +

∑

x≤a∧b

g(x).

The second term of this last expression is 0, since a ∧ b has at least d + 1 ones (Exercise ??). The
first term is also 0 except if a = b.

This completes the proof of the claim, and thus, the proof of the lemma. �
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4. Disjointness matrices

Let k ≤ n be natural numbers, and X be a set of n elements. A k-disjointness matrix over X
is a 0-1 matrix D = D(n, k) whose rows and columns are labeled by subsets of X of size at most
k; the entry DA,B in the A-th row and B-th column is defined by:

DA,B =

{
0 if A ∩ B 6= ∅,
1 if A ∩ B = ∅.

This matrix plays an important role in computational complexity. Its importance stems from the

fact that it has full rank over F2, i.e., all its
∑k

i=0

(
n
i

)
rows are linearly independent.

Theorem 13.10. The k-disjointness matrix D = D(n, k) has full rank over F2, that is,

rkF2
(D) =

k∑

i=0

(
n

i

)
.

There are several proofs of this result. Usually, it is derived from more general facts about
Möbius inversion or general intersection matrices. Here we present one particularly simple and
direct proof due to Razborov (1987).

Proof. Let N =
∑k

i=0

(
n
i

)
. We must show that the rows of D are linearly independent over

F2, i.e., that for any nonzero vector λ = (λI1
, λI2

, . . . , λIN
) in FN

2 we have λ⊤ · D 6= 0. For this,
consider the following polynomial:

f(x1, . . . , xn) :=
∑

|I|≤k

λI

∏

i∈I

xi.

Since λ 6= 0, at least one of the coefficients λI is nonzero, and we can find some I0 such that
λI0

6= 0 and I0 is maximal in that λI = 0 for all I ⊃ I0. Assume w.l.o.g. that I0 = {1, . . . , t},
and make in the polynomial f the substitution xi := 1 for all i 6∈ I0. After this substitution has
been made, a nonzero polynomial over the first t variables x1, . . . , xt remains such that the term
x1x2 · · · xt is left untouched (here we use the maximality of I0). Hence, after the substitution we
obtain a polynomial which is 1 for some assignment (a1, . . . , at) to its variables. But this means
that the polynomial f itself takes the value 1 on the assignment b = (a1, . . . , at, 1, . . . , 1). Hence,

1 = f(b) =
∑

|I|≤k

λI

∏

i∈I

bi.

Let J0 := {i : ai = 0}. Then |J0| ≤ k and, moreover,
∏

i∈I bi = 1 if and only if I ∩ J0 = ∅, which
is equivalent to DI,J0

= 1. Thus,
∑

|I|≤k

λIDI,J0
= 1,

meaning that the J0-th coordinate of the vector λ⊤ · D is nonzero. �

In order to apply the linear algebra method, in many situations it is particularly useful to asso-
ciate sets not to their incidence vectors but to some (multivariate) polynomials f(x1, . . . , xn) and
show that these polynomials are linearly independent as members of the corresponding functions
space. This idea has found many applications. All these applications are based on the following
simple and powerful lemma connecting algebra to linear algebra.

Lemma 13.11 (Independence Criterion). For i = 1, . . . , m let fi : Ω → F be functions and
vi ∈ Ω elements such that

(a) fi(vi) 6= 0 for all 1 ≤ i ≤ m;
(b) fi(vj) = 0 for all 1 ≤ j < i ≤ m.

Then f1, . . . , fm are linearly independent members of the space FΩ.
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Proof. By contradiction: Suppose there is a nontrivial linear relation

λ1f1 + λ2f2 + · · · + λmfm = 0

between the fi’s. Take the largest i for which λi 6= 0. Substitute vi for the variables. By the
assumption, all but the i-th term vanish. What remains is λifi(vi) = 0, which implies λi = 0
because fi(vi) 6= 0, a contradiction. �

5. Two-distance sets

Our first illustration of the independence criterion prepares for some surprisingly powerful
applications, which we will consider in Sects. ?? and ??.

Let a1, . . . , am be points in the n-dimensional Euclidean space Rn. If the pairwise distances
of the ai are all equal then m ≤ n + 1. (Show this!) But what happens if we relax the condition
and require only that the pairwise distances between the ai take two values? Such a set is called
two-distance set.

We shall see that then m is about n2/2. Indeed, it is easy to construct a two-distance set in
Rn with

(
n
2

)
points (Exercise ??). On the other hand, we have the following upper bound.

Theorem 13.12 (Larman–Rogers–Seidel 1977). Every two-distance set in Rn has at most(
n
2

)
+ 3n + 2 points.

Proof. Let a1, . . . , am be a two-distance set of distinct points in Rn. The distance between
two points x, y in Rn is ‖x − y‖. Since for our set of points a1, . . . , am this distance can take only
one of two values d1 or d2, none of which is zero (why?), it is natural to associate with each point
ai the following polynomial in n real variables x ∈ Rn:

fi(x) := (‖x − ai‖2 − d2
1) · (‖x − ai‖2 − d2

2).

Then fi(ai) = (d1d2)2 6= 0, but fi(aj) = 0 for every j 6= i. By Lemma ??, these polynomials are
linearly independent (as members of the space of all functions f : Rn → R). What is a vector
space in which they reside? It is easy to see that every such polynomial is an appropriate linear
combination of the following polynomials

( n∑

i=1

x2
i

)2
,
( n∑

i=1

x2
i

)
xj , xixj , xi, 1, for i, j = 1, . . . , n;

their number is 1 + n +
((

n
2

)
+ n

)
+ n + 1 =

(
n
2

)
+ 3n + 2. Thus, the polynomials f1, . . . , fm belong

to a linear space of dimension at most
(

n
2

)
+3n+2. As they are linearly independent, their number

m cannot exceed the dimension, completing the proof of the theorem. �

We can rewrite the upper bound in Theorem ?? as

m ≤
(

n

2

)
+ 3n + 2 =

(
n + 2

2

)
+ n + 1.

A significant improvement was achieved by Blokhuis (1981) who showed that the second term
n + 1 here is redundant. His trick was to show that the polynomials f1, . . . , fm together with the
polynomials x1, . . . , xn, 1 are linearly independent. This nice idea was later employed to derive
more impressing results (cf. Exercise ??).

6. Sets with few intersection sizes

In this section we demonstrate how the polynomial technique can be used to obtain far reaching
extensions of Fisher’s inequality (see Theorem ??).

Let F be a family of subsets of some n-element set, and let L ⊆ {0, 1, . . .} be a finite set of
integers. We say that F is L-intersecting if |A ∩ B| ∈ L for every pair A, B of distinct members of
F .

Suppose we know only the size of L. What can then be said about the number of sets in
F? Fisher’s inequality tells us that |F| ≤ n when |L| = 1. In the case of uniform families, the
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celebrated result of Ray-Chaudhuri and Wilson (1975) gives the upper bound |F| ≤
(

n
|L|
)
. The

non-uniform version of this result was proved by Frankl and Wilson (1981).

Theorem 13.13 (Frankl–Wilson 1981). If F is an L-intersecting family of subsets of a set of

n elements, then |F| ≤ ∑|L|
i=0

(
n
i

)
.

Both these results are best possible: for L = {0, 1, . . . , s − 1} one can take the family of all
subsets of an n-element set with s elements (with at most s elements, respectively).

The original proof of these theorems used the machinery of higher incidence matrices. For-
tunately, these results now admit conceptually simpler proofs using linear spaces of multivariate
polynomials.

Proof of Theorem ?? (due to Babai 1988). Let F = {A1, . . . , Am} where |A1| ≤ . . . ≤ |Am|. Let
L = {l1, . . . , ls} be the set of all possible intersection sizes. That is, for every i 6= j there is a k
such that |Ai ∩ Aj | = lk. With each set Ai we associate its incidence vector vi = (vi1, . . . , vin),
where vij = 1 if j ∈ Ai; otherwise vij = 0. For x, y ∈ Rn, let (as before) 〈x, y〉 =

∑n
i=1 xiyi denote

their standard scalar product. Clearly, 〈vi, vj〉 = |Ai ∩ Aj |.
For i = 1, . . . , m, let us define the polynomial fi in n variables by

fi(x) =
∏

k : lk<|Ai|
(〈vi, x〉 − lk) (x ∈ Rn).

Observe that fi(vj) = 0 for all 1 ≤ j < i ≤ m, and fi(vi) 6= 0 for all 1 ≤ i ≤ m. By Lemma ??,
the polynomials f1, . . . , fm are linearly independent over R. What is a small vector space in which
these polynomials can reside? The fi’s are polynomials of degree at most s, but we can do better.
The domain being {0, 1}n implies that x2

i = xi for each variable xi. Thus, pure monomials of
degree ≤ s form a basis (where a pure or multilinear monomial has at most one occurrence of each
variable), and we have only

∑s
i=0

(
n
i

)
of them. �

Using essentially the same argument, we can also prove the following “modular” version of
this theorem (we leave the proof as Exercise ??). Write r ∈ L mod p if r = l mod p for at least
one l ∈ L.

Theorem 13.14 (Deza–Frankl–Singhi 1983). Let L be a set of integers and p be a prime
number. Assume F = {A1, . . . , Am} is a family of subsets of a set of n elements such that

(a) |Ai| 6∈ L mod p for all 1 ≤ i ≤ m;
(b) |Ai ∩ Aj | ∈ L mod p for all 1 ≤ j < i ≤ m.

Then |F| ≤ ∑|L|
i=0

(
n
i

)
.

These theorems and their modifications have found many striking applications in combina-
torics and geometry. An excellent exposition is given in the book by Babai and Frankl (1992).

7. Constructive Ramsey graphs

Roughly, the main idea of these applications is the following. If we identify the members of our
family F with vertices and join two members if and only if their intersection has a particular size,
then the theorems above ensure that the graph cannot have a large clique or a large independent
set (or both). To demonstrate the idea, we use it to construct so-called Ramsey graphs.

Recall that a clique of size t in a graph is a set of t of its vertices, each pair of which is joined
by an edge. Similarly, an independent set of size t is a set of t vertices with no edge between them.
A graph is a Ramsey graph (with respect to t) if it has no clique and no independent set of size t.

Given t, we are interested in the largest possible number n for which such a graph (on n
vertices) exists. The existence of Ramsey graphs of size n = 2t/2 is known: this was proved by
Erdős (1947) using the probabilistic method (see Theorem ??). The theorem states only the mere
existence of a graph, and gives no way to find it.

For many years, only an easy construction of a Ramsey graph of size n = (t − 1)2 was known:
take the disjoint union of t − 1 cliques of size t − 1 each. The first non-trivial construction of
Ramsey graphs on n = Ω(t3) vertices was given by Zsigmond Nagy in 1972 (see Exercise ??).
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Substantial progress in that direction was made by Frankl (1977) who was able to construct
Ramsey graphs of super-polynomial size

n = tΩ(ln t/ ln ln t).

Subsequently, a simpler proof was found by Frankl and Wilson (1981), using their result about
families with one missing intersection size modulo a prime power. To be self-contained, here we
present a slightly weaker version whose proof relies only on Theorems ?? and ??.

The desired graph is defined as follows. Let p be a prime number, and v = p3. Let Gp be a
graph whose vertices are subsets of {1, . . . , v} of cardinality p2 − 1, and where two vertices A and
B are joined by an edge if and only if

|A ∩ B| 6= −1 mod p .

Theorem 13.15 (Frankl 1977, Frankl–Wilson 1981). The graph Gp has n =
(

v
p2−1

)
vertices

and has neither a clique nor an independent set on more than t =
∑p−1

i=0

(
v
i

)
vertices.

Proof. If A1, . . . , Ar is a clique in Gp then |Ai ∩ Aj | 6= −1 mod p for every 1 ≤ i < j ≤ r,
implying that |Ai ∩ Aj | ∈ L mod p for L = {0, 1, . . . , p − 2}. On the other hand, each of the sets
Ai has size p2 − 1 = −1 mod p, and hence, |Ai| 6∈ L mod p. Theorem ?? implies that in this case
r ≤ t.

Now suppose that the sets A1, . . . , Ar form an independent set in Gp. Then |Ai ∩ Aj | ∈ L, for
every 1 ≤ i < j ≤ r, where L = {p − 1, 2p − 1, . . . , p2 − p − 1}. Theorem ?? again yields that in
this case r ≤ t. �

To get the desired lower bound n ≥ tΩ(ln t/ ln ln t), we just have to select p appropriately. The
exact computation is somewhat tedious, and we leave it as an exercise. We only sketch the way
these computations should proceed. By the density of primes, there is always a prime between N
and 2N , for any positive integer N ; so we may pretend that p is an integer rather than a prime.

Since v = p3, t =
∑p−1

i=0

(
v
i

)
≤ pO(p) whereas n =

(
v

p2−1

)
≥ pΩ(p2), which is at least tΩ(ln t/ ln ln t) for

p = Ω(ln t/ ln ln t).

8. Zero-patterns of polynomials

Let f = {fi(x1, . . . , xn) : i = 1, . . . , m} be a sequence of polynomials over some field F. A
subset S ⊆ [m] is a zero-pattern of f if there exists a vector, a witness for this zero-pattern, v ∈ Fn

such that S = {i : fi(v) 6= 0}. Let ZF(f) denote the number of distinct zero-patterns of f as v
ranges over Fn. The following upper bound was proved by Rónyai, Babai, and Ganapathy (2001).

Theorem 13.16. Let di denote the degree of fi, and D =
∑m

i=1 di. Then

ZF(f) ≤
(

n + D

n

)
.

Proof. Assume that f has M different zero-patterns, and let v1, . . . , vM be witnesses to
these zero-patterns. Let Si = {k : fk(vi) 6= 0} be a zero-pattern witnessed by the i-th vector
vi, and consider the polynomials gi :=

∏
k∈Si

fk. We claim that these polynomials are linearly
independent over F. This claim completes the proof of the theorem since each gi has degree at
most D and the dimension of the space of polynomials of degree at most D is exactly

(
n+D

D

)
(see

Exercise ??).
To prove the claim, it is enough to note that gi(vj) 6= 0 if and only if Si ⊆ Sj . Indeed,

gi(vj) 6= 0 iff fk(vj) 6= 0 for all k ∈ Si iff fk(vi) 6= 0 implies fk(vj) 6= 0 iff Si ⊆ Sj .

Assume now, for the sake of contradiction, that a nontrivial linear relation
∑M

i=1 λigi = 0 exists
(λi ∈ F). Let j be a subscript such that |Sj | is minimal among the Si with λi 6= 0. Substitute vj

in the relation. While λjgj(vj) 6= 0, we have λigi(vj) = 0 for all i 6= j, a contradiction. �

If all polynomials f1, . . . , fm are of degree at most d, and if we have m ≥ n polynomials, then
the upper bound ZF(f) ≤

(
md+n

n

)
can be improved to

(77) ZF(f) ≤
(

md

n

)
<

(
emd

n

)n

.
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The assumption m ≥ n is justified by the observation that for m ≤ n, the trivial upper bound
ZF(f) ≤ 2m can be attained even for d = 1, over every field: just take fi = xi.

It is also shown by Rónyai, Babai, and Ganapathy (2001) that, for m ≥ nd, d ≥ 1 and any
sufficiently large field F (including infinite fields), the upper bound (??) is almost optimal: There
exists a constant ǫ > 0 and a sequence f of m polynomials of degree at most d in n variables such
that

ZF(f) ≥
(

ǫmd

n

)n

.

Exercises

Ex 13.1. Prove the Pythagoras theorem: if the vectors x, y are orthogonal, then ‖x + y‖2 =
‖x‖2 + ‖y‖2.

Ex 13.2. Let x ∈ Fn
2 be a nonzero vector. Show that it is orthogonal to exactly half of vectors

in Fn
2 . Hint: Take an i for which xi = 1 and split the space F

n
2 into 2n−1 pairs y, y′ that differ only in

their i-th coordinate. For each of these pairs, 〈x, y〉 6= 〈x, y′〉.

Ex 13.3. Let F be a family of subsets of an n-element set such that: (i) every set of F has an
even number of elements, and (ii) each pair of sets shares an even number of elements. Construct
such a family with at least 2⌊n/2⌋ sets.

Ex 13.4. (Babai–Frankl 1992). Show that the upper bound 2⌊n/2⌋ in the previous exercise
cannot be improved. Hint: Let S be the set of incidence vectors of all sets in F , and let U the span
of this set (over F2). Argue that the rules (i) and (ii) imply that U is a subspace of U⊥, and apply
Proposition ??.

Ex 13.5. Prove the following “Oddtown Theorem” (see Babai and Frankl (1992) for the
explanation of this name). Let F be a family of subsets of an n-element set such that: (i) every
set of F has an odd number of elements, and (ii) each pair of sets share an even number of elements.
Prove that then |F| ≤ n. Compare this with Exercise ??. Hint: The incidence vectors of sets in F
are linearly independent over F2.

Ex 13.6. The Hamming distance between two vectors of the same length is just the number
of positions in which these two strings differ. Show that the Euclidean distance between any two
0-1 vectors is the square root of their Hamming distance.

Ex 13.7. Show that the pairwise orthogonality of (+1, −1)-vectors implies their linear inde-
pendence (over the reals).

Ex 13.8. Using the Cauchy–Schwarz inequality show that if u = (u1, . . . , un) is a vector in
Rn then |u| ≤ √

n · ‖u‖, where |u| := |u1| + . . . + |un| and |ui| is the absolute value of ui. Hint:
Take a vector v = (v1, . . . , vn) with vi = 1 if ui > 0 and vi = −1, otherwise. Observe that |u| = 〈u, v〉 and
‖v‖ =

√
n.

Ex 13.9. Let f(x1, . . . , xn) be a polynomial over F2 of degree d < n which is not identically
1. Show that then f(v) = 0 for at least one nonzero vector v with at most d + 1 ones.

Ex 13.10. Let h =
∏

i∈S xi be a monomial of degree d = |S| ≤ n − 1, and let a be a 0-1
vector with at least d + 1 ones. Show that then, over F2,

∑
b≤a h(b) = 0. Hint: There are only two

possibilities: either ai = 1 for all i ∈ S, or not.

Ex 13.11. Suppose A ⊆ Zn
3 has the property that for all distinct vectors a, b ∈ A, there is a

coordinate i ∈ [n] such that ai − bi = 1 (subtraction in Z3 = {0, 1, 2}). Show that |A| ≤ 2n. Hint:
Consider polynomials fa(x) =

∏n

i=1
(xi − ai − 1) over Z3.

Ex 13.12. (Babai et al. 1991). Let F be a field, H1, . . . , Hm ⊆ F and H = H1 × · · · × Hm.
Prove that, for any function f : H → F there exists a polynomial f̃ in m variables over F such
that:

(i) f̃ has degree < |Hi| in its i-th variable, and
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(ii) f̃ , restricted to H, agrees with f .

Is such a polynomial unique? Hint: Associate with each vector u = (u1, . . . , um) in H a polynomial

gu(x) =
m∏

i=1

∏

h∈Hi\{ui}

(xi − h)

and show that every function f : H → F is a linear combination of the gu’s, restricted to H.

Ex 13.13. Construct a two-distance set in Rn of size
(

n
2

)
. Hint: What about 0-1 vectors with

two 1s in each?

Ex 13.14. Prove the following generalization of Theorem ?? for s-distance sets. Let a1, . . . , am

be vectors in Rn and suppose that the pairwise distances between them take at most s values.
Prove that m ≤

(
n+s+1

s

)
. Hint: Let d1, . . . , ds be the distances permitted, and consider the polynomials

fi(x) =
∏s

i=1
(‖x − ai‖2 − d2

i ). To estimate the dimension of the subspace containing all of them, expand
the norm-square expression in each factor, replace the sum

∑n

i=1
x2

i by a new variable z, and multiply
the constant terms by a new variable t. Observe that then each fi becomes a homogeneous polynomial of
degree s in n + 2 variables x1, . . . , xn, z, t, and apply Proposition ??.

Ex 13.15. (Nagy 1972). Let G be a graph whose vertices are 3-element subsets of {1, . . . , t},
and where two vertices A and B are joined by an edge if and only if |A ∩ B| = 1. Use Exercise ??
and Fisher’s inequality to show that this graph has neither a clique nor an independent set of size
t + 1.

Ex 13.16. Write down a complete proof of Theorem ??. Hint: Work in the finite field Fp

instead of that of real numbers R. This time, due to the condition |Ai| 6∈ L mod p, we can take fi(x) =∏
l∈L

(〈vi, x〉 − l), i.e., we do not need the condition l < |Ai|.

Ex 13.17. (Ray-Chaudhuri–Wilson 1975). Prove the following uniform version of Theorem ??:
if A1, . . . , Am is a k-uniform L-intersecting family of subsets of an n-element set, then m ≤

(
n
s

)
,

where s = |L|. Sketch: (Alon–Babai–Suzuki 1991): Start as in the proof of Theorem ?? and define the
same polynomials f1, . . . , fm of degree at most s. Associate with each subset I of {1, . . . , n} of cardinality
|I| ≤ s − 1 the following polynomial of degree at most s:

gI (x) =
(( n∑

j=1

xj

)
− k
)∏

i∈I

xi,

and observe that for any subset S ⊆ {1, . . . , n}, gI (S) 6= 0 if and only if |S| 6= k and S ⊇ I. Use this
property to show that the polynomials gI together with the polynomials fi are linearly independent. For
this, assume

m∑

i=1

λifi +
∑

|I|≤s−1

µI gI = 0

for some λi, µI ∈ R. Substitute Aj ’s for the variables in this equation to show that λj = 0 for every
j = 1, . . . , m. What remains is a relation among the gI . To show that this relation must be also trivial,
assume the opposite and re-write this relation as µ1gI1

+ · · · + µtgIt
= 0 with all µi 6= 0 and |I1| ≥ |Ij | for

all j > 1. Substitute the first set I1 for the variables and observe that all but the first function vanish.

Ex 13.18. Let A1, . . . , Am and B1, . . . , Bm be subsets of an n-element set such that |Ai ∩ Bi|
is odd for all 1 ≤ i ≤ m, and |Ai ∩ Bj | is even for all 1 ≤ i < j ≤ m. Show that then m ≤ n.

Ex 13.19. (Frankl–Wilson 1981). Let p be a prime, and n = 4p − 1. Consider the graph
G = (V, E) whose vertex set V consists of all 0-1 vectors of length n with precisely 2p − 1 ones
each; two vectors are adjacent if and only if the Euclidean distance between them is

√
2p. Show

that G has no independent set of size larger than
∑p−1

i=0

(
n
i

)
. Hint: Use Exercise ?? to show that two

vectors from V are adjacent in G precisely when they share p−1 ones in common, and apply Theorem ??.

Comment: This construction was used by Frankl and Wilson (1981) to resolve an old problem proposed
by H. Hadwiger in 1944: how many colors do we need in order to color the points of the n-dimensional
Euclidean space R

n so that each monochromatic set of points misses some distance? A set is said to miss

distance d if no two of its points are at distance d apart from each other. Larman and Rogers (1972)
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proved that Hadwiger’s problem reduces to the estimating the minimum number of colors χ(n) necessary
to color the points of R

n such that pairs of points of unit distance are colored differently. The graph
G we just constructed shows that χ(n) ≥ 2Ω(n) (see the next exercise). Kahn and Kalai (1993) used a
similar construction to disprove another 60 years old and widely believed conjecture of K. Borsuk (1933)
that every set of diameter one in n-dimensional real space Rn can be partitioned in at most n + 1 disjoint
pieces of smaller diameter. Kahn and Kalai presented an infinite sequence of examples where the minimum
number of pieces grew as an exponential function of

√
n, rather than just as a linear function n + 1, as

conjectured. The interested reader can find these surprising solutions in the book of Babai and Frankl
(1992).

Ex 13.20. The unit distance graph on Rn has the infinite set Rn as its vertex set, and two
points are adjacent if their (Euclidean) distance is 1. Let χ(n) be the minimum number of colors
necessary to color the points of the Euclidean space Rn such that pairs of points of unit distance
are colored differently. Use the graph from the previous exercise to show that χ(n) ≥ 2Ω(n). Hint:
Observe that χ(G) ≥ |V |/α(G) and replace each 0-1 vector v by the vector ǫv, where ǫ = 1/

√
2p. How

does this change the distance?

Ex 13.21. Let x1, . . . , xn be real numbers, and σ : [n] → [n] a permutation of [n] = {1, . . . , n}.
Show that then

∑n
i=1 xi · xσ(i) ≤ ∑n

i=1 x2
i . Hint: Use the Cauchy–Schwarz inequality.

Ex 13.22. Use Proposition ?? and Exercise ?? to show that the number of distinct monomials
of degree at most d is

(
n+d

d

)
.





CHAPTER 14

Orthogonality and Rank Arguments

Linear independence is one of the most basic concepts in linear algebra. No less important
are the concepts of orthogonality and rank. In this chapter we consider some combinatorial
applications of these two concepts.

1. Orthogonal coding

Linear independence is not the only way to obtain good upper bounds. If the members of a
family F can be injectively associated with the elements of Fm

q , then |F| ≤ qm. If we are lucky,
the associated “code-vectors” will be orthogonal to some subspace of dimension d, which (due to
Proposition ??) immediately improves our bound to |F| ≤ qm−d. We demonstrate this idea by
the following result. Recall that two vectors u, v are orthogonal if their scalar product is zero,
〈u, v〉 = 0.

Given two families A and B of subsets of an n-element set, satisfying some conditions, we are
interested in how large |A| · |B| can be. If we know nothing about the families, then this number
can be as large as 22n. If we know that both families are monotone increasing (or monotone
decreasing), Kleitman’s theorem (Theorem ??) gives a non-trivial upper bound:

|A| · |B| ≤ 2n · |A ∩ B|.
If we know that all the intersections A ∩ B with A ∈ A and B ∈ B, have the same size modulo 2,
then we can get an even better bound.

Theorem 14.1 (Ahlswede–El Gamal–Pang 1984). Let A and B be two families of subsets
of an n-element set with the property that |A ∩ B| is even for all A ∈ A and B ∈ B. Then
|A| · |B| ≤ 2n.

Proof (due to Delsarte and Piret 1985). With each subset of X associate its incidence vector, and
look at these vectors as elements of the n-dimensional vector space Fn

2 . Let U and V be the sets
of incidence vectors of A and B, respectively. Fix a vector v0 ∈ V and let V0 := {v0 + v : v ∈ V }.
Moreover, let U ′ and V ′

0 be the subspaces spanned by U and V0, respectively. Then

(78) |A| · |B| = |U | · |V | = |U | · |V0| ≤ |U ′| · |V ′
0 | ≤ 2dim U ′+dim V ′

0 .

The key point is that (in F2) 〈u, w〉 = 0 for all u ∈ U and w ∈ V0. This (with w = v0 + v,
v ∈ V ) follows from the fact that 〈u, v〉 is exactly the parity of points in the intersection of the
corresponding sets, and from our assumption that all these intersections have the same parity:
〈u, w〉 = 〈u, v0〉 + 〈u, v〉 = 0.

Therefore, by Proposition ??, we obtain that dim U ′ ≤ n − dim V ′
0 . Putting this estimate in

(??) we get the desired upper bound |A| · |B| ≤ 2n. �

The same holds also with “even” replaced by “odd.” In this case the bound is slightly better:
|A| · |B| ≤ 2n−1 (see Exercise ??).

2. Balanced pairs

Given a family A1, . . . , Am of distinct sets, a balanced pair in it is a pair of disjoint non-empty
subsets of indices I, J ⊆ [m] such that

(79)
⋃

i∈I

Ai =
⋃

j∈J

Aj and
⋂

i∈I

Ai =
⋂

j∈J

Aj .
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Theorem 14.2 (Lindstrom 1993). Every family of m ≥ n+2 distinct subsets of an n-element
set contains a balanced pair.

Proof. With each subset A of {1, . . . , n} we can associate the incidence vector v = (x1, y1, x2, y2, . . . , xn, yn)
of the pair (A, A) in the usual way: xi = 1 iff i ∈ A, and yi := 1 − xi. These vectors belong to the
vector space V (over R) of all vectors v for which x1 + y1 = · · · = xn + yn.

Claim 14.3. The dimension of V is n + 1.

To prove the claim, observe that for any vector v = (x1, y1, x2, y2, . . . , xn, yn) in V, the knowledge of
n+1 coordinates x1, . . . , xn, y1 is enough to reconstruct the whole vector v; namely yi = x1+y1−xi.
So, our space V is the set of solutions v ∈ R2n of the system of linear equations M · v = 0, where
M is the (n − 1) × (2n) matrix




1 1 −1 −1 0 0 · · · 0 0
1 1 0 0 −1 −1 · · · 0 0
...

...
...

...
...

... · · ·
...

...
1 1 0 0 0 0 · · · −1 −1




By Proposition ??, dim V = 2n − rk(M) = 2n − (n − 1) = n + 1, as desired.
Now let vi = (vi,1, . . . , vi,2n) be the vector corresponding to the i-th set Ai, i = 1, . . . , m.

By the assumption, the vectors v1, . . . , vm are distinct and all belong to the subspace V . Since
m ≥ n + 2 > n + 1 = dim V , there must be a nontrivial linear relation between these vectors,
which we can write as ∑

i∈I

αivi =
∑

j∈J

βjvj ,

where I and J are non-empty, I ∩ J = ∅, and αi, βj > 0 for all i ∈ I and j ∈ J . When interpreted
in combinatorial terms, the equality means that the sets of nonzero coordinates of the vectors on
both sides must be the same, implying that ∪i∈IAi = ∪j∈JAj and ∪i∈IAi = ∪j∈JAj . Using the

identity A ∪ B = A ∩ B, the last equality is equivalent to ∩i∈IAi = ∩j∈JAj . �

With a similar argument one can prove the following useful fact.

Proposition 14.4. Among any n + 2 distinct vectors in Rn there must be two whose scalar
product is non-negative.

Proof. Suppose v1, . . . , vn+2 ∈ Rn, but 〈vi, vj〉 < 0 for all i 6= j. Let v̂i := (vi, 1), that is,
append a 1 to each vector. Since the number n + 2 of these vectors exceeds the dimension n + 1
of the vector space Rn+1 they lie in, the vectors must be linearly dependent. Choose coefficients
αi, not all zero, so that

∑
i αiv̂i = 0. In other words, the αi satisfy

n+2∑

i=1

αivi = 0 and

n+2∑

i=1

αi = 0 .

Since the αi are not all zero, some of them are positive and some are negative. Let

P = {i : αi > 0} and N = {i : αi < 0} .

Note that P and N are disjoint and both nonempty. Consider the vector

y :=
∑

i∈P

αivi =
∑

j∈N

−αjvj .

Then

0 ≤ 〈y, y〉 =

(∑

i∈P

αivi

)(∑

j∈N

−αjvj

)
=
∑

i∈P

∑

j∈N

−αiαj〈vi, vj〉 .

But the right-hand side is < 0, because −αiαj > 0 and 〈vi, vj〉 < 0, a contradiction. �
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3. Hadamard matrices

A Hadamard matrix is a square n×n matrix H with entries in {−1, +1} and with row vectors
mutually orthogonal over the reals (and hence with column vectors mutually orthogonal). Such
matrices have many interesting properties and arise in many applications.

Lemma 14.5 (Lindsey’s Lemma). The absolute value of the sum of all entries in any a × b

submatrix of an n × n Hadamard matrix does not exceed
√

abn.

Proof (due to Babai, Frankl and Simon 1986). Let H be an n × n Hadamard matrix, and A one
of its a × b submatrices. Assume for simplicity that A consists of its first a rows and b columns.
Let α be the sum of all entries of A. We want to prove that α ≤

√
abn.

Let v1, . . . , va be the first a rows of H, and y =
∑a

i=1 vi. If we take the vector x = (1b0n−b),
then α2 = 〈x, y〉2 ≤ ‖x‖2‖y‖2 = b · ‖y‖2. On the other hand, the conditions 〈vi, vi〉 = n and
〈vi, vj〉 = 0 for all i 6= j imply that ‖y‖2 =

∑a
i,j=1〈vi, vj〉 =

∑a
i=1〈vi, vi〉 = an. Thus, α2 ≤

b · ‖y‖2 = abn, as desired. �

Another interesting property of every Hadamard matrix is that each of its k × n submatrices
maps each(!) nonzero vector x ∈ Rk to a vector with at least n/k nonzero entries.

Lemma 14.6 (Alon 1990a). Every non-trivial linear combination of any k rows of a Hadamard
matrix has at least n/k nonzero entries.

Proof. Let A be a k×n submatrix of an n×n Hadamard matrix with rows ai = (ai1, . . . , ain),
i = 1, . . . , k. Let y = x⊤A for some nonzero vector x = (x1, . . . , xk) in Rk, S = {i : yi 6= 0} and
s = |S|. We have to show that s ≥ n/k.

Assume, without loss of generality, that |x1| = max1≤i≤k |xi|. Since the vectors a1, . . . , ak are
mutually orthogonal, we have

kx2
1n ≥

k∑

i=1

x2
i n =

k∑

i=1

〈xia
i, xia

i〉 =

〈 k∑

i=1

xia
i,

k∑

i=1

xia
i

〉
= 〈y, y〉

=

n∑

j=1

y2
j =

∑

j∈S

|yj |2 =
1

s

(∑

j∈S

1

)(∑

j∈S

|yj |2
)

≥ 1

s

(∑

j∈S

|yj |
)2

,

where the last inequality follows from the Cauchy–Schwarz inequality (??). On the other hand,
since a1 is orthogonal to all the vectors a2, . . . , ak,

n∑

j=1

|yj | ≥
n∑

j=1

yja1j =

n∑

j=1

k∑

i=1

xiaija1j

=

k∑

i=1

xi

n∑

j=1

aija1j =

k∑

i=1

xi〈ai, a1〉 = x1〈a1, a1〉 = x1 · n.

Substituting this estimate into the previous one we obtain s ≥ n/k, as desired. �

If H is an n × n Hadamard matrix, then H⊤H = nIn where In is the n × n identity matrix.
Hence, all n eigenvalues of H⊤H are equal to n, implying that H has spectral norm ‖H‖ =

√
n.

Combining this with Proposition ??, we can show that all large enough submatrices of H have
large rank over the reals.

Lemma 14.7. Let H be an n × n Hadamard matrix, and A one of its a × b submatrices. Then
rk(A) ≥ ab/n.

Proof. Since A is a submatrix of H, we have that ‖A‖ ≤ ‖H‖. So, by Proposition ??, we
obtain

rk(A) ≥ ‖A‖2
F

‖A‖2 ≥ ‖A‖2
F

‖H‖2 =
ab

n
,

where the last equality follows because ‖A‖2
F is precisely the number of entries in A. �
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We can always reduce the rank of a real-valued matrix by changing some of its entries. The
rigidity of a matrix M is a function RM (r) equal to the minimum number of entries of M that
one needs to change in order to reduce the rank to r or less.

Matrix rigidity is an important measure in boolean circuit complexity. In particular, an
explicit boolean n × n matrix M having rigidity RM (ǫn) ≥ n1+δ over F2 for some constants
ǫ, δ > 0 would give us the first super-linear lower bound on log-depth linear circuits computing
the linear transformation y = Mx. This was shown by Valiant (1977).

Due to its importance, the rigidity of Hadamard matrices merits particular attention. For an
n×n Hadamard matrix H, Pudlák, Razborov, and Savický (1988) proved that RH(r) ≥ n2/r3 log r.
It can be also shown that Alon’s lemma yields RH(r) ≥ n2/r2 (Exercise ??). Kashin and Razborov
(1998) improved this to RH(r) ≥ n2/256r. De Wolf (2006) later re-derived this bound using a
spectral argument, with a better constant.

Theorem 14.8. Let H be an n × n Hadamard matrix. If r ≤ n/2 then RH(r) ≥ n2/4r.

The condition r ≤ n/2 is important here. If H is symmetric then its eigenvalues are all ±√
n,

so we can reduce the rank to n/2 by adding or subtracting the diagonal matrix
√

nIn. This shows
that RH(n/2) ≤ n.

Proof (due to Ronald de Wolf 2006). Let R be the minimum number of changes that brought the
rank of H down to r. By a simple averaging argument, we can find 2r rows of H that contain
a total of at most 2rR/n changes. If n ≤ 2rR/n, then R ≥ n2/2r and we are done. Hence, we
can assume that n − 2rR/n > 0. Consider the n − 2rR/n columns that contain no changes in the
above set of rows. We thus get a 2r × (n − 2rR/n) submatrix B that contains no changes and
hence is a submatrix of H. By definition of R, this submatrix must have rank at most r. Applying
Lemma ??, we get r ≥ rk(B) ≥ 2r(n − 2rR/n)/n. Rearranging this inequality, we get R ≥ n2/4r.

�

We can multiply any rows and columns of a Hadamard matrix by −1 to obtain other Hadamard
matrices. In particular, starting from an arbitrary Hadamard matrix, we can reduce it to the form
where the first row or the first column (or both) consist entirely of 1s. In this case the matrix is
called normalized. Such matrices have additional structural properties.

Theorem 14.9. If H is a Hadamard matrix of order n and its first row consists entirely of
1s, then every other row has n/2 positive and n/2 negative entries. If n > 2 then any two rows
other than the first have exactly n/4 1s in common.

Proof. The first statement immediately follows from the fact that the scalar product of any
row with the first row is 0.

To prove the second statement, let u and v be two rows other than the first, and let a (resp.
b) be the number of places where they both have 1s (resp. −1s). Because u has the same number
n/2 of 1s and −1s, we get the following picture:

u +1 + 1 . . . + 1 +1 + 1 . . . + 1 −1 − 1 . . . − 1 −1 − 1 . . . − 1
v +1 + 1 . . . + 1 −1 − 1 . . . − 1 +1 + 1 . . . + 1 −1 − 1 . . . − 1

a n/2 − a n/2 − b b

Since the total number of +1’s in v is n/2, we have a+(n/2−b) = n/2, and hence, a = b. The
orthogonality of u and v then implies that a − (n/2 − a) − (n/2 − b) + b = 0, i.e., that a = n/4. �

Let H be a Hadamard matrix of order n. Take all the rows of H and −H, and change all −1’s
to 0. This way we obtain a set of 2n binary vectors of length n called the Hadamard code Cn.

Theorem 14.10. Every two codewords in Cn differ in at least n/2 coordinates.

Proof. Take any x, y ∈ Cn, x 6= y. If these two vectors have been obtained from the i-th
rows of H and −H respectively, then they disagree in all n coordinates. Otherwise, there are
two different rows u and v in H such that x is obtained (by changing −1s to 0s) from u or −u,
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and y from v or −v. In all cases, x and y differ in n/2 coordinates, because ±u and ±v are
orthogonal. �

Hadamard matrices can also be used to construct combinatorial designs with good parameters.
Recall that a (v, k, λ) design is a k-uniform family of subsets (also called blocks) of a v-element set
such that every pair of distinct points is contained in exactly λ of these subsets; if the number of
blocks is the same as the number v of points, then the design is symmetric (see Chap. ??).

By Theorem ??, we have that, if there is a Hadamard matrix of order n, then n = 2 or n is
divisible by 4. It is conjectured that Hadamard matrices exist for all orders that are divisible by
4.

Theorem 14.11. Every Hadamard matrix of order 4n gives a symmetric (4n−1, 2n−1, n−1)
design.

Proof. Let H be a Hadamard matrix of order 4n, and assume that it is normalized, i.e., the
first row and the first column consist entirely of 1s. Form a (4n − 1) × (4n − 1) 0-1 matrix M by
deleting the first column and the first row in H, and changing −1s to 0s. This is the incidence
matrix of a symmetric (4n − 1, 2n − 1, n − 1) design, because by Theorem ??, each row of M has
2n − 1 ones and any two columns of M have exactly n − 1 ones in common. �

4. Matrix rank and Ramsey graphs

A matrix A = (aij) is lower co-triangular if aii = 0 and aij 6= 0 for all 1 ≤ j < i ≤ n. That
is, such a matrix has zeroes on the diagonal and nonzero entries below the diagonal; the entries
above the diagonal may be arbitrary.

Lemma 14.12. Let p be a prime number, and A an n × n lower co-triangular matrix over Fp

of rank r. Then

n ≤
(

r + p − 2

p − 1

)
+ 1 ≤ (r + p)p−1 .

Proof. Let r = rkFp
(A) and A = B · C be the corresponding decomposition of A. For

i = 1, . . . , n consider the polynomials fi(x) = 1 − gi(x)p−1 in r variables x = (x1, . . . , xr) over Fp,
where gi(x) is the scalar product of x with the i-th row of B. Let c1, . . . , cn be the columns of
C. Then gi(ci) = 0 and gi(cj) 6= 0 for every i > j. Since p is a prime, Fermat’s Little Theorem
(see Exercise ??) implies that ap−1 = 1 for every a 6= 0 in Fp. Hence, fi(ci) 6= 0 and gi(cj) = 0
for every i > j. By Lemma ??, the polynomials f1, . . . , fn are linear independent elements of a
vector space V of all polynomials over Fp of degree p − 1, all of whose monomials

∏r
i=1 xti

i satisfy∑r
i=1 ti = p − 1 and ti ≥ 0. By Proposition ??, the number of such monomials is

(
r+(p−1)−1

p−1

)
.

Since the polynomials can also have a constant term (which accounts for the “+1” in the final
equation), we have that

n ≤ dim V ≤
(

r + p − 2

p − 1

)
+ 1 ≤ (r + p)p−1 . �

Let R be a ring and A = (aij) an n × n matrix with entries from R. The rank rkR(A) of A
over R is defined as the minimum number r for which there exists an n × r matrix B and an r × n
matrix C over R such that A = B · C; if all entries of A are zeroes then rkR(A) = 0. If R = F is a
field, then rkR(A) is the usual rank over F, that is, the largest number of linear independent rows.

By Lemma ??, lower co-triangular matrices over R = Zm have large rank, if m is a prime
number. But what about R = Zm for non-prime m, say, for m = 6? In this case R is no longer
a field—it is just a ring (division is not defined). Still one can extend the notion of rank also to
rings.

Let R be a ring and A = (aij) an n × n matrix with entries from R. The rank rkR(A) of A
over R is defined as the minimum number r for which there exists an n × r matrix B and an r × n
matrix C over R such that A = B · C; if all entries of A are zeroes then rkR(A) = 0. If R = F is a
field, then rkR(A) is the usual rank over F, that is, the largest number of linear independent rows.
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It turns out that explicit low rank matrices over the ring R = Z6 of integers modulo 6 would
give us explicit graphs with good Ramsey properties, that is, graphs without any large clique or
large independent set.

Let A = (aij) be an n × n lower co-triangular matrix over Z6. Associate with A the graph
GA = (V, E) with V = {1, . . . , n}, where two vertices i > j are adjacent iff aij is odd.

Lemma 14.13 (Grolmusz 2000). If r = rkZ6
(A) then the graph GA contains neither a clique

on r + 2 vertices nor an independent set of size
(

r+1
2

)
+ 2.

Proof. It is clear that rkFp
(A) ≤ r for p ∈ {2, 3}. Let S ⊆ V be a clique in GA of size

|S| = s, and B = (bij) be the corresponding s×s submatrix of A; hence, bii = 0 and bij ∈ {1, 3, 5}
for all i > j. Then B mod 2 is a lower co-triangular matrix over F2, and Lemma ?? (with p = 2)
implies that |S| ≤ r + 1.

Now let T ⊆ V be an independent set in GA of size |T | = t, and C = (cij) be the corresponding
t × t submatrix of A; hence, cii = 0 and cij ∈ {2, 4} for all i > j. Then C mod 3 is a lower co-

triangular matrix over F3, and Lemma ?? (with p = 3) implies that |T | ≤
(

r+1
2

)
+ 1. �

In Sect. ?? (Theorem ??) we have shown how to construct explicit n-vertex graphs with no
clique or independent set larger than

t := 2c
√

ln n ln ln n

for an absolute constant c. Grolmusz (2000) constructed a co-triangular n × n matrix A over
R = Z6 with rkZ6

(A) ≤ t. Together with Lemma ??, this gives an alternative construction of a
graph GA with no clique or independent set larger than t.

5. Lower bounds for boolean formulas

Boolean formulas (or De Morgan formulas) are defined inductively as follows:

- Every boolean variable xi and its negation xi is a formula of size 1 (these formulas are called
leaves).

- If F1 and F2 are formulas of size l1 and l2, then both F1 ∧ F2 and F1 ∨ F2 are formulas of size
l1 + l2.

Note that the size of F is exactly the number of leaves in F .
Often one uses an equivalent definition of a formula as a circuit with And, Or, and Not gates,

whose underlying graph is a tree. That is, now negation is allowed not only at the leaves. But
using De Morgan rules ¬(x ∨ y) = ¬x ∧ ¬y and ¬(x ∧ y) = ¬x ∨ ¬y one can move all negations to
leaves without increasing the formula size.

Given a boolean function f , how it can be shown that it is hard, i.e., that it cannot be
computed by a formula of small size? Easy counting shows that almost all boolean functions in
n variables require formulas of size exponential in n. Still, for a concrete boolean function f , the
largest remains the lower bound n3−o(1) proved by Håstad (1993).

The main difficulty here is that we allow negated variables xi as leaves. It is therefore natural
to look at what happens if we forbid this and require that our formulas are monotone in that they
do not have negated leaves. Of course, not every boolean function f(x1, . . . , xn) can be computed
by such a formula – the function itself must be also monotone: if f(x1, . . . , xn) = 1 and xi ≤ yi for
all i, then f(y1, . . . , yn) = 1. Under this restriction progress is substantial: we are able to prove
that some explicit monotone functions require monotone formulas of super-polynomial size.

5.1. Reduction to set-covering. Let A and B be two disjoint subsets of {0, 1}n. A boolean
formula F separates A and B if F (a) = 1 for all a ∈ A and F (b) = 0 for all b ∈ B. A rectangle
is a subset R ⊆ A × B of the form R = S × T for some S ⊆ A and T ⊆ B. A rectangle is
monochromatic if there exist an ǫ ∈ {0, 1} and a position i ∈ [n] such that ai = ǫ and bi = 1 − ǫ
for all a ∈ S and b ∈ T . That is, the rectangle R = S × T is monochromatic if S and T can be
separated by a single variable xi or by its negation xi. If we have a stronger condition that ai = 1
and bi = 0 for all a ∈ S and b ∈ T (i.e. if we do not allow negations xi) then the rectangle is
monotone monochromatic.
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The following simple lemma reduces the (computational) problem of proving a lower bound
on the size of a formulas separating a pair A, B to a (combinatorial) problem of proving a lower
bound on the number of mutually disjoint rectangles covering the Cartesian product A × B.

Lemma 14.14 (Rychkov 1985). If A and B can be separated by a (monotone) formula of size
t then the set A × B can be covered by t mutually disjoint (monotone) monochromatic rectangles.

Proof. Let F be an optimal formula which separates the pair A, B, i.e., A ⊆ F −1(1) and
B ⊆ F −1(0). Let t = size(F ). We argue by induction on t.

Base case. If size(F ) = 1 then F is just a single variable xi or its negation. In that case the
Cartesian product A × B is a monochromatic rectangle itself, and we are done.

Induction step. Assume that the theorem holds for all formulas smaller than F , and suppose
that F = F1 ∧ F2 (the case F = F1 ∨ F2 is similar). Let ti = size(Fi), hence t = t1 + t2. Define
B1 := {b ∈ B : F1(b) = 0} and B2 := B \ B1. Notice that Fi separates A and Bi for i = 1, 2.
Applying the induction hypothesis to the subformula Fi yields that the product A × Bi can be
covered by ti mutually disjoint monochromatic rectangles, for both i = 1, 2. Since A × B1 and
A × B2 form a partition of A × B, we have that the set A × B can be covered by t1 + t2 = t
monochromatic rectangles, as desired. �

We can use Rychkov’s lemma to derive the well-known lower bound due to Khrapchenko
(1971). Given two disjoint subsets A and B of {0, 1}n, define the set

A ⊗ B = {(a, b) : a ∈ A and b ∈ B and a ∼ b} ,

where a ∼ b means that inputs a and b differ on exactly one bit. Intuitively, if A ⊗ B is large,
then every formula separating A and B should be large, since the formula must distinguish many
pairs of adjacent inputs. Just how large the formulas must be says the following theorem. Viewing
A ⊗ B as the set of edges of a bipartite graph with parts A and B, it states that the size of any
formula separating A and B must be at least the product of the average degrees of these two parts.

Theorem 14.15 (Khrapchenko 1971). Every formula separating a pair of non-empty disjoint
subsets A, B ⊆ {0, 1}n must have size at least

|A ⊗ B|2
|A| · |B| .

Proof. The main property of the set A ⊗ B is accumulated in the following

Claim 14.16. No monochromatic s × t rectangle can cover more than
√

st elements of A ⊗ B.

To prove the claim, let S × T be a monochromatic s × t subrectangle of A × B. Since the
rectangle is monochromatic, each element of S differs from each element in T in one particular
position j, whereas (a, b) is in A ⊗ B only if a and b differ in exactly one position. Hence, for any
given a ∈ S, the only possible b ∈ T for which a ∼ b is one which differs from a exactly in position
j. As a result, we have that S × T can cover at most min{|S|, |T |} = min{s, t} ≤

√
st entries

of A ⊗ B.
Now suppose we have a decomposition of A×B into r monochromatic rectangles of dimensions

si × ti, i = 1, . . . , r. Let ci be the number of elements of A ⊗ B in the i-th of these rectangles.
By Claim ??, we know that c2

i ≤ aibi. Since the rectangles are disjoint and cover the whole
rectangle A × B, we also have that |A ⊗ B| =

∑r
i=1 ci and |A × B| =

∑r
i=1 aibi. Applying the

Cauchy–Schwarz inequality (
∑

xiyi)
2 ≤ (

∑
x2

i ) · (
∑

y2
i ) with xi = ci and yi = 1, we obtain

|A ⊗ B|2 =

( r∑

i=1

ci

)2

≤ r

r∑

i=1

c2
i ≤ r ·

r∑

i=1

aibi = r · |A × B| . �

Khrapchenko’s theorem can be used to show that some explicit boolean functions require
formulas of quadratic size. Consider, for example, the parity function f = x1 ⊕ · · · ⊕ xn. Taking
A = f−1(1) and B = f−1(0) we see that |A ⊗ B| = n|A| = n|B|, and hence, f requires formulas
of size at least n2.

Unfortunately, this (quadratic) lower bound is the best that we can achieve using this theorem
(Exercise ??).
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5.2. The rank lower bound. In order to apply Ryckov’s lemma, we must be able to show
that, for some explicit disjoint subsets A, B ⊆ {0, 1}n, the rectangle A × B cannot be decomposed
into few disjoint monochromatic rectangles. In general, this is a very difficult task: no explicit
pair A, B requiring, say, n3 monochromatic rectangles is known.

Fortunately, in the monotone case—when rectangles in a decomposition are required to be
monotone—the situation is much better: here we can prove even super-polynomial lower bounds
of the form nΩ(log n). And this can be done using rank arguments.

Fix an arbitrary field F. Given a monotone boolean function f , we can associate with every
pair of subsets A ⊆ f−1(1) and B ⊆ f−1(0) a matrix M : A × B → F. If R ⊆ A × B is a set of its
entries, then we denote by MR the matrix which is obtained from the matrix M by changing to
0 all its entries outside R. Define

(80) µ(M) :=
rk(M)

maxR rk(MR)

where the maximum is over all monotone monochromatic rectangles R ⊆ A × B. For a monotone
boolean function f , let µ(f) be the maximum of µ(M) over all pairs A, B separated by f and all
matrices M : A × B → F.

Lemma 14.17 (Razborov 1990). Any monotone formula computing a monotone boolean func-
tion f must have size at least µ(f).

Proof. Suppose that f can be computed by a monotone formula of size t. Take an arbitrary
pair A, B of sets separated by f , and an arbitrary matrix M : A × B → F. By Rychkov’s
lemma we know that the rectangle A × B can be covered by at most t mutually disjoint monotone
monochromatic rectangles R1, . . . , Rt. Let Mi = MRi

be the matrix corresponding to Ri. Since

the rectangles are mutually disjoint, we have that M =
∑t

i=1 Mi. The sub-additivity of the rank
(see (??)) implies that

rk(M) = rk
( t∑

i=1

Mi

)
≤

t∑

i=1

rk(Mi) ≤ t · max
i

rk(Mi) . �

It is clear that Lemma ?? also holds for non-monotone formulas if we allow non-monotone
monochromatic rectangles. However, Razborov (1992) has proved that in this case the result is
useless: for any boolean function f in n variables, the fraction on the right-hand side of (??) does
not exceed O(n). Fortunately, in the monotone case, Lemma ?? can give non-trivial lower bounds.

Let us consider bipartite graphs G = (V1, V2, E) with |V1| = |V2| = n. With any such graph
we can associate a monotone boolean function fG,k as follows. The function has 2n variables, one
for each node of G, and accepts a set of nodes X ⊆ V1 ∪ V2 if and only if X contains some subset
S ⊆ V1 of size at most k, together with the set of its common neighbors

N(S) := {j ∈ V2 : (i, j) ∈ E for all i ∈ S}.

That is, fG,k is the Or of all
∑k

i=0

(
n
i

)
monomials

∧
i∈S∪N(S) xi where S ⊆ V1 and |S| ≤ k. By

N(S) we will denote the set of all common non-neighbors of S, that is,

N(S) := {j ∈ V2 : (i, j) ∈ E for no i ∈ S}.

By its definition, every function fG,k can be computed by a monotone formula of size at most

2n
∑k

i=0

(
n
i

)
. It turns out that, for graphs satisfying the isolated neighbor condition (see Defini-

tion ??), this trivial formula is almost optimal.
Recall that a bipartite graph G = (V1, V2, E) satisfies the isolated neighbor condition for k if for

any two disjoint subsets S, T ⊆ V1 such that |S|+|T | = k, there is a node v ∈ V2 which is a common
neighbor of all the nodes in S and is isolated from all the nodes in T , i.e., if N(S) ∩ N(T ) 6= ∅.

Lemma 14.18 (Gál 1998). If G satisfies the isolated neighbor condition for 2k, then the func-

tion fG,k does not have a monotone DeMorgan formula of size smaller than
∑k

i=0

(
n
i

)
.
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Proof. Associate with each subset S ⊆ V1 of |S| ≤ k vertices the following two vectors aS

and bS in {0, 1}2n:

aS(i) = 1 if and only if i ∈ S ∪ N(S)

and

bS(i) = 0 if and only if i ∈ S ∪ N(S) .

Let A denote the set of all vectors aS , and B the set of all vectors bS where S ranges over all
subsets of V1 of size at most k.

By the definition of the function f = fG,k, we have that f(x) = 1 if and only if x ≥ aS for
some S. Hence, f(a) = 1 for all a ∈ A. We claim that f(b) = 0 for all b ∈ B. To show this, we use
the fact that the graph G satisfies the isolated neighbor condition for 2k. This condition implies
that, for any two subsets S, T ⊆ V1 of size at most k,

(81) S ∩ T = ∅ if and only if N(S) ∩ N(T ) 6= ∅.

Now take an arbitrary vector bT in B. To show that f(bT ) = 0, it is enough to show that, for every
aS ∈ A there is a position i such that bT (i) = 0 and aS(i) = 1. If S ∩ T 6= ∅ then every position i
in the intersection S ∩ T has this property. If S ∩ T = ∅ then (??) implies that N(S) ∩ N(T ) 6= ∅,
and again, every position i in the intersection N(S) ∩ N(T ) has this property.

Thus, we have shown that the function f separates the pair A, B. Now define the matrix
M : A × B → F2 by

M [aS , bT ] = 1 if and only if S ∩ T = ∅.

This is a disjointness matrix D(n, k), considered in Sect. ??, and we already know (see Theorem ??)
that it has full rank over F2:

rkF2
(M) =

k∑

i=0

(
n

i

)
.

Thus, by Lemma ??, it remains to show that rkF2
(R) ≤ 1 for every monotone monochromatic

rectangle R ⊆ A × B.
Since R is monotone monochromatic, there must exist a position i such that vS(i) = 1 and

uT (i) = 0 for all (vS , vT ) ∈ R. If i ∈ V1 then the corresponding entry of the intersection matrix
M is 0 because then S ∩ T 6= ∅; if i ∈ V2 then this entry is 1 because then N(S) ∩ N(T ) 6= ∅, and
by (??), S ∩ T = ∅. Thus, depending on whether i ∈ V1 or i ∈ V2, the matrix MR is either the
all-0 matrix or a matrix consisting of 1s in all entries in R and 0s elsewhere; in this last case, MR

is a matrix of rank 1. �

Explicit bipartite graphs, satisfying the isolated neighbor condition for k = Ω(log n) are known.
Such are, for example, Paley graphs Gn constructed in Sect. ??. By Lemma ??, the corresponding
boolean function fGn,k requires monotone formula of size at least

(
n
k

)
= nΩ(log n).

Exercises

Ex 14.1. Let A and B be families of subsets of an n-element set with the property that |A∩B|
is odd for all A ∈ A and B ∈ B. Prove that then |A| · |B| ≤ 2n−1. Hint: Replace A in the proof of
Theorem ?? by a larger set A′ = A ∪ A0 where A0 = {u0 + u : u ∈ A} for some fixed u0 ∈ A. Show that
A ∩ A0 = ∅, and argue as in that proof with A′ instead of A.

Ex 14.2. Define the matrices H2m, m = 1, 2, 4, 8, . . ., inductively as follows:

H2 =

(
1 1
1 −1

)
, H2m =

(
Hm Hm

Hm −Hm

)
.

Show that these matrices are Hadamard.

Ex 14.3. (Due to Gatis Midrijanis) Let Hn be a matrix from the previous exercise. Give a
direct proof that its rigidity is RHn

(r) ≥ n2/4r for all 1 ≤ r ≤ n/2. Hint: Divide Hn uniformly into
(n/2r)2 submatrices of size 2r × 2r, and observe that each of them is ±H2r.
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Ex 14.4. Let n = 2m. The n × n Sylvester ±1-matrix Sn = (sxy) by labeling the rows and

columns by m-bit vectors x, y ∈ Fm
2 and letting sxy = (−1)〈x,y〉, where the scalar product is over

F2. Show that Sn is a Hadamard matrix.

Ex 14.5. Show that Alon’s lemma (Lemma ??) is sharp, at least whenever k divides n and
there exists a k × k Hadamard matrix H. Hint: Take n/k copies of H.

Ex 14.6. Use Lemma ?? to show that if t > (1 − 1/r)n, then every r × t sub-matrix H ′ of an
n × n Hadamard matrix H has rank r (over the reals).

Ex 14.7. Take an n×n matrix over some field F and suppose that all of its rows are different.
Prove the following: if some column is linearly dependent on the others then after the deletion of
this column, all the rows in the resulting n by n − 1 matrix are still different.

Ex 14.8. (Babai–Frankl 1992). Give a linear algebra proof of Bondy’s theorem (Theorem ??):
In any n × n 0-1 matrix M with all rows being different, there is a column, after deletion of which
the resulting n by n − 1 matrix still has no equal rows. Hint: Consider two cases depending on what
is the determinant of M . If det(M) = 0 then some column is linearly dependent on the others, and we are
in the situation of the previous exercise. If det(M) 6= 0 then take a row vi of M with the minimal number
of 1s, and expand the determinant by this row. Conclude that for some j, the term vij · det Mij 6= 0,
where Mij is the (n − 1) by (n − 1) minor obtained by deleting the i-th row and the j-th column. Hence,
vij = 1 and no two rows of the minor are identical. Use this to prove that deleting the j-th column from
the whole matrix M leaves no equal rows.

Ex 14.9. For n ≥ 1, d ≥ 0, n ≡ d mod 2, let K(n, d) denote the minimal cardinality of a
family V of ±1 vectors of length n, such that for any ±1 vector w of length n, there is a v ∈ V
such that the value of the scalar product 〈v, w〉 (over the reals) lies between −d and d. Prove that:

(i) K(n, 0) ≤ n (Knuth 1986). Hint: Consider ±1 vectors v0, v1, . . . , vn of length n, where
the i-th vector vi has first i coordinates equal to −1 and the rest equal to +1; hence, v0 has
no −1’s at all whereas vn consists entirely of −1’s. Observe that 〈w, v0〉 = −〈w, vn〉, while
〈w, vi〉 = 〈w, vi+1〉 ± 2 for each i = 0, 1, . . . , n − 1.

(ii) K(n, d) ≤ ⌈n/(d + 1)⌉ (Alon et al. 1988). Hint: Consider the same vectors as before, and
select only the vectors uj := vj·(d+1)+1 for j = 0, 1, . . . , r; r = ⌈n/(d + 1)⌉ − 1. Observe that
for any ±1 vector w and any j, 0 ≤ j < r, 〈w, uj〉 = 〈w, uj+1〉 ± (2d + 2). Note: Alon et al.
(1988) have also proved that this upper bound is tight.

Ex 14.10. (Alon et al. 1988). Let V be the set of all ±1 vectors of length n. A vector is even
if it has an even number of −1’s, otherwise it is odd. Let f(x1, . . . , xn) be a multilinear polynomial
of degree less than n/2 over the reals, i.e.,

f =
∑

|S|<n/2

αS

∏

i∈S

xi,

where αS ∈ R. Suppose that f(v) = 0 for every even vector v ∈ V . Prove that then f ≡ 0,
i.e., αS = 0 for all S. Does the same hold if f(v) = 0 for every odd vector v ∈ V ? Hint: By the
hypothesis, for every even subset T ⊆ N we have

∑

|S|<n/2

αS(−1)|S∩T | = 0.

It thus suffices (why?) to show that the rows of the matrix

A =
{

(−1)|S∩T | : |T | even and |S| < n/2
}

are linearly independent (over the reals). For this, show that the matrix M = AT A has non-zero deter-
minant. The (S1, S2)-th entry of M is the sum

∑

T

(−1)|S1∩T |+|S2∩T | =
∑

T

(−1)|(S1⊕S2)∩T |

over all even T . If S1 = S2, then this sum is 2n−1. If S1 6= S2, then 0 < |S1 ⊕ S2| < n; use this to show
that in this case the sum is 0.
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Ex 14.11. Let n = 2m + 1, and consider the majority function MAJn(x1, . . . , xn), which
outputs 1 iff x1 + . . . + xn ≥ m + 1. The best known upper bound O(n4.57) for the formula size of
MAJn is due to Valiant. Use Khrapchenko’s theorem to show that this function requires formulas
of size Ω(n2). Hint: Take A = {a : |a| = m + 1} and B = {b : |b| = m}.

Ex 14.12. Show that Khrapchenko’s theorem cannot yield larger than quadratic lower bounds.
Hint: Each vector in {0, 1}n has only n neighbors.

Ex 14.13. Research problem: It is not known if the converse of Rychkov’s lemma (Lemma ??)
holds. Suppose that A×B can be covered by t mutually disjoint rectangles. Does there then exist
a formula which separates A, B and has size at most tc for some absolute constant c?

Ex 14.14. Let V ⊆ Fn
2 be a linear space and y ∈ Fn

2 be a vector. Assume that y 6∈ V ⊥.
Show that then v · y = 0 for precisely one-half of the vectors v in V . Hint: Split V into V0 and V1

according to whether v · y = 0 or v · y = 1. Take x ∈ V such that x · y = 1; hence, x ∈ V1. Show that then
x + V0 ⊆ V1, x + V1 ⊆ V0, |x + V0| = |V0| and |x + V1| = |V1|.

Ex 14.15. The general disjointness matrix Dn is a 2n ×2n 0-1 matrix whose rows and columns
are labeled by the subsets of an n-element set, and the (A, B)-th entry is 1 if and only if A∩B = ∅.
Prove that this matrix has full rank, i.e., that rk(Dn) = 2n. Hint: Use the induction on n together
with the following recursive construction of Dn:

D1 =

(
1 1
1 0

)
, Dn =

(
Dn−1 Dn−1

Dn−1 0

)

Ex 14.16. The intersection matrix Qn is a (2n − 1) × (2n − 1) 0-1 matrix whose rows and
columns are labeled by the non-empty subsets of an n-element set, and the (A, B)-th entry is 1 if
and only if A ∩ B 6= ∅. Prove that this matrix also has full rank over any field. Hint: If we subtract
Dn from the all-1 matrix In then we get a matrix Qn with one additional null column and row. Combine
this fact with (??) and the previous exercise.





CHAPTER 15

Eigenvalues and Graph Expansion

A very important class of sparse graphs consists of expander graphs. Among other things,
they are the model for a good network. They are also used to derandomize algorithms as well as to
construct good error-correcting codes. Basically, an expander has the property that every subset
of its vertices has a large set of neighbors. This particularly implies that any pair of vertices is
connected by a short path.

In general, it is difficult to decide whether a given graph is a good expander: One must test
whether all subsets of vertices have many neighbors. Fortunately, linear algebra can help us in
this situation. Namely, it turns out that a graph is a good expander if it has large spectral gap,
that is, if the difference between the first and the second largest eigenvalues of its adjacency matrix
is large.

1. Expander graphs

For a graph G = (V, E) and a vertex u ∈ V , let Γ(u) denote the set of neighbors of u, that is,
the set of all vertices adjacent to u. For a subset S ⊆ V , its neighborhood is defined as the set

Γ(S) = {v ∈ V \ S : v is adjacent to some vertex u ∈ S}
of all proper neighbors of S.

An (n, d, c)-expander is a d-regular graph G = (V, E) on n vertices such that every subset
S ⊆ V with |S| ≤ n/2 is connected by edges of G to at least c|S| vertices outside the set S, that
is,

|Γ(S)| ≥ c|S| for all S ⊆ V with |S| ≤ n/2.

The smaller the degree d and the larger the expansion constant c > 0 is, the better the expander
we have.

To see that a small degree expander makes a good network, suppose we want to route a
message from a vertex x to another vertex y in an (n, d, c)-expander G. Every vertex has degree
d. By the property of an expander, there are at least (1 + d)(1 + c) vertices at distance ≤ 2 from
x. Working outwards from there, there will be at least (1 + d)(1 + c)k vertices at distance ≤ k + 1
from x. We can continue expanding from x until the reachable set Vx of vertices has |Vx| > n/2
vertices. The vertex y may not be among them. But if we expand from y in the same way, we
eventually obtain a set Vy of |Vy| > n/2 vertices reachable from y. Since both sets Vx and Vy have
more than n/2 vertices, they must overlap. The overlap contains vertices on a path from x to y.

In this way, we have shown that any two vertices x and y are connected by a path of length
at most 2(k + 1), as long as

k > log1+c

n

2(1 + d)
.

If c > 0 is a constant, then any two vertices are connected by a path of length logarithmic in the
total number n of vertices.

2. Spectral gap and the expansion

The basic question about expanders is: If A is the adjacency matrix of a graph G, what
properties of A ensure that G is a good expander? All graphs considered in this chapter are
undirected. Recall that the adjacency matrix of a graph G on vertices {1, 2, . . . , n} is an n × n
0-1 matrix A = (aij) with aij = 1 iff i and j are adjacent in G. Note that A is symmetric, that
is, aij = aji for all i, j.

155
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Of course, there is a trivial combinatorial property of A ensuring that G is an (n, d, c)-expander:
For every subset S ⊆ [n] of |S| ≤ n/2 rows, at least c|S| columns outside S must have at least
one 1 in these rows. This answer is, however, not satisfactory because the property must hold for
all subsets S and it is difficult to test all these 2Ω(n) possibilities. What we would like to have
is an algebraic condition on A ensuring good expansion of G. It turns out that this property is
captured by the two largest eigenvalues of A.

By eigenvalues of a graph G = ([n], E) we will mean the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn of its
adjacency matrix A = (aij) with aij = 1 iff i and j are adjacent in G. Since A has zeroes on the
diagonal, its trace is equal to 0. Hence, we always have that λ1 + · · · + λn = 0.

Example 15.1. The complete graph Kn has an adjacency matrix equal to A = J − I, where
J is the all-1 matrix and I is the identity matrix. The rank of J is 1, i.e. there is one nonzero
eigenvalue equal to n, with an eigenvector 1 = (1, 1, ..., 1). All the remaining eigenvalues are 0.
Subtracting the identity shifts all eigenvalues by −1, because Ax = (J − I)x = Jx − x. Therefore
the eigenvalues of Kn are λ1 = n − 1 and λ2 = . . . = λn = −1

If G is d-regular, then 1 = (1, 1, ..., 1) is an eigenvector. We get A1 = d1, and hence d is an
eigenvalue. It is easy to show that no eigenvalue can be larger than d (see Exercises ?? and ??).

Interestingly, already the difference d − λ2 (known as the spectral gap) between the degree
d of a d-regular graph and its second-largest eigenvalue λ2 gives us a lot of information about
the expansion properties of the corresponding graphs. The larger this difference is, the better
expansion properties the graph has.

For two not necessarily disjoint subsets S, T ⊆ V of vertices, let e(S, T ) denote the number of
edges of G with one endpoint in S and the other in T . If S ∩ T = ∅, then 0 ≤ e(S, T ) ≤ |S| · |T |.
In this case, e(S, T ) is the number of “crossing edges” between the sets S and T . Also, let e(S)
denote the number of edges, both endpoints of which lie in S.

Lemma 15.2 (Expander Crossing Lemma). Let G = (V, E) be a d-regular graph on n vertices
V = {1, . . . , n}, and let λ = λ2 be the second largest eigenvalue of its adjacency matrix A. Then,
for every partition V = S ∪ T ,

(82) e(S, T ) ≥ (d − λ)|S| · |T |
n

.

Proof. By Lemma ??, we know that λ = λ2 is the maximum of the Rayleigh quotient
x⊤Ax/‖x‖2 over all vectors x such that 〈x, 1〉 = 0. So, to get a lower bound on λ we can plug
any vector x ⊥ 1 into the Rayleigh quotient. For this purpose, we take the following vector x
related to our partition V = S ∪ T . Let s = |S| and t = |T | = n − s. We can assume w.l.o.g. that
S = {1, 2, . . . , s} and T = {s + 1, . . . , n}. Consider the vector x = (x1, . . . , xn) with xi = −t for
i ∈ S and xi = s for i ∈ T . That is,

x = (

|S| times︷ ︸︸ ︷
−t, −t, . . . , −t,

|T | times︷ ︸︸ ︷
s, s, . . . , s) .

Then

〈x, 1〉 =
∑

i∈S

(−t) +
∑

i∈T

s = s(−t) + ts = 0

Also

‖x‖2 = 〈x, x〉 =
∑

i∈S

(−t)2 +
∑

i∈T

s2 = st2 + ts2 = st(s + t) = stn .

By (??),

(83) x⊤Ax ≤ λ‖x‖2 = λstn.

Our goal now is to show that x⊤Ax = stdn − e(S, T )n2, from which the desired lower bound on
e(S, T ) follows.

Letting Γ(i) denote the set of all neighbors of vertex i, we have
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x⊤Ax =

n∑

i=1

xi

( ∑

j∈Γ(i)

xj

)
= 2

∑

{i,j}∈E

xixj

= 2t2 · e(S) + 2s2 · e(T ) − 2st · e(S, T ) .(84)

To eliminate e(S) and e(T ), observe that the sum of degrees
∑

i∈S di of vertices in S is equal to
d|S| = ds, since the graph is d-regular, and is equal to 2e(S) + e(S, T ), since each edge with both
endpoints in S is counted twice. This gives 2e(S) = ds − e(S, T ). Similarly, 2e(T ) = dt − e(S, T ).
Substituting this in (??) we obtain

x⊤Ax = (ds − e(S, T ))t2 + (dt − e(S, T ))s2 − 2st · e(S, T )

= (dst2 + dts2) − (s2 + 2st + t2) · e(S, T )

= std(s + t) − (s + t)2 · e(S, T )

= stdn − n2 · e(S, T ) .

Together with (??), this implies

e(S, T ) ≥ λstn − stdn

n2 =
(d − λ)st

n
. �

In particular, this lemma implies that if λ < d, then for any partition of the vertices, there
is a “crossing edge” going from one part to another. That is, λ < d implies that the graph is
connected. In fact, the converse holds as well.

Proposition 15.3. A d-regular graph with second-largest eigenvalue λ2 is connected if and
only if λ2 < d.

Proof. Let G be connected and d-regular. Suppose on the contrary that there is a vector
x ∈ Rn, x 6= 0 such that 〈x, 1〉 = 0 and Ax = dx. Let xi be the smallest and xj the largest
entry of x. Since 〈x, 1〉 = 0 and x 6= 0, we have that xi < 0 and xj > 0. Take c := −1/xi

and consider the vector y := 1 + cx. Then y ≥ 0. Moreover, yi = 1 + cxi = 1 − 1 = 0 and
yj = 1 + cxj = 1 − xj/xi > 1. But

Ay = A1 + cAx = d1 + cdx = dy ,

and hence, Aty = dty for all t. In particular,

At[i, 1]y1 + · · · + At[i, j]yj + · · · + At[i, n]yn = dyi = 0 .

Together with y ≥ 0 and yj > 0, this implies that At[i, j] = 0 for any t, that is, there is no walk
joining i and j, a contradiction with the connectedness of G. �

An important consequence of the Expander Crossing Lemma is that every d-regular graph
whose second-largest eigenvalue is strictly smaller than d, is a good enough expander.

Theorem 15.4. If λ = λ2 is the second-largest eigenvalue of the incidence matrix of a d-
regular graph G on n vertices, then G is an (n, d, c)-expander for c = (d − λ)/2d.

Proof. Let S be a subset of |S| ≤ n/2 vertices, and let Γ(S) be the set of all neighbors of S
in the complement S of S. An edge can lie between S and S only if one its endpoint belongs to S
and the other to Γ(S). Since every vertex in Γ(S) has at most d neighbors in S, this implies that
e(S, S) ≤ d|Γ(S)|. Together with Lemma ?? this implies

|Γ(S)| ≥ (d − λ)|S|(n − |S|)
dn

≥ d − λ

2d
,

where the last inequality follows since n − |S| ≥ n/2. �

For not necessarily disjoint subsets of vertices S and T , we have a slightly worse lower bound
on e(S, T ).
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Lemma 15.5 (Expander Mixing Lemma). If G is a d-regular graph on n vertices and λ = λ2

is the second-largest eigenvalue of its adjacency matrix then, for every two subsets S and T of
vertices, ∣∣∣e(S, T ) − d|S| · |T |

n

∣∣∣ ≤ λ
√

|S| · |T | .

The left-hand side measures the deviation between two quantities: one is e(S, T ), the number
of edges between the two sets; the other is the expected number of edges between S and T in a
random graph of edge density d/n, namely d|S||T |/n. A small λ (or large spectral gap) implies
that this deviation (or discrepancy as it is sometimes called) is small, so the graph behaves like a
random graph in this sense!

Proof. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of the adjacency matrix A of G, and let
x1, . . . , xn be the corresponding orthonormal basis; here x1 is 1√

n
times the all-1 vector 1. Let vS

and vT be the characteristic vectors of S and T . Expand these two vectors as linear combinations

vS =

n∑

i=1

aix
i and vT =

n∑

i=1

bix
i

of the basis vectors. Since the xi are orthonormal eigenvectors,

(85) e(S, T ) = v⊤
S AvT =

( n∑

i=1

aix
i
)⊤

A
( n∑

i=1

bix
i
)

=

n∑

i=1

λiaibi .

Since the graph G is d-regular, we have λ1 = d. The first two coefficients a1 and b1 are scalar
products of x1 = 1√

n
1 with vS and vT ; hence, a1 = |S|/√

n and b1 = |T |/√
n. Thus, the first term

λ1a1b1 in the sum (??) is precisely d|S||T |/n. Since λ = λ2 is the second largest eigenvalue, the
absolute value of the sum of the remaining n − 1 terms in this sum does not exceed λ

∑n
i=2 |aibi|

which, by the Cauchy–Schwarz inequality, does not exceed

λ‖a‖ · ‖b‖ = λ‖vS‖ · ‖vT ‖ = λ
√

|S| · |T | . �

There are several explicit constructions of constant degree expanders with a constant expansion
factor c > 0. We mention just two of them:

(1) Vertices are pairs of integers x ∈ Zm = {0, 1, . . . , m − 1}, and each vertex (x, y) is
connected to four vertices (x + y, y), (x − y, y), (x, y + y), (x, x − y), where all operations
are modulo m.

(2) Vertices are elements of the field Zp (for p a prime number), and every vertex x 6= 0 is
connected to three vertices x + 1, x − 1, x−1, where again, x ± 1 is computed modulo p
and x−1 is the multiplicative inverse of x in Zp. The vertex x = 0 is connected to 0, 1
and p − 1.

2.1. Ramanujan graphs. The second-largest-eigenvalue λ of d-regular graphs lies roughly
between

√
d and d. More precisely, it is known that the second eigenvalue is always at least

2
√

d − 1 − o(1). Graphs achieving this lower bound are called Ramanujan graphs. That is, a
Ramanujan graph is a d-regular graph whose second-largest eigenvalue λ satisfies λ ≤ 2

√
d − 1.

Example ?? shows that the complete graph Kn is a Ramanujan graph for any n. The problem,
however is, that Kn has huge degree. In applications we need an explicit sequence Gn, n = 1, 2, . . .
of graphs such that infinitely many of them have some (fixed) constant degree d and are Ramanujan
(or “nearly” Ramanujan) graphs.

Explicit constructions of (p + 1)-regular Ramanujan graphs on n vertices for every prime
p ≡ 1 mod 4 and infinitely many values of n were given in Margulis (1973), Lubotzky, Phillips
and Sarnak (1988); these were later extended to the case where p is an arbitrary prime power in
Morgenstern (1994) and Jordan and Livné (1997).

Most important in these (rather non-trivial) constructions is that the degree p + 1 of con-
structed n-vertex graphs is constant, it does not grow with n. On the other hand, Ramanujan
n-vertex graphs of degree about

√
n can be constructed quite easily.
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In Sect. ?? we described explicit n-vertex graphs with no 4-cycles and almost maximal number
Ω(n3/2) of edges (see Exercise ??). Now we will show that these graphs are Ramanujan graphs.
Later, in Sect. ??, we will combine this fact with the expander mixing lemma to prove an important
result in extremal number theory about sum-product sets.

Let n = p(p − 1), where p is a prime number. The vertices of our graph G are pairs (a, b) of
elements of a finite field Zp with a 6= 0, and two vertices (a, b) and (c, d) are joined by an edge iff
ac = b + d (all operations modulo p). We have already shown that this graph is (p − 1)-regular,
that is, every vertex has p−1 incident edges (some edges may be loops). We have also shown that
any two vertices (a, b) and (c, d) have

(i) no common neighbor, if a = c or b = d;
(ii) exactly one common neighbor, if a 6= c and b 6= d.

Now we will show that, for any prime number p ≥ 5, the graph G is a Ramanujan graph. Let
λ = λ(G) be the second-largest eigenvalue of the adjacency matrix of G.

Lemma 15.6. |λ| <
√

3p.

Proof. Let M be the adjacency matrix of G. The (u, v)-entry of M2 is the number of walks
from u to v of length 2. If u = v, this number is the degree p − 1, while if u 6= v, with u = (a, b)
and v = (c, d), then properties (i) and (ii) tell us that this number is 1 if a 6= c and b 6= d, and is
0 otherwise. It follows that

(86) M2 = J + (p − 2)I − E ,

where J is the all-1 matrix, I is the identity matrix, and E is the “error matrix,” the adjacency
matrix of the graph GE whose vertex set is the same as that of G, and in which two vertices (a, b)
and (c, d) are connected by an edge if a = c or b = d. It is easy to see that GE is a (2p−3)-regular
graph.

Since G is regular and its adjacency matrix M is symmetric, we know that the all-1 vector
is an eigenvector of M and all other eigenvectors are orthogonal to it. It is easy to check that G
is connected and not bipartite, so that the eigenvalue p − 1 has multiplicity 1, and for any other
eigenvalue θ we have |θ| < p − 1.

Given such an eigenvalue θ, let x be a corresponding eigenvector. Then by equation (??),

θ2x = (p − 2)x − Ex ,

since Jx is the all-0 vector. Therefore p − 2 − θ2 is an eigenvalue of E.
Now, the degree 2p − 3 of GE is an upper bound on the absolute value of every eigenvalue of

E (see Exercise ??). It follows that

p − 2 − θ2 ≥ −2p + 3

which implies |θ| <
√

3p, as desired. �

3. Expanders and derandomization

Random algorithms use random bits (results of coin-flips) during the computation and are
allowed to produce a wrong answer with some small probability. Such algorithms are usually
much faster than known deterministic algorithms. But we must pay for this: we must expect
errors and it is time consuming to produce random bits. It turns out that expander graphs can
help to decrease the error-probability as well as to reduce the number of required random bits.

Suppose we have a boolean function f : {0, 1}n → {0, 1} and a probabilistic polynomial time
algorithm A that approximates f in the sense that, for random r ∈ {0, 1}m we have:

(87) Prr [A(x, r) 6= f(x)] ≤ 1

4
for every x ∈ {0, 1}n.

We could reduce the error to 4−t by running the algorithm 2t + 1 times and taking the majority
of its outputs as the result. But this requires (2t + 1)m coin tosses. We want to reduce errors
while using a small number of coin tosses. (A general procedure, when we reduce the number of
random bits by modifying a probabilistic algorithm, is called derandomization.)
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Take a d-regular graph G = (V, E) on |V | = 2m vertices, and let λ = λ2 be the second-largest
eigenvalue of its adjacency matrix. Let us consider the following algorithm B that uses only m
coin tosses. For a given input x, it picks a vertex v ∈ V uniformly at random, and outputs

B(x, v) := Majorityu∈Γ(v)A(x, v) .

Claim 15.7. For every x ∈ {0, 1}n,

Prv [B(x, v) 6= f(x)] ≤ 4

(
λ

d

)2

.

Proof. Fix an input x. Let S = {v ∈ V : B(x, v) 6= f(x)} be the set of vertices on which B
errs, and T = {v ∈ V : A(x, v) 6= f(x)} be the set of vertices on which A errs. Observe that every
vertex u ∈ S must be adjacent to at least d/2 vertices v ∈ T , implying that e(S, T ) ≥ d|S|/2.
Moreover, |T | ≤ |V |/4 = n/4, by (??). The Expander Mixing Lemma yields:

e(S, T ) − d|S| · |T |
n

≤ λ
√

|S| · |T |
d|S|

2
− d|S|

4
≤ λ

√
|S|n/4

d|S|
4

≤ λ
√

|S|n/4

from which

Prv [B(x, v) 6= f(x)] =
|S|
n

≤ 4

(
λ

d

)2

.

follows. �

So, taking Ramanujan graphs the error probability can be reduced to 4(2/
√

d)2 without any
increase of the number of random bits!

We will present yet another application of expander graphs to reduce the number of random
bits in Sect. ??. More applications of expanders as well as their constructions can be found in a
beautiful survey paper by Hoory, Linial and Wigderson (2006).

Exercises

Ex 15.1 (Unique neighbors). Let G = (V, E) and S ⊆ V . A unique neighbor of S is a vertex
in Γ(S) connected by an edge to only one vertex in S. Suppose that G is an (n, d, c)-expander.
Show that then every subset S of size |S| ≤ n/2 has at least (c − d/2)|S| unique neighbors. Hint:
Let T ⊆ Γ(S) be the set of non-unique neighbors and count the number of edges between S and T in two
ways.

Ex 15.2. Let A be a square symmetric matrix, and λ one of its eigenvalues. Show that, for
every integer k ≥ 1, λk is an eigenvalue of Ak.

Ex 15.3. Let G be a d-regular graph on n vertices, and A its adjacency matrix. Let λ1 ≥
λ2 ≥ . . . ≥ λn be the eigenvalues of A. Show that the eigenvalues of the adjacency matrix of the
complement graph G are n − 1 − d and −1 − λi for i = 2, . . . , n. Hint: The adjacency matrix of G is
J − I − A. If vector x is orthogonal to 1, then Jx = 0.

Ex 15.4. Let G be a bipartite d-regular graph on n vertices, and A its adjacency matrix. Show
that −d is also an eigenvalue of A. Hint: If G is bipartite with parts of size p and q with p + q = n,
then

A =

[
0 B

B⊤
0

]

for a p × q matrix B. Take the vector

x = (1, . . . , 1︸ ︷︷ ︸
p

, −1, . . . , −1︸ ︷︷ ︸
q

) .
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Ex 15.5. Let d > 1 be a constant, and A be the adjacency matrix of a d-regular graph on n
vertices. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of A; hence, λ1 = d. Let λ = maxi6=1 |λi|.
Show that λ ≥ (1 − o(1))

√
d as n → ∞. Hint: Use the fact that λ1 + . . . + λn is the trace of A to

estimate the trace of A2.

Ex 15.6. Let A be a square 0-1 matrix with exactly d ones in each row and in each column.
Show that then x⊤Ax ≤ d holds for every vector x ∈ Rn with ‖x‖ = 1. Hint: The Birkhoff–Von
Neuman theorem and Exercise ??.

Ex 15.7. Let G be a graph, and A its adjacency matrix. Let δ be the average degree and ∆
the maximum degree of G. Let λmax be the largest eigenvalue of A. Show that δ ≤ λmax ≤ ∆.
Hint: Let λ = λmax, take a vector x with Ax = λx and give an upper bound on |λ| maxi |xi|. For the
lower bound apply Theorem ?? with x = 1.

Ex 15.8. Use the previous exercise to show that λ1 = d is the largest eigenvalue of the
adjacency matrix of every d-regular graph.

Ex 15.9. Show that a scalar λ is an eigenvalue for A with eigenvector x if and only if |x⊤Ax| =
‖Ax‖ · ‖x‖.

Ex 15.10. Let A = (aij) be an upper triangular matrix, that is, aij = 0 for all i > j. Show that
then the diagonal elements a11, a22, . . . , ann are the eigenvalues of A. Hint: Recall that eigenvalues
of A are the roots of the characteristic polynomial pA(z) = det (A − zI) of A, where I is a unit matrix
with 1s on the diagonal, and 0s elsewhere.

Ex 15.11. Let A be a symmetric n × n 0-1 matrix with 1s on the diagonal, and let |A| be the
total number of 1-entries in A. Show that then rk(A) ≥ n2/|A|. Hint: Consider the trace of A2, and
recall that rk(A) is the number of (not necessarily distinct) nonzero eigenvalues of A.

Ex 15.12. Let A be a real n × n matrix with eigenvalues λ1, . . . , λn and corresponding eigen-
vectors x1, . . . , xn. Let I ⊆ [n] be such that all eigenvalues λi with i ∈ I are distinct.

(1) Show that the vectors xi with i ∈ I are linearly independent.
(2) Let A be symmetric. Show that the eigenvectors corresponding to different eigenvalues

are mutually orthogonal, that is, 〈xi, xj〉 = 0 for all i 6= j ∈ I. Hint: Show that y⊤Ax =
x⊤Ay holds for all vectors x, y.

Ex 15.13. Let G = (X∪Y, E) be the point-line incidence graph of the projective plane PG(2, q)
(see Sect. ??). That is, vertices in X correspond to points, vertices in Y to lines of PG(2, q), and
a point x is joined to a line y by an edge iff x ∈ y. The graph has |X| = |Y | = n := q2 + q + 1
vertices on each side, and each vertex has degree q +1. The most important property of this graph
is that it contains no copies of K2,2, that is, it contains no cycle on four vertices. Show that every
subset S ⊆ X has at least (1 − q/|S|)n neighbors in Y . Hint: Corrádi’s lemma, Lemma ??).





CHAPTER 16

The Polynomial Method

This method is based on various extensions of the following basic fact about univariate (single-
variable) polynomials —known as the “factor theorem”—to the case of multivariate polynomials,
that is, polynomials on many variables:

(i) Every nonzero polynomial of degree d has at most d roots.
(ii) For every set S of points there exists a nonzero polynomial f of degree at most |S| such that

f(x) = 0 for all x ∈ S.

Thus, to obtain an upper bound on the size of a given set S, it is enough to exhibit a nonzero
low-degree polynomial that vanishes on S; conversely, to lower bound the size of S, it is enough
to show that the only low-degree polynomial that vanishes on S is the zero polynomial.

1. DeMillo–Lipton–Schwartz–Zippel lemma

Let x1, . . . , xn be variables. A monomial of degree t is a product xt1
1 xt2

2 · · · xtn
n with integers

ti ≥ 0 such that t1 + t2 + · · · + tn = t. Hence, constant 1 is the only monomial of degree 0. For
a fixed field F, let F[x1, . . . , xn] denote the ring of all multivariate polynomials over F. Each such
polynomial is a linear combination of monomials with coefficients taken from F. The degree, deg(f),
of f is the maximum degree among its monomials with a nonzero coefficient. A (multivariate)
polynomial is homogeneous if all its monomials with nonzero coefficients have the same degree.
A polynomial f vanishes on a subset E ⊆ Fn if f(x) = 0 for all x ∈ E. A point x ∈ Fn with
f(x) = 0 is a root of f . A polynomial f(x) is the zero polynomial if all its coefficients are 0.

The following lemma extends the second claim (ii) of the factor theorem to multivariate
polynomials.

Lemma 16.1. Given a set E ⊆ Fn of size |E| <
(

n+d
d

)
, there exists a nonzero polynomial

f ∈ F[x1, . . . , xn] of degree at most d that vanishes on E.

Proof. Let Vd be the vector space of polynomials in F[x1, . . . , xn] of degree at most d. It

is not difficult to show (see Exercise ??) that Vd has dimension
(

n+d
n

)
. On the other hand, the

vector space FE of all functions g : E → F has dimension |E| <
(

n+d
d

)
. Hence the evaluation map

f 7→ (f(a))a∈E from Vd to FE is non-injective. So, at least two polynomials f1 and f2 in Vd are
mapped to the same string in FE . But then the polynomial f = f1 − f2 belongs to Vd and is
mapped to the all-0 string, meaning that f vanishes on E. �

The first claim (i) of the factor theorem can be also extended to the case of multivariate
polynomials by analyzing the behavior of polynomials on lines.

Lemma 16.2. Every nonzero polynomial f(x1, . . . , xn) of degree d over a finite field with q
elements has at most dqn−1 roots.

Proof (due to Dvir 2009 and Moshkovitz 2010). Let us assume n ≥ 2, 1 ≤ d ≤ q, where q = |F|.
The proof is by reduction to the case n = 1. Write f = g + h, where g is homogeneous of degree d,
and h contains only monomials of degree strictly smaller than d. Since f is a nonzero polynomial,
g(w) 6= 0 for some w ∈ Fn, w 6= 0. Associate with each vector u ∈ Fn the line

Lu = {u + tw : t ∈ F}
in direction w through u. Then Lu ∩ Lv = ∅ as long as v 6∈ Lu. Since w 6= 0, each line Lu contains
|Lu| = q points. Hence, we can partition Fn into qn/q = qn−1 lines. It remains therefore to show
that the number of zeros of f on each of the lines Lu is at most d.

163
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To show this, observe that, for every u ∈ Fn, the function pu(t) = f(u + tw) is a univariate
polynomial in t of degree at most d. Moreover, this polynomial is not identically zero, because
the coefficient of td in pu(t) is g(w) 6= 0. Thus, pu(t) can have at most d roots, implying that the
polynomial f can vanish on at most d points of the line Lu Since we have only qn−1 lines in a
partition of Fn, the total number of roots of f cannot exceed dqn−1, as claimed. �

A more general result was proved by DeMillo and Lipton (1978), Zippel (1979) and Schwartz
(1980). The lemma bounds the probability that a nonzero multivariate polynomial will have roots
at randomly selected test points.

Lemma 16.3 (DeMillo–Lipton–Schwartz–Zippel lemma). For every set S ⊆ F of |S| ≥ d field
elements, every nonzero polynomial f ∈ F[x1, . . . , xn] of degree d can have at most d|S|n−1 roots
in Sn.

Proof. Suppose that f is a nonzero polynomial. We proceed by induction on n, the number
of variables of f . The statement is true for n = 1 since the number of roots of f does not exceed
its degree. Now let n ≥ 2 and arrange f according to the powers of xn:

f = f0 + f1xn + f2x2
n + · · · + ftx

t
n

where f0, . . . , ft are polynomials of the n − 1 variables x1, . . . , xn−1, the term ft is not identically
0, and t ≤ d. Our goal is to estimate for how many of the points (a, b) ∈ Sn−1 × S, f(a, b) = 0.
We distinguish between two cases:

Case 1.: ft(a) = 0. Since ft is nonzero and has total degree ≤ d− t, we have by the induc-
tion hypothesis, that it can vanish on at most (d − t)|S|n−2 points in Sn−1. Therefore,
in this case, there are at most (d− t)|S|n−1 points (a, b) ∈ Sn−1 ×S for which f(a, b) = 0
and ft(a) = 0.

Case 2.: ft(a) 6= 0. For every (fixed) point a ∈ Sn−1 for which ft(a) 6= 0, the polynomial
f(a, xn) is a polynomial in one variable of degree t, and it is not identically zero. Therefore
it has at most t roots. Since there are at most |S|n−1 such points a, the number of points
(a, b) ∈ Sn−1 × S for which f(a, b) = 0 and ft(a) 6= 0, does not exceed t · |S|n−1.

Thus, there are at most (d − t)|S|n−1 + t · |S|n−1 = d · |S|n−1 points (a, b) ∈ Sn for which
f(a, b) = 0. �

The DeMillo–Lipton–Schwartz–Zippel lemma can be used to design efficient randomized algo-
rithms, that is, algorithms that are allowed to flip a coin during their computation.

The fundamental question of identity testing is: given a polynomial f of degree d on n vari-
ables, how hard is it to tell whether or not the polynomial is identically equal to zero? Note
that we can only evaluate the polynomial at points of our choice, and do not have access to the
coefficients of the polynomial. It is not hard to see that a deterministic algorithm that can only
evaluate the polynomial, could need as many as (d + 1)n points in total.

The basic idea of what is known as a randomized algorithm is that we write random numbers
in place of the variables and compute the value of the polynomial. Now if the value computed is
not zero then we know the answer: f 6= 0. But what happens if we get zero? Well, we just hit a
root of f and try again. Another root? Try once more. After a number of runs we are tired and
would like to stop and conclude the answer is f = 0. How big will the error probability of such a
decision be?

To answer this question, it is helpful to reformulate Lemma ?? in probabilistic terms.

Lemma 16.4. Suppose that f(x1, . . . , xn) is a nonzero polynomial of degree d over a field F

and S ⊆ F is a non-empty subset of the field elements. Then

Pr [f(r1, . . . , rn) = 0] ≤ d

|S| ,

where r1, . . . , rn are random elements selected uniformly and independently from S.

Thus, if we take |S| = 2d elements of the field then, assuming f 6= 0, the algorithm will
not discover this in one iteration with probability at most 1/2. With 100 experiments repeated
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Figure 1. As the middle (flexible) point moves around the smaller circle, the
needle rotates through 360◦.

independently of each other, the probability that this occurs every time is at most 2−100. So, if
the algorithm does not prove that f 6= 0, we can be pretty certain that actually f = 0. Not 100%
certain, but if we lose the bet, we would know that an experiment that had only two possible
outcomes ended with the one that had probability 2−100. This should compensate for our trouble:
we found a needle in a haystack!

As our next example, consider the following situation. We have two friends, Alice and Bob.
Alice maintains a large database of information. Bob maintains a second copy of the database.
Periodically, they must compare their databases for consistency. Because the transmission between
Alice and Bob is expensive, they would like to discover the presence of inconsistency without trans-
mitting the entire database between them. Denote Alice’s data by the sequence a = a0 · · · an−1

and Bob’s data by the sequence b = b0 · · · bn−1 where ai, bi ∈ {0, 1}. It is clear that any deter-
ministic consistency check that transmits fewer than n bits will fail (just because an adversary
can modify the unsent bits). Using randomness it is possible to design a strategy that detects an
inconsistency with high probability (at least 1 − n−1) while transmitting many fewer than n bits,
namely only O(log n) bits.

Think of the strings a and b as (strings of coefficients of) univariate polynomials over the field
Fp where p is a prime such that n2 < p < 2n2 (theorems regarding the density of primes guarantee
the existence of such p). That is, consider polynomials

A(x) = a0 + a1x + . . . + an−1xn−1 (mod p),

B(x) = b0 + b1x + . . . + bn−1xn−1 (mod p).

In order to detect whether a = b, Alice and Bob use the following strategy:

Alice picks uniformly at random a number r in F and sends to Bob the numbers r and
A(r). Bob responds with 1 if A(r) = B(r) and with 0 otherwise. The number of bits
transmitted is 1 + 2 log p = O(log n).

If a = b then A(r) = B(r) for all r, so the output is always 1. If a 6= b we have two distinct
polynomials A(x) and B(x) of degree at most n − 1. By Lemma ??, the probability of error is

Pr [A(r) = B(r)] ≤ n − 1

|F| =
n − 1

p
≤ 1

n
.

2. Solution of Kakeya’s problem in finite fields

A famous unsolved problem in mathematics is the Kakeya conjecture in geometric measure
theory. This conjecture is descended from the following question asked in 1917 by Japanese
mathematician Soichi Kakeya: What is the smallest set in the plane in which one can rotate a
needle around completely? He likened this to a samurai turning his lance around in a small toilet.
For instance, one can rotate a unit needle inside a unit disk, which has area π/4. By using a
deltoid one requires only π/8 area (see Fig. ??).
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The Kakeya conjecture in more dimensions states that any subset of Rn that contains a unit
line segment in every direction has Hausdorff dimension equal to n. This conjecture remains open
in dimensions three and higher, and gets more difficult as the dimension increases.

To approach this question, Wolff (1999) proposed a simpler finite field analogue of the Kakeya
conjecture. If Fn is a vector space over a finite field F, define a Kakeya set to be a subset K ⊆ Fn

which contains a line in every direction, namely for any v ∈ Fn there exists a vector w ∈ Fn

such that the line {w + tv : t ∈ F} is contained in K; here, vector w is the origin and vector v
the direction of the line. The finite field Kakeya conjecture stated that there exists a constant
c > 0 depending only on the dimension n such that every Kakeya set K ⊆ Fn has cardinality
|K| ≥ c|F|n.

This finite field version of the conjecture has had a significant influence on the subject, in
particular inspiring work on the sum-product phenomenon in finite fields, which has since proved
to have many applications in number theory and computer science. Modulo minor technicalities,
the progress on the finite field Kakeya conjecture was, however, essentially the same as that of the
original “Euclidean” Kakeya conjecture.

Recently Dvir (2009) used a surprisingly simple application of the polynomial method to prove
the finite field Kakeya conjecture.

Lemma 16.5. Let f ∈ F[x1, . . . , xn] be a polynomial of degree at most q − 1 over a finite field
with q = |F| elements. If f vanishes on a Kakeya set K, then f is the zero polynomial.

Proof. The argument is similar to that in the proof of Lemma ??. Suppose for a contradiction

that f is nonzero. We can write f =
∑d

i=0 fi, where 0 ≤ d ≤ q − 1 is the degree of f and fi is
the i-th homogeneous component; thus fd is nonzero. Since f vanishes on K, d cannot be zero.
Hence, fd is a nonzero polynomial.

Let v ∈ Fn\{0} be an arbitrary direction. As K is a Kakeya set, K contains a line {w+tv : t ∈
F} for some w ∈ Fn, thus f(w + tv) = 0 for all t ∈ F. The left-hand side is a polynomial gw,v(t)
in t of degree at most q − 1, and must be the zero polynomial by the factor theorem, that is, all
its coefficients are zero. In particular, the coefficient of td, which is fd(v), must be zero. Since
v was arbitrary, it follows that the polynomial fd(x) vanishes on all points in Fn. But since
dqn−1 ≤ (q − 1)qn−1 < qn, Lemma ?? implies that fd must be a zero polynomial. �

Theorem 16.6 (Dvir 2009). Let K ⊂ Fn be a Kakeya set. Then

|K| ≥
(|F | + n − 1

n

)
≥ |F|n

n!
.

Proof. Let q = |F| and suppose that |K| <
(

n+q−1
n

)
. Then, by Lemma ??, there exists a

nonzero polynomial f ∈ F[x1, . . . , xn] of degree at most q−1 that vanishes on K, which contradicts
Lemma ??. �

3. Combinatorial Nullstellensatz

The following special case of Hilbert’s Nullstellensatz has found numerous applications in
combinatorics.

Theorem 16.7 (Nullstellensatz). Let f ∈ F[x1, . . . , xn], and let S1, . . . , Sn be nonempty sub-
sets of F. If f(x) = 0 for all x ∈ S1×· · ·×Sn, then there are polynomials h1, . . . , hn ∈ F[x1, . . . , xn]
such that deg(hi) ≤ deg(f) − |Si| and

f(x1, . . . , xn) =
n∑

i=1

hi(x1, . . . , xn)
∏

s∈Si

(xi − s) .

Proof (due to Alon 1999). Define di = |Si| − 1 for all i, and consider polynomials

gi(xi) =
∏

s∈Si

(xi − s) = xdi+1
i −

di∑

j=0

aijxj
i .
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Observe that if xi ∈ Si then gi(xi) = 0, that is,

(88) xdi+1
i =

di∑

j=0

aijxj
i .

Let f be the polynomial obtained by writing f as a linear combination of monomials and replacing,
repeatedly, each occurrence of xti

i (1 ≤ i ≤ n), where ti > di, by a linear combination of smaller

powers of xi, using the relations (??). The resulting polynomial f is clearly of degree at most di

in xi for each 1 ≤ i ≤ n, and is obtained from f by subtracting from it products of the form higi,
where deg(hi) ≤ deg(f) − deg(gi) = deg(f) − |Si|. So,

(89) f(x) = f(x) −
n∑

i=1

hi(x)gi(xi) .

Moreover, f(x) = f(x) for all x ∈ S1 × · · · × Sn, since the relations (??) hold for these values
of x. Since, by our assumption, f(x) = 0 for all these values, we obtain that f(x) = 0 for all
x ∈ S1 × · · · × Sn as well, and Exercise ?? implies that f(x) = 0 for all x ∈ Fn. Together with
(??), this implies that f =

∑n
i=1 higi, as desired. �

Using the Nullstellensatz we can derive the following generalization of the DeMillo–Lipton–
Schwartz–Zippel lemma.

Theorem 16.8 (Combinatorial Nullstellensatz). Let f(x1, . . . , xn) be a polynomial of degree
d over a field F. Suppose that the coefficient of the monomial xt1

1 · · · xtn
n in f is nonzero and

t1 + · · · + tn = d. If S1, . . . , Sn are finite subsets of F with |Si| ≥ ti + 1, then there are exists a
point x in S1 × · · · × Sn for which f(x) 6= 0.

Proof. We may assume that |Si| = ti + 1 for all i. Suppose the result is false, and define
gi(xi) =

∏
s∈Si

(xi − s). Let h1, . . . , hn be the polynomials guaranteed by the Nullstellensatz.
Hence,

(90) deg(hi) ≤ deg(f) − deg(gi) = deg(f) − (ti + 1)

and f(x) =
∑n

i=1 hi(x)gi(xi), that is,

f(x) =
n∑

i=1

xti+1
i hi(x) + (terms of degree < deg(f)) .

By assumption, the coefficient of
∏n

i=1 xti
i on the left-hand side is nonzero, while it is impossible

to have such a monomial on the right-hand side, a contradiction. �

In a similar vein is the following result.

Theorem 16.9 (Chevalley–Warning). Let p be a prime, and f1, . . . , fm polynomials in Fp[x1, . . . , xn].
If
∑m

i=1 deg(fi) < n then the number of common zeros of f1, . . . , fm is divisible by p. In particular,
if there is one common zero, then there is another one.

Although this theorem can be derived from the Combinatorial Nullstellensatz, we give a
slightly more direct proof due to Alon (1995).

Proof. By Fermat’s Little Theorem (see Exercise ??), ap−1 ≡ 1 mod p for all a ∈ Fp, a 6= 0.
Hence, the number N of common zeros of f1, . . . , fm satisfies

(91) N =
∑

x1,...,xn∈Fp

m∏

j=1

(
1 − fj(x1, . . . , xn)p−1) . (in Fp)

By expanding the right-hand side we get a linear combination of monomials of the form
n∏

i=1

xti
i with

n∑

i=1

ti ≤ (p − 1)
m∑

j=1

deg(fj) < (p − 1)n.
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Hence, in each such monomial there is an i with ti < p − 1. But then (see Exercise ??)
∑

xi∈Fp

xti
i = 0 (in Fp),

implying that the contribution of each monomial to the sum (??) is 0 modulo p, completing the
proof of the theorem. �

We illustrate the potential applications of the Combinatorial Nullstellensatz on several exam-
ples.

3.1. The permanent lemma. Let A = (ai,j) be an n × n matrix over a field F. The
permanent Per(A) of A is the sum

Per(A) =
∑

(i1,i2,...,in)

a1,i1
a2,i2

· · · an,in

of n! products, where (i1, i2, . . . , in) is a permutation of (1, 2, . . . , n).

Theorem 16.10. If Per(A) 6= 0, then for any vector b ∈ Fn, there is a subset of columns of
A whose sum differs from b in all coordinates.

This is just a special case of the following lemma for all Si = {0, 1}.

Lemma 16.11 (Permanent Lemma). Let b ∈ Fn and S1, . . . , Sn be subsets of F, each of cardi-
nality at least 2. If Per(A) 6= 0, then there exists a vector x ∈ S1 × · · · × Sn such that Ax differs
from b in all coordinates.

Proof. The polynomial

f =

n∏

i=1

( n∑

j=1

aijxj − bi

)

is of degree n and the coefficient of x1x2 · · · xn in it is Per(A) 6= 0. The result now follows directly
from the Combinatorial Nullstellensatz with all ti = 1. �

3.2. Covering cube by affine hyperplanes. An affine hyperplane is a set of vectors H =
{x ∈ Rn : 〈a, x〉 = b} with a ∈ Rn and b ∈ R. How many such hyperplanes do we need to
cover {0, 1}n? If we have no further restrictions on the covering, then just two hyperplanes
H0 = {x ∈ Rn : 〈e1, x〉 = 0} and H1 = {x ∈ Rn : 〈e1, x〉 = 1} are enough, where e1 = (1, 0, . . . , 0)
is the first unit vector. But what if we, say, require that the all-0 vector 0 remains uncovered?
In this case n hyperplanes Hi = {x ∈ Rn : 〈ei, x〉 = 1}, i = 1, . . . , n are still enough. It turns out
that this is already optimal.

Theorem 16.12. Suppose that the hyperplanes H1, H2, . . . , Hm in Rn avoid 0, but otherwise
cover all 2n − 1 vertices of the cube {0, 1}n. Then m ≥ n.

Proof. As 0 is not contained in Hi, we have that each hyperplane is of the form Hi = {x ∈
Rn : 〈ai, x〉 = 1} for some ai ∈ Rn. Assume that m < n, and consider the polynomial

f(x) =

m∏

i=1

(1 − 〈ai, x〉) −
n∏

i=1

(1 − xi) .

The degree of this polynomial is clearly n (since we assumed that m < n) and the coefficient
at x1 · · · xn is (−1)n+1 6= 0. When applied with Si = {0, 1} and ti = 1, the Combinatorial
Nullstellensatz implies that there must be a point x ∈ {0, 1}n for which f(x) 6= 0. We have x 6= 0,
as f(0) = 1 − 1 = 0. But then 〈ai, x〉 = 1 for some i (as x is covered by some Hi), implying that
f vanishes at this point, a contradiction. �
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3.3. Regular subgraphs. A graph is p-regular if all its vertices have degree p. The following
sufficient condition for a graph to contain a regular subgraph was derived by Alon, Friedland and
Kalai (1984) using the Combinatorial Nullstellensatz.

Theorem 16.13. Let G = (V, E) be a graph. Assume that G has no self-loops but multiple
edges are allowed. Let p be a prime number. If G has average degree bigger than 2p − 2 and
maximum degree at most 2p − 1, then G contains a spanning p-regular subgraph.

Proof. Associate each edge e of G with a variable xe and consider the polynomial

f =
∏

v∈V

[
1 −

(∑

e∈E

av,exe

)p−1]
−
∏

e∈E

(1 − xe)

over GF (p), where av,e = 1 if v ∈ e and av,e = 0 otherwise. Note that deg(f) = |E|, since the
degree of the first product is at most (p − 1)|V | < |E|, by the assumption on the average degree
2|E|/|V | of G. Moreover, the coefficient of

∏
e∈E xe in f is (−1)|E|+1 6= 0.

We can therefore apply the Combinatorial Nullstellensatz with Se = {0, 1} and te = 1 for all
e ∈ E and obtain a (0, 1)-vector x = (xe : e ∈ E) such that f(x) 6= 0. Consider the spanning
subgraph H consisting of all edges e ∈ E for which xe = 1. As f(0) = 0, we conclude that x 6= 0
and H is non-empty. The second summand in f(x) is therefore zero and it follows from Fermat’s
Little Theorem (Exercise ??) that

∑
e∈E av,exe ≡ 0 mod p for every vertex v. Therefore, in the

subgraph H all degrees are divisible by p, and since the maximum degree is smaller than 2p, all
positive degrees are precisely p, as needed. �

3.4. Sum-sets. The Cauchy-Davenport Theorem, which has numerous applications in Ad-
ditive Number Theory, is the following. Given two sets A and B of elements of some field F, their
sum-set is the set A + B = {a + b : a ∈ A, b ∈ B}.

Theorem 16.14 (Cauchy–Davenport). If p is a prime, and A, B are two non-empty subsets
of Zp, then

|A + B| ≥ min{p, |A| + |B| − 1} .

We will see in Sect. ?? that this theorem is just a special case of Kneser’s theorem. Here we
show how to derive this theorem from the Combinatorial Nullstellensatz.

Proof. If |A| + |B| > p the result is trivial, since in this case for every x ∈ Zp the two sets A
and x−B intersect, implying that A+B = Zp. Assume, therefore, that |A|+ |B| ≤ p and suppose
that |A+B| ≤ |A|+ |B|−2. Let C be a subset of Zp satisfying A+B ⊆ C and |C| = |A|+ |B|−2.
Define a polynomial f(x, y) =

∏
c∈C(x + y − c) and observe that by the definition of C,

(92) f(a, b) = 0 for all (a, b) ∈ A × B.

Put t1 = |A| − 1, t2 = |B| − 1 and note that the coefficient of xt1yt2 in f is the binomial coefficient
(

t1 + t2

t1

)
=

(|A| + |B| − 2

|A| − 1

)

which is nonzero in Zp, since |A| + |B| − 2 < p (see Exercise ??). We can therefore apply the
Combinatorial Nullstellensatz (with n = 2, S1 = A and S2 = B) and obtain a poinr (a, b) ∈ A×B
for which f(a, b) 6= 0, contradicting (??) and completing the proof. �

The Cauchy–Davenport theorem was extended in many ways. Let us mention one important
result in that direction. For a subset A ⊆ Zp and a natural number 1 ≤ k ≤ |A|, let sk(A) be
the number of elements b ∈ Zp that can be represented as a sum b = a1 + · · · + ak of k distinct
elements of A.

Theorem 16.15 (Dias da Silva and Hamidoune 1994). If p is a prime then, for every subset
A ⊆ Zp and every 1 ≤ k ≤ |A|,

sk(A) ≥ min{p, k|A| − k2 + 1} .
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3.5. Zero-sum sets. Using the pigeonhole principle, one can show that any sequence a1, . . . , an

of n integers contains a non-empty consecutive subsequence ai, . . . , ai+m whose sum is divisible
by n.

To show this, make n pigeonholes labeled from 0 up to n − 1 and place the n sequences

(a1), (a1, a2), . . . , (a1, a2, . . . , an)

into the pigeonholes corresponding to the remainder when the sum is divided by n. If any of these
sequences is in the pigeonhole 0 then the sum of its numbers is divisible by n. If not, then the
n sequences are in the other n − 1 pigeonholes. By the pigeonhole principle some two of them,
(a1, a2, . . . , ar) and (a1, a2, . . . , as) with r < s, must lie in the same pigeonhole, meaning that the
sum ar+1 + ar+2 + · · · + as is divisible by n.

A question of a similar flavor is the following one. Given a natural number n, what is the
smallest N such that any sequence of N integers contains a subsequence of n (not necessarily
consecutive) numbers whose sum is divisible by n? That is, this time we want to find a subsequence
of a given length n. The sequence 0n−11n−1 of n − 1 copies of 0 and n − 1 copies of 1 shows that
N ≥ 2n − 1. It turns out that this lower bound is also an upper bound for the sequence length N .

Theorem 16.16 (Erdős–Ginzburg–Ziv 1961). Any sequence of 2n − 1 integers contains a
subsequence of cardinality n, the sum of whose elements is divisible by n.

There are several different proofs of this theorem – the interested reader can find them, as
well as some interesting extensions of this result to higher dimensions, in the paper of Alon and
Dubiner (1993). The original proof was based on the Cauchy–Davenport theorem.

First proof of Theorem ??. We will first prove the theorem only for the case when n = p is a prime
number, and then show how the general case reduces to it.

Let a1 ≤ a2 ≤ . . . ≤ a2p−1 be integers. If ai = ai+p−1 for some i ≤ p − 1, then ai + ai+1 +
· · · + ai+p−1 = pai = 0 (in Zp) and the desired result follows. Otherwise, define Ai := {ai, ai+p−1}
for i = 1, . . . , p − 1. By repeated application of the Cauchy-Davenport theorem, we conclude that

|A1 + A2 + · · · + Ap−1| ≥ min{p, |A2 + · · · + Ap−1| + 1}
≥ min{p, |A3 + · · · + Ap−1| + 2}

· · ·
≥ min{p, |Ap−1| + p − 2} = p ,

and hence, every number from Zp is a sum of precisely p − 1 of the first 2p − 2 elements of our
sequence. In particular, the number −a2p−1 is such a sum, supplying the required p-element subset
whose sum is 0 in Zp.

The general case may be proved by induction on the number of primes in the prime factor-
ization of n. Put n = pm where p is a prime, and let a1, . . . , a2n−1 be the given sequence. By the
result for the prime case, each subset of 2p−1 members of the sequence contains a p-element subset
whose sum is 0 modulo p. Therefore, we can find pairwise disjoint p-element subsets I1, . . . , Iℓ of
{1, . . . , 2n − 1}, where ∑

j∈Ii

aj ≡ 0 mod p

for each i = 1, . . . , ℓ. Moreover, ℓ ≥ 2m − 1 since otherwise the number of left elements would
still be 2pm − 1 − (2m − 2)p = 2p − 1, and we could choose the next subset Iℓ+1. Now define a
sequence b1, . . . , b2m−1 where

bi =
∑

j∈Ii

aj

p

(recall that each of these sums is divisible by p). By the induction hypothesis this new sequence
has a subset {bi : i ∈ J} of |J | = m elements whose sum is divisible by m, and the union of the
corresponding sets {aj : j ∈ Ii} with i ∈ J supplies the desired n-element subset of our original
sequence, whose sum is divisible by n = pm. �

Theorem ?? can also be derived using the Chevalley–Warning theorem about the zeroes of
multivariate polynomials (see Theorem ??).
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Second proof of Theorem ?? (Alon 1995). We will prove the theorem only for a prime n = p; the
general case reduces to it (see the first proof of Theorem ??).

Let a1, a2, . . . , a2p−1 be integers, and consider the following system of two polynomials in 2p−1
variables of degree p − 1 over Fp:

2p−1∑

i=1

aix
p−1
i = 0,

2p−1∑

i=1

xp−1
i = 0 .

Since 2(p − 1) < 2p − 1 and x1 = x2 = · · · = x2p−1 = 0 is a common solution, Theorem ?? implies
the existence of a nontrivial common solution (y1, . . . , y2p−1). Since p is a prime, Fermat’s Little
Theorem (see Exercise ??) tells us that xp−1 = 1 in Fp for every x ∈ Fp, x 6= 0. So, if we take
I = {i : yi 6= 0} then the first equation ensures that

∑
i∈I ai = 0, while the second ensures that

|I| ≡ 0 mod p, and hence, that |I| = p because |I| ≤ 2p − 1. This completes the proof of the
theorem for prime n. �

Exercises

Ex 16.1. Let p ≥ 2 be a prime and consider the field Fp. From Algebra we know that there is
an a ∈ Fp such that Fp \{0} =

{
ai : i = 0, 1, . . . , p − 2

}
. Use this fact together with Fermat’s Little

Theorem to prove that, for every t ≤ p−2,
∑

x∈Fp
xt = 0 in Fp. Hint:

∑n

i=0
zi = (zn+1 −1)/(z −1).

Ex 16.2 (Low local degree polynomials). Let f be a nonzero polynomial in n variables over
a field F. Suppose that the maximum exponent of each of its variables in f does not exceed d.
(Hence, the degree of f may be up to dn which makes the bound given by Lemma ?? trivial, if
|S| ≤ n.) Show that we still have the following upper bound: For any subset S ⊆ F of size |S| ≥ d,

|{x ∈ Sn : f(x) 6= 0}| ≥ (|S| − d)n .

Hint: Argue by induction on n. In the induction step take a point (a1, . . . , an) ∈ F
n on which f(a1, . . . , an) 6=

0, and consider two polynomials:

f0(x1, . . . , xn−1) := f(x1, . . . , xn−1, an)

f1(xn) := f(a1, . . . , an−1, xn).

Ex 16.3. Show that the bound in Exercise ?? is the best possible. Hint: Consider the polynomial
f(x1, . . . , xn) =

∏d

i=1
(x1 − i) · · ·

∏d

i=1
(xn − i) .

Ex 16.4. Use Exercise ?? to show the following: If S a subset of F that has d + 1 elements,
then any nonzero polynomial of local degree d has a nonzero point in Sn.

Ex 16.5. Prove the following “granulated” version of the result established in Exercise ??.
Let f ∈ F[x1, . . . , xn] be a polynomial, and let ti be the maximum degree of xi in f . Let Si ⊆ F

with |Si| ≥ ti. If f(x) = 0 for all n-tuples x ∈ S1 × · · · × Sn, then f(x) = 0 for all x ∈ Fn.

Ex 16.6. Let f(x1, . . . , xn) be a multivariate polynomial over a field F with the degree sequence
(d1, . . . , dn), which is defined as follows: let d1 be the maximum exponent of x1 in f , and let

f1(x2, . . . , xn) be the coefficient of xd1
1 in f ; then, let d2 be the maximum exponent of x2 in f1,

and f2(x3, . . . , xn) be the coefficient of xd2
2 in f1; and so on. Suppose that f is not the zero

polynomial, and let S1, . . . , Sn ⊆ F be arbitrary subsets. For ri ∈ Si chosen independently and
uniformly at random, show that

Pr [f(r1, . . . , rn) = 0] ≤ d1

|S1| +
d2

|S2| + · · · +
dn

|Sn| .

Ex 16.7. (R. Freivalds 1977). Suppose that somebody gives us three n × n matrices A, B, C
with real entries and claims that C = A · B. We are too busy to verify this claim exactly and do
the following. We take a random vector r of length n whose entries are integers chosen uniformly
from the interval {0, 1, . . . , N −1}, and check whether A·(B ·r) = C ·r. If this is true we accept the
claim, otherwise we reject it. How large must N be set to make the probability of false acceptance
smaller than 1/100? Hint: Consider the matrix X = A · B − C. If C 6= A · B then X has a row x 6= 0.
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Take a scalar product of this row with the random vector r, observe that Pr [X · r = 0] ≤ Pr [x · r = 0],
and apply Exercise ??.



CHAPTER 17

Combinatorics of Codes

In this chapter we will discuss some extremal properties of error-correcting codes. We will
also use expander graphs to construct very easily decodable codes.

1. Error-correcting codes

Error-correcting codes enable one to store or transmit a message in such a way that one can
later recover the message even if it is partially corrupted, that is, up to some number t of bits are
flipped by noise. Messages are strings of some fixed length k over some alphabet A. In order to
be able to recover corrupted messages, we encode our messages by strings of length n > k over A
(or some other alphabet). That is, we take a particular subset C ⊆ An (called a code) and assign
to each message w its own codeword x = xw ∈ C.

During the transmission some bits may be flipped (by noise, by an adversary or whatever).
So, the receiver is presented with a corrupted version x′ ∈ An of the original codeword x ∈ C. The
receiver knows the set of all codewords C, as well as the encoding algorithm. He also knows that
the received vector x′ can differ from the original x codeword in at most t bits. What conditions
must the code C fulfill in order that we may recover the original codeword x?

Here the notion of Hamming distance comes into the play. The Hamming distance dist(x, y)
between two strings x and y of the same length is just the number of positions in which these
two strings differ. The minimum distance, dist(C), of a subset C ⊆ An is the minimal Hamming
distance dist(C) between any pair of distinct strings in C.

The key observation is that, if dist(C) ≥ 2t + 1, then the receiver can (at least in principle)
reconstruct the original codeword x from the received, possibly corrupted vector x′. The point is
that x is the only codeword in the Hamming ball Bt(x

′) = {y ∈ An : dist(x′, y) ≤ t} of radius t
around the corrupted vector x′: were another codeword y ∈ C also to lie in Bt(x

′) then we would
have that dist(x, y) ≤ dist(x, x′) + dist(x′, y) ≤ 2t, contradicting dist(C) ≥ 2t + 1.

Thus, the larger dist(C) is, the better, the more errors we can correct. Another important
parameter of codes is their size, that is, the total number of codewords the sender has in his
disposal. The larger |C| is, the better, the more distinct messages can be encoded.

Of course, if each two codewords must differ in many positions, then we cannot have many
codewords. In particular, we have the following general upper bound.

Theorem 17.1 (Singleton bound). If C ⊆ An and d = dist(C) then

|C| ≤ |A|n−d+1 .

Proof. Clearly, all codewords in C are distinct. If we delete the first d − 1 letters of each
codeword, then all resulting codewords must still be pairwise different, since all original codewords
in C have Hamming distance at least d from each other. Thus the size of the code remains
unchanged. The newly obtained codewords each have length n − (d − 1) = n − d + 1 and thus
there can be at most |A|n−d+1 of them. �

We now construct codes achieving this upper bound. These codes were proposed by Reed and
Solomon (1960). Let k ≤ n ≤ q, where q is a power of a prime. As our alphabet we take a field
A := Fq with |A| = q elements. Fix n distinct elements α1, . . . , αn of Fq; here we need that q ≥ n.
Messages are strings w = (w1, . . . , wk) of elements of Fq. We identify each such message with the
polynomial pw(z) = w1 + w2z + · · · + wkzk−1 of degree at most k − 1 over Fq. The codeword of

173
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the message w is then the string xw =
(
pw(α1), . . . , pw(αn)

)
of the evaluation of the polynomial

pw(z) at all n fixed points. Let C = {xw : w ∈ Ak} be the resulting code.
Since, by the factor theorem, no two distinct polynomials of degree at most k − 1 can agree

on k or more points, we have that dist(C) ≥ n − k + 1. In this way we have constructed a code
C ⊆ An of minimum distance d = n − k + 1 and size |C| = |A|k = |A|n−d+1.

Thus, Reed–Solomon codes meet the Singleton bound. The drawback of these codes is the
condition that q ≥ n. The problem is that we need each coordinate of a codeword to correspond
to a distinct element of Fq.

There are different ways to reduce the alphabet size. A trivial one is just to encode all q
elements of Fq by binary strings of length ⌈log2 q⌉. Then one obtains a binary code C ⊆ {0, 1}n

with codeword length n = q⌈log2 q⌉, size |C| ≥ qk and minimum distance dist(C) ≥ n − k + 1.
Although binary codes with better parameters are known, the binary Reed–Solomon codes are
one of the most commonly used codes in practical applications. In particular, they are used to
store information, music, and video on compact discs (CDs) and digital video discs (DVDs).

Another way to reduce the field size q is to use multivariate polynomials. In particular, using
bivariate polynomials, q only needs to be

√
n. For this, let the message length be k = (t/2 + 1)2

and look at messages w ∈ Fk
q as (t/2 + 1) × (t/2 + 1) matrices w = (wij) over Fq. Each such

message determines a bivariate polynomial

pw(y, z) =

t/2∑

i,j=0

wijyizj

of degree at most t over Fq. The codeword of the message w is then the string xw =
(
pw(α, β) : α, β ∈

Fq

)
of the values of the polynomial pw on all points of Fq ×Fq. Thus we only require that q2 ≥ n,

instead of q ≥ n. As before, the resulting code C = {xw : w ∈ Fk
q } has |C| = qk codewords. Fur-

ther, since the polynomials are of degree at most t, the DeMillo–Lipton–Schwartz–Zippel lemma
implies that dist(C) ≥ (1 − t/q)n.

Extending this idea to multivariate polynomials, we arrive at Reed–Muller codes. In this case
we identify messages with polynomials of degree at most t in m variables z1, . . . , zm. The codeword
length in this case is n = qm. The number of codewords is the number of monomials of degree
at most ℓ in m variables which, by Exercise ??, is equal to

(
m+t

t

)
. Finally, the DeMillo–Lipton–

Schwartz–Zippel lemma implies that dist(C) ≥ (1 − t/q)n.
A binary Reed–Muller code C ⊆ {0, 1}n corresponds to the case when q = 2 and t = 1.

That is, messages are multilinear polynomials in m variables over F2. In this case we have that
|C| =

(
m+1

1

)
= m+1 codewords of length n = 2m, and the minimum distance is at least n/2. Note

that these codes have exactly the same parameters as Hadamard codes constructed in Sect. ??
(see Theorem ??).

2. Bounds on code size

If the minimum distance d is given, how large can |C| then be? To answer this question, let
Vol(n, r) be the number of vectors in the Hamming ball Br(0) of radius r around the all-0 vector.
Since this ball consists of all vectors with at most r ones, we have that

2n·H(r/n)−O(log n) ≤ Vol(n, r) =

r∑

i=0

(
n

i

)
≤ 2n·H(r/n) ,

where H(x) = −x log2 x− (1−x) log2(1−x) is the binary entropy function; the estimates in terms
of this function are proved in Exercises ?? and ??.

Theorem 17.2 (Gilbert–Varshamov and Hamming bounds). Codes C ⊆ {0, 1}n of minimal
distance d and size

(93) |C| ≥ 2n

Vol(n, d)
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exist, and for any such code with d ≥ 2t + 1, we have that

(94) |C| ≤ 2n

Vol(n, t)
.

The lower bound (??) is known as the Gilbert–Varshamov bound, and the upper bound (??)
as the Hamming bound.

Proof. The lower bound can be obtained by a simple algorithm: Pick any vector x ∈ {0, 1}n,
include it in C, remove the whole ball Bd(x) around this vector, and do the same in the set of the
remaining vectors.

To show the upper bound, let C ⊆ {0, 1}n be a code of minimum distance d ≥ 2t + 1. Draw a
ball of radius t around each of the vectors in C. If the balls around some two codewords were to
intersect, then the Hamming distance between these two codewords would be at most 2t < d, a
contradiction. Therefore, the balls are disjoint, and their number is limited by the overall volume
divided by the volume of each ball. �

More upper bounds on the size of codes can be obtained using linear algebra. For this, we
first embed the Hamming spaces (binary cubes) into Euclidean spaces over the reals. We embed
a vector v ∈ {0, 1}n as the vector xv ∈ Rn by changing its coordinates by the rules 0 7→ +1 and
1 7→ −1. Thus, xv is a ±1 vector.

The following relations between the Hamming and Euclidean distances are easy to verify (do
this!).

Proposition 17.3. For u, v ∈ {0, 1}n with Hamming distance dist(u, v) = d, we have that
〈xu, xv〉 = n − 2d, ‖xu‖2 = n and ‖xu − xv‖2 = 4d.

Our first goal is to prove a geometric fact: In n dimensions there exist at most 2n vectors that
pairwise subtend an angle of at least π/2 at the origin (that is, their pairwise scalar products are
≤ 0).

Lemma 17.4 (Obtuse angles).

(i) Let x1, . . . , xm be vectors in Rn, and α a positive number. If ‖xi‖ = 1 and 〈xi, xj〉 ≤ −α for
all i 6= j, then m ≤ 1 + α−1.

(ii) If y, x1, . . . , xm ∈ Rn satisfy 〈xi, xj〉 ≤ 0 for all i 6= j, while 〈y, xi〉 > 0 for all i, then m ≤ n.
(iii) If x1, . . . , xm ∈ Rn are nonzero and satisfy 〈xi, xj〉 ≤ 0 for all i 6= j, then m ≤ 2n.

Proof. (i) Let z = x1 + · · · + xm. On the one hand, we have 〈z, z〉 ≥ 0. On the other hand,
we have

〈z, z〉 =

m∑

i=1

〈xi, xi〉 +

m∑

i6=j∈[m]

〈xi, xj〉

≤ m · 1 + m(m − 1) · (−α)

= m(1 − α(m − 1)) .

Putting the two inequalities together, we have 1 − α(m − 1) ≥ 0, implying m ≤ 1 + 1/α.
(ii) Assume for the sake of contradiction that m ≥ n + 1. Then there must exist a linearly

dependent set of vectors among the xi’s. Specifically, there exist disjoint sets S, T ⊆ [m] and
positive λi, for i ∈ S ∪ T , such that

∑
i∈S λixi =

∑
j∈T λjxj . It is not necessary that both S and

T be non-empty, but at least one, say S, is non-empty. Let z =
∑

i∈S λixi =
∑

j∈T λjxj . Our
analysis divides into two cases depending on whether or not z = 0.

If z 6= 0, then we obtain a contradiction as follows:

0 < 〈z, z〉 =
〈∑

i∈S

λixi,
∑

j∈T

λjxj

〉
=
∑

i∈S

∑

j∈T

λiλj〈xi, xj〉 ≤ 0 ,

where the last inequality uses the fact that S and T are disjoint and so 〈xi, xj〉 ≤ 0 for every i ∈ S
and j ∈ T .



176 17. COMBINATORICS OF CODES

If z = 0, then we use the existence of the vector y to obtain a contradiction as follows:

0 = 〈y, 0〉 = 〈y, z〉 =
〈

y,
∑

i∈S

λixi

〉
=
∑

i∈S

λi〈y, xi〉 > 0 .

The last inequality is strict since S 6= ∅, λi > 0 and 〈y, xi〉 > 0.
(iii) Pick a vector y such that 〈y, xi〉 6= 0 for all i ∈ [m]. At least half of the vectors xi must

have a positive scalar product with either y or −y. Assume w.l.o.g. that x1, . . . , x⌈m/2⌉ have a
positive scalar product with y. Applying part (ii) to these vectors and y, we get ⌈m/2⌉ ≤ n. �

Theorem 17.5 (Plotkin bound). If C ⊆ {0, 1}n and d = dist(C), then

|C| ≤ d2n−2d+2 .

Proof. We first prove the following claim: If d ≥ n/2 then |C| ≤ 2n. Let c1, . . . , cm be the
codewords of C, and let x1, . . . , xm be their ±1 versions. Since d ≥ n/2, Proposition ?? implies
that 〈xi, xj〉 ≤ n − 2d ≤ 0 for all i 6= j, and Lemma ??(iii) implies that m ≤ 2n, as claimed.

To derive the theorem from this claim, write n = 2d + k. By restricting C to the most
commonly occurring pattern in the first k coordinates and deleting these coordinates, we get a set
C ′ ⊆ {0, 1}2d of size |C ′| ≥ |C|/2k and minimum distance d. By the claim we just proved, this
implies

|C| ≤ |C ′| · 2k ≤ 2(2d) · 2k ≤ d2k+2 = d2n−2d+2 . �

One of the best upper bounds is the following one.

Theorem 17.6 (Johnson bound). If C ⊆ {0, 1}n and dist(C) ≥ δn then

|C| ≤ n2n

Vol(n, τn − 1)
≤ 2(1−H(τ))n ,

where τ = (1 −
√

1 − 2δ)/2.

Proof. For a set of strings C ⊆ {0, 1}n and a positive integer t, let degt(C) denote the maximum
number of vectors from C in a Hamming ball of radius t. If dist(C) ≥ 2t + 1, then clearly
degt(C) ≤ 1. Hence, the following claim generalizes the Hamming bound (??).

Claim 17.7. For every subset C ⊆ {0, 1}n, and every positive integer t, we have that

|C| ≤ 2n · degt(C)

Vol(n, t)
.

Proof of Claim ??. If we consider the balls of radius t around the strings in C, then any
string in {0, 1}n is considered at most degt(C) times. Thus the sum of volumes of these balls is
at most 2n · degt(C). �

Now let c1, . . . , cm be the codewords of a code of minimum distance d = δn that are within a
Hamming ball of radius t = τn − 1 from some string b ∈ {0, 1}n. By the claim above, it is enough
to show that m ≤ n.

For i ∈ [m], let xi be the ±1 version of ci scaled (i.e., multiplied) by 1/
√

n, and let y be the
±1 version of b scaled by 1/

√
n. We scale the vectors just to achieve ‖xi‖ = 1 and ‖y‖ = 1. By

Proposition ??, we have that 〈xi, xj〉 ≤ 1 − 2δ for all i 6= j, and 〈y, xi〉 > 1 − 2τ for all i. Note the
syntactic similarity of these conditions to those in Part (ii) of Lemma ??. In fact we can reduce
our problem to exactly this case. We will just shift our origin to a new vector v := αy so that
from this vector, the vectors xi mutually subtend an angle at least π/2.

Claim 17.8. There exists an 0 ≤ α < 1 such that for v := αy we have that 〈xi −v, xj −v〉 ≤ 0
and 〈xi − v, y − v〉 > 0 for all i 6= j.

Together with Lemma ??(ii), this claim gives the desired upper bound m ≤ n. So, it remains
to prove the claim.
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Proof of Claim ??. We will not specify α yet, only that it will lie in the interval 0 ≤ α < 1.
Since 〈xi, xj〉 ≤ 1 − 2δ and 〈y, xi〉 > 1 − 2τ , for such an α we have that

〈xi − αy, xj − αy〉 ≤ 1 − 2δ − 2α(1 − 2τ) + α2 = (1 − α)2 + 4ατ − 2δ .

The right-hand side is minimized at α := 1 − 2τ , and for this setting, it is equal to 4τ − 4τ2 − 2δ.
Since τ = (1 −

√
1 − 2δ)/2 (by our choice), we have that (1 − 2τ)2 = 1 − 2δ, which in turn implies

2δ = 1 − (1 − 2τ)2 = 4τ − 4τ2, and hence, 4τ − 4τ2 − 2δ = 0. We conclude that for this setting
〈xi − αy, xj − αy〉 ≤ 0, as desired. Since 〈y, xi〉 > 1 − 2τ , for the same setting α = 1 − 2τ , we also
have that

〈xi − αy, (1 − α)y〉 = (1 − α)〈xi, y〉 − α(1 − α)‖y‖2 = (1 − α)[〈xi, y〉 − α] > 0 ,

which yields the other part of the claim. �

3. Linear codes

If C ⊆ {0, 1}n forms a linear subspace over F2, then C is called a linear code. Being a linear
subspace over F2 just means that x⊕y ∈ C for all x, y ∈ C. It can easily be verified (do this!) that
the Reed–Solomon and Reed-Muller codes we constructed above using polynomials are linear.

If C has dimension k, then |C| = 2k and the code C can be described using its generator
matrix. This is a k × n matrix G whose rows form a basis of C; hence, C = {u⊤G : u ∈ Fk

2}.
Dually, the parity-check matrix of C is the generator matrix H of the dual code

C⊥ = {y ∈ Fn
2 : 〈x, y〉 = 0 for all x ∈ C} .

That is, H is an (n − k) × n matrix H such that C = {x : Hx = 0}.
A general scenario is then as follows. Messages we want to send to our friend are vectors u

in Fk
2 . We encode such a message as a vector x = u⊤G and send it. Our friend receives some

vector x′ which may differ from x on up to t bits. He then searches for the unique vector x such
that Hx = 0 and dist(x, x′) ≤ t. In fact, it is enough to search for a unique vector a ∈ Bt(0) for
which Ha = Hx′; then x = x′ ⊕ a because H(x′ ⊕ a) = 0. This decoding procedure is known as
syndrome decoding, because a gives us the locations of the errors.

The first important property of a linear code C (not shared by arbitrary codes) is the following
fact. By a weight |x| of a vector x we mean the number of its nonzero coordinates.

Proposition 17.9. Every linear code has minimum distance equal to the minimum weight of
its nonzero codewords.

Proof. Let C ⊆ {0, 1}n be a linear code, and let w(C) be the minimum weight of a nonzero
codeword. Take vectors x 6= y and z 6= 0 in C such that dist(x, y) = dist(C) and |z| = w(C).
Then dist(C) = |x ⊕ y| ≥ w(C), since x ⊕ y belongs to C. On the other hand, we have that
w(C) = |z| = dist(z, 0) ≥ dist(C), since vector 0 belongs to C. �

The next important property of linear codes is that their minimum distance is related to linear
independence of the columns of their parity-check matrices.

Theorem 17.10. Let C be a linear code with parity-check matrix H. Then the minimum
distance of C is d if and only if every set of d − 1 columns of H are linearly independent but some
d columns are linearly dependent.

Proof. We already know that the minimum distance of C is equal to the smallest of the
weights of the nonzero codewords. On the other hand, Hx = 0 for a nonzero vector x 6= 0 means
that the columns of H corresponding to the 1-positions of x are linearly dependent. Thus, if
d = dist(C) then some d columns of H must be linearly dependent (since C contains a codeword
of weight d), and no d − 1 columns can be linearly dependent, for otherwise C would contain a
codeword of weight smaller than d. �

This fact can be used to show that linear codes with minimum distance d and about 2n/nd

codewords exist.



178 17. COMBINATORICS OF CODES

Theorem 17.11. A linear code C ⊆ {0, 1}n of dimension k and minimum distance d exists
provided that

(95)
d−2∑

i=0

(
n − 1

i

)
< 2n−k .

That is, linear codes of size |C| ≥ 2n/Vol(n − 1, d − 2) exist. This is almost the same bound
as for arbitrary codes given in (??).

Proof. We shall construct an (n − k) × n matrix H over F2 with the property that no d − 1
columns are linearly dependent. Put r = n − k. Choose the first column of H to be any nonzero
r-tuple in Fr

2 Then choose the second column to be any nonzero r-tuple different from the first.
Continue choosing successive columns so that each new column is not a linear combination of any
d − 2 or fewer previous columns. When we come to try to choose the i-th column, those r-tuples

not available to us will be the N(i) =
∑d−2

j=0

(
i−1

j

)
linear combinations of d − 2 or fewer columns

from the i − 1 columns already chosen. Not all of these linear combinations need be distinct
vectors, but even in the worst case, where they are distinct, provided N(i) is less than the total
number 2r of all r-tuples, then an i-th column can be added to the matrix. Thus, since (??) holds,
we will reach a matrix H having n columns, as required. �

We are not going to sink into different constructions of explicit codes: there are so many
of them. We just mention that so-called BCH codes, constructed by Bose, Chaudhuri and Hoc-
quenghem, are linear codes with quite good parameters: for every integers m ≥ 3 and t < 2m−1

there is an explicit linear code C ⊆ {0, 1}n with n = 2m − 1, |C| ≥ 2n−mt and dist(C) ≥ 2t + 1.
See the book by MacWilliams and Sloane (1977) for more constructions.

4. Universal sets from linear codes

Recall that a set of 0-1 strings A ⊆ {0, 1}n is (n, k)-universal if, for any subset S ⊆ [n] of
|S| = k coordinates, the projection of A onto the indices in S contains all possible 2k configurations.

In Sect. ?? we have shown how to construct explicit (n, k)-universal sets of size about n, when
k ≤ (log n)/3. This construction was based on Paley graphs. Here we will show how to construct
such sets of size nO(k) for arbitrary k. The construction is based on some elementary properties
of linear codes.

We already know that the minimal distance of C coincides with the minimum weight of (i.e.,
the number of 1s in) a nonzero vector from C. This simple property of linear codes implies that
their duals are universal.

Proposition 17.12. If C is a linear code of length n and its dual C⊥ has minimal distance
at least k + 1 then the code itself is (n, k)-universal.

Since a parity-check matrix of C is a generator matrix of C⊥, an equivalent condition on C is
that any k columns of its generator matrix must be linearly independent.

Proof. Take a set S ⊆ {1, . . . , n} with |S| = k. The set of all projections of vectors in C
onto S forms a linear subspace in {0, 1}|S| of dimension k. If this subspace were proper then, by
Proposition ??, some nonzero vector x, whose support {i : xi 6= 0} lies in S, would belong to C⊥,
implying that dist(C⊥) ≤ |S| = k, which contradicts our assumption. �

It is known (see, for example, MacWilliams and Sloane (1977)) that the dual of a binary BCH
code of minimal distance k has only O(n⌊k/2⌋) vectors. By Proposition ??, these codes give us
explicit (n, k)-universal sets consisting of only so many vectors.

One of the best known explicit constructions of (n, k)-universal sets of size only 2O(k4) log n is
due to Alon (1986a). His construction is based on a Justesen-type code constructed by Friedman
(1984).
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5. Spanning diameter

So far, we have used algebraic properties of linear spaces to derive some results in combina-
torics. But these spaces themselves have some interesting combinatorial properties as well.

Let A be a set of vectors in {0, 1}n and consider its span over the field F2. Each vector in
span A is a linear combination of some vectors from A. Some of these combinations may be short,
but some may be long. Given A, we are interested in the smallest number k such that every vector
from span A is a sum (over F2) of at most k vectors of A; we call this k the spanning diameter of
A.

Of course, the answer depends on how large the span is, compared with the set itself. It is easy
to show that if |A| > |span A|/2, then the spanning diameter of A is at most 2 (see Exercise ??).
But what if A is a smaller fraction of span A, say, an α-fraction for some α > 1/4? It turns out
that then the spanning diameter does not exceed 4. In general, we have the following upper bound
on k.

Theorem 17.13. Let A ⊆ {0, 1}n. If |A| ≥ α · |span A| for some 0 < α ≤ 1, then every vector
from span A is a sum of at most k vectors from A, where k is the maximal number satisfying the
inequality

(96) k − ⌊log2 k⌋ − 1 ≤ log2(1/α)

Theorem ?? can be derived from known bounds on the covering radius of binary linear codes
(see, for example, Cohen et al. 1997; Theorem 8.1.21). Here we present a direct argument due to
Pavel Pudlák.

Proof. Take a maximal set of vectors a1, a2, . . . , ak in A such that the vector

(97) v = a1 + a2 + · · · + ak,

cannot be represented as a sum of fewer than k vectors from A. (Here and throughout the proof
all the sums are over F2.) Our goal is to show that then k must satisfy (??). Since α ≤ 1, the
cases k = 1 and k = 2 are trivial. So, assume that k ≥ 3.

We will need a lower bound on the size of distance-3 codes. Such codes can be obtained by
shortening the Hamming code (see, for example, MacWilliams and Sloane (1977)); Exercise ??
sketches a way to do this.

Claim 17.14. There exists a set C ⊆ Fk
2 such that any two vectors of C differ in at least 3

coordinates and log2 |C| ≥ k − ⌊log2 k⌋ − 1.

Fix such a set C, and let B be the set of all those vectors b from span A which can be
represented in the form b = c1a1 + c2a2 + · · · + ckak for c = (c1, . . . , ck) ∈ C. The key point is
that all the translates

b + A := {b + a : a ∈ A},

with b ∈ B, are mutually disjoint.

Claim 17.15. For every pair b, b′ of distinct vectors from B, the sets b + A and b′ + A are
disjoint.

Proof of Claim ??. Suppose not. Then for some a, a′ ∈ A we have b + a = b′ + a′, and hence,
a+a′ = b+b′. Let c, c′ be the vectors from C for which b = c1a1+· · ·+ckak and b′ = c′

1a1+· · ·+c′
kak.

Then

a + a′ = b + b′ = (c1 + c′
1)a1 + (c2 + c′

2)a2 + · · · + (ck + c′
k)ak.

Since vectors c and c′ differ in at least three coordinates, we have on the right-hand side the sum of
at least three vectors, say ai1 + · · · + ail , with l ≥ 3. But then in the equation (??) we can replace
these three (or more) vectors ai1 , . . . , ail by two vectors a, a′, which contradicts the minimality
of k. �

The same argument also implies that no two distinct vectors c, c′ ∈ C can lead to one and the
same vector b ∈ B, that is, c 6= c′ ∈ C implies

∑
i cia

i 6= ∑i c′
ia

i. This means that |B| = |C|.
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Figure 1. Vertex v2 is satisfied whereas v1 is not satisfied by the vector x = (1010).

This, together with Claim ??, implies

|A| · |C| = |A| · |B| =
∑

b∈B

|b + A| = |
⋃

b∈B

(b + A)| ≤ |span A|.

Hence, log2 |C| ≤ log2(1/α) which, together with Claim ??, yields the desired upper bound (??)
on k. �

6. Expander codes

If C ⊆ {0, 1}n is a linear code with a k ×n generator matrix G, then the encoding of messages
w ∈ {0, 1}k is very easy: just encode w by the codeword x = w⊤G. However, the decoding—that
is, given a vector y ∈ {0, 1}n find a codeword x ∈ C closest to y—is in general linear codes a very
difficult problem (it is “NP-hard”).

We now show how using expander graphs one can construct linear codes for which decoding
is almost trivial—it can be done in linear time! Moreover, if the expansion of the graph is good
enough then the resulting codes achieve very good rate (log2 |C|)/n and minimal distance (both
these parameters are then absolute positive constants).

Let G = (L ∪ R, E) be a bipartite graph with |L| = n, |R| = m and E ⊆ L × R. Each such
graph defines a linear code C ⊆ {0, 1}n as follows. Associate with each vertex u ∈ L a boolean
variable xu. Given a vector x ∈ {0, 1}n, say that a vertex v ∈ R is satisfied by this vector if

∑

u∈Γ(v)

xu mod 2 = 0 ,

where Γ(v) = {u ∈ L : uv ∈ E} is the set of all neighbors of v on the left side (see Fig. ??). The
code defined by the graph G is the set of vectors

C = {x ∈ {0, 1}n : all vertices in R are satisfied by x} .

That is, C is just the set of all solutions of m linear equations in n variables. Therefore, C is
linear and |C| ≥ 2n−m.

Let dist(C) be the minimal Hamming distance between two different vectors in C. A graph
G = (L∪R, E) is left d-regular if each vertex in L has degree d. Such a graph is an (α, c)-expander
if every subset I ⊆ L with |I| ≤ αn has |Γ(I)| > c|I| neighbors on the right side.

Lemma 17.16. If C ⊆ {0, 1}n is a code of a left d-regular (α, c)-expander with c > d/2, then

dist(C) > αn .

Proof. Assume that dist(C) ≤ αn. Then C must contain a vector x with at most αn ones.
Hence, if we take the set I = {u ∈ L : xu = 1}, then |I| ≤ dist(C) ≤ αn. Since G is an
(α, d/2)-expander, this implies |Γ(I)| > d|I|/2.

We claim that there must exist a vertex v0 ∈ Γ(I) with exactly one neighbor in I, that is,
|Γ(v0) ∩ I| = 1. Indeed, otherwise every vertex v ∈ Γ(I) would have at least two neighbors in I.
Therefore the number of edges leaving I would be at least 2·Γ(I) > 2·(d|I|/2) = d|I|, contradicting
the left d-regularity of G.
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Since xu = 0 for all u 6∈ I, this implies that exactly one of the bits xu of x with u ∈ Γ(v0)
is equal to 1. So,

∑
u∈Γ(v0) xu = 1, and the vertex v0 cannot be satisfied by the vector x, a

contradiction with x ∈ C. �

By Lemma ??, expander codes can correct relatively many errors, up to αn/2. Much more
important, however, is that the decoding algorithm for such codes is very efficient. The decoding
problem is the following one: given a vector y ∈ {0, 1}n of Hamming distance ≤ αn/2 from some
(unknown) codeword x ∈ C, find this codeword x. The decoding algorithm for expander codes is
amazingly simple:

While there exists a variable such that most of its neighbors are not satisfied by the
current vector, flip it.

Lemma 17.17 (Sipser–Spielman 1996). If C is a code of a left d-regular (α, c)-expander with
c > 3

4 d, then the algorithm solves the decoding problem in a linear number of steps.

Proof. Let y ∈ {0, 1}n be a vector of Hamming distance ≤ αn/2 from some (unknown)
codeword x ∈ C. Our goal is to find this codeword x. Let

I = {u ∈ L : yu 6= xu}
be the set of errors in y. If I is empty, we are done. Otherwise, assume that |I| ≤ αn. We need
this assumption to guarantee the expansion, and we will prove later that this assumption holds
throughout the running of the algorithm.

Partition the set Γ(I) = S ∪ U into the set S of neighbors satisfied by y and the set U of
neighbors not satisfied by y. Since c > 3d/4, we have that

(98) |U | + |S| = |Γ(I)| > 3
4
d|I| .

Now, count the edges between I and Γ(I). At least |U | of these edges must leave U . Moreover, at
least 2|S| of them must leave S because every vertex v ∈ S must have at least two neighbors in
I: If v had only one such neighbor, then y would not satisfy the vertex v since y 6= x, x satisfies
v and y coincides with x outside I. Since the total number of edges between I and Γ(I) is d|I|,
this implies |U | + 2|S| ≤ d|I|. Combining this with (??) we get that

d|I| − |U | ≥ 2|S| > 2 ( 3
4
d|I| − |U |)

and therefore

(99) |U | > 1
2
d|I| .

So, more than d|I|/2 neighbors of the |I| vertices in I are unsatisfied. Therefore there is a variable
in I that has more than d/2 unsatisfied neighbors. We have therefore shown the following claim:

If I 6= ∅ and |I| ≤ αn then there is a variable with > d/2 unsatisfied neighbors.

This implies that as long as there are errors and |I| ≤ αn holds, some variable will be flipped
by the algorithm. Since we flip a vertex with more unsatisfied neighbors than satisfied ones, |U |
decreases with every step (flipping xu can only affect the satisfiability of neighbors of u). We
deduce that if the distance |I| of the actual vector y from x does not exceed αn/2 throughout the
run of the algorithm, then the algorithm will halt with the codeword x after a linear number of
iterations.

To show that |I| can never exceed αn, recall that |I| ≤ αn/2, and hence,

(100) |U | ≤ |Γ(I)| ≤ 1
2
αdn

hold in the beginning. Moreover, |U | decreases after each iteration. Hence, if at some step we had
that |I| > αn, then (??) would imply |U | > αdn/2, contradicting (??). �

In general, every linear code C ⊆ {0, 1}n is defined by its parity-check matrix H such that
x ∈ C iff Hx = 0. Note that, if C is a code defined by a bipartite graph G, then H is just the
transpose of the adjacency matrix of G. If G is left d-regular, then every row of H has exactly d
ones. If G is an (α, c)-expander, then every subset I of |I| ≤ αn columns of H has ones in at least
c|I| rows. The decoding algorithm above is, given a vector y ∈ {0, 1}n such that Hy 6= 0, to flip
its i-th bit provided that vector H(y ⊕ ei) has fewer ones than vector Hy.
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7. Expansion of random graphs

Explicit constructions of bipartite left d-regular (α, c)-expanders with α = Ω(1) and c > 3d/4
are known. These constructions are however too involved to be presented here. Instead of that,
we will show that random bipartite left-regular graphs have good expansion properties.

Let d ≥ 3 be a constant. We construct a random bipartite left d-regular n × n graph Gn,d =
(L∪R, E) as follows: For each vertex u ∈ L choose its d neighbors independently at random, each
with the same probability 1/n. The graph obtained may have multi-edges, that is, some pairs of
vertices may be joined by several edges.

Theorem 17.18. For every constant d ≥ 3, there is a constant α > 0 such that for all
sufficiently large n, the graph Gn,d is an (α, d − 2) expander with probability at least 1/2.

Proof. Set (with foresight) α := 1/(e3d4). Fix any s ≤ αn, and take any set S ⊆ L of size
|S| = s. We want to upper bound the probability that S does not expand by d − 2. This means
that the ds neighbors (including multiplicities) of the vertices in S hit fewer than (d − 2)s distinct
vertices on the right side, that is, some 2s of these ds neighbors land on previously picked vertices.
Each neighbor lands on a previously picked vertex with probability at most ds/n, so

Pr [S does not expand by (d − 2)] ≤
(

ds

2s

)(
ds

n

)2s

.

By the union bound, the probability that at least one subset S of size s does not expand by (d−2)
is at most

(
n

s

)(
ds

2s

)(
ds

n

)2s

≤
(

en

s

)s(
eds

2s

)2s(
ds

n

)2s

≤
(

e3d4

4n

)s

≤
(

1

4

)s

,

by the choice of α. Thus, the probability that some set S of size |S| ≤ αn does not expand by
(d − 2) does not exceed

αn∑

s=1

4−s <

∞∑

s=1

4−s <
1

2
.

Hence, the graph Gn,d is an (α, d − 2) expander with probability at least 1/2. �

Exercises

Ex 17.1. Prove the following stronger version of Proposition ??. Let C be a linear code of
length n and minimal distance at least k + 1 and let C⊥ be its dual. Then for every subset S
of l ≤ k coordinates, every 0-1 string of length l appears as a projection of C⊥ onto S the same
number of times. Hint: Take a matrix whose rows form a basis of C⊥, observe that every k columns of
this matrix are linearly independent and use Proposition ??.

Ex 17.2. Let V ⊆ Fn
2 be a subspace of dimension d. Show that |V | = 2d.

Ex 17.3. Let A ⊆ Fn
2 and suppose that |A| > |span A|/2. Prove that every vector in span A

is the sum of at most 2 vectors from A. Hint: Show that, for every v ∈ span A, the set A ∩ (v + A) has
at least one vector.

Ex 17.4. Theorem ?? gives an upper bound on the spanning diameter of sets A in terms
of their density α = |A|/|span A|. Show that for infinitely many values of k, the bound (??) is
optimal, that is, exhibit sets A whose spanning diameter is the maximal number satisfying (??).
Hint: Consider the set consisting of the all-0 vector and k vectors with precisely one 1; its density is
α = (k + 1)/2k.

Ex 17.5. (Hamming code). Let r be a positive integer, and let k = 2r − 1. Consider the r × k
matrix H whose columns are all the distinct nonzero vectors of {0, 1}r. Let C ⊆ Fk

2 be the set of
vectors, each of which is orthogonal (over F2) to all the rows of H. Prove that C is a linear code
of minimal distance 3 and has precisely 2k−r code words. Hint: Show that no vector of weight 1 or
2 can be orthogonal to all the rows of H, and use Proposition ??.
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Ex 17.6. Prove Claim ??. Hint: If k has the form k = 2r −1, then we can take C to be a Hamming
code (see previous exercise). Otherwise, take r such that k = 2r + x for some integer 0 ≤ x < 2r − 1, and
let C be a Hamming code of length K = 2r+1 − 1. By fixing the last K − k of coordinates to appropriate
constants, it is possible to obtain from C a set of vectors C′ ⊆ {0, 1}k of size |C′| ≥ |C|/2K−k = 2k−r−1,
such that any two of its vectors still differ in at least 3 coordinates. The code C′ obtained may be not
linear, but we do not require that.

Ex 17.7. Prove that among any 2k−1 + 1 vectors in Fn
2 some k of them must be linearly

independent. Hint: Take a maximal subset of linearly independent vectors and form all possible sums
(over F2).





Part 4

The Probabilistic Method





CHAPTER 18

Linearity of Expectation

Let X1, . . . , Xn be random variables, and X = c1X1 + · · · + cnXn. Linearity of expectation
states that

E [X] = c1E [X1] + · · · + cnE [Xn] .

The power of this principle comes from there being no restrictions on the dependence or inde-
pendence of the Xi’s. In applications we often use the fact that there must be a point in the
probability space for which X ≥ E [X] and a point for which X ≤ E [X]. This principle (known
as the pigeonhole property of the expectation) is used in most arguments.

1. Hamilton paths in tournaments

A tournament is an oriented graph T = (V, E) such that (x, x) 6∈ E for all x ∈ V , and for any
two vertices x 6= y exactly one of (x, y) and (y, x) belongs to E. The vertices are players, each
pair of which participates in a single match, and (x, y) ∈ E if and only if x beats y. Given such a
tournament, a Hamiltonian path in it is defined as a permutation (x1, x2, . . . , xn) of players such
that, for every i, xi beats xi+1.

It is easy to show (see Exercise ??) that every tournament contains a Hamiltonian path. On
the other hand, there are tournaments with only one Hamiltonian path (the path itself). Are
there tournaments with many Hamiltonian paths? The existence of such “rich” tournaments was
proved by T. Szele in 1943. His proof is considered to be the first application of the probabilistic
method in combinatorics.

Theorem 18.1 (Szele 1943). There is a tournament T with n players and at least n!/2n−1

Hamiltonian paths.

Proof. Take a random tournament T (where the outcome of each game is determined by
the flip of fair coin), and let X be the number of Hamiltonian paths in it. For each permutation
π = (x1, x2, . . . , xn) of players, let Xπ denote the indicator random variable for the event “π is a
Hamiltonian path in T .” Then X =

∑
Xπ, the summation being over all n! permutations π. For

a given π, E [Xπ] = 2−(n−1), since that is the probability that the n − 1 games xi versus xi+1 all
have the desired outcome. By the linearity of expectation,

E [X] =
∑

π

E [Xπ] = n!2−(n−1).

Since (by the pigeonhole property of the expectation) a random variable cannot always be smaller
than its expectation, at least one tournament must have at least E [X] Hamiltonian paths. �

In the same paper, Szele also established an upper bound O(n!/23n/4) on the maximal possible
number of Hamiltonian paths in any tournament with n players. Based on the solution of the
well-known conjecture of H. Minc about the permanent of 0-1 matrices (found by Bregman in
1973), Alon (1990b) has essentially improved this upper bound to

(101) cn3/2n!/2n−1 ,

where c is a positive constant independent of n.

187
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2. Sum-free sets

Suppose we are given a finite set of nonzero integers, and are asked to mark an as large as
possible subset of them under the restriction that the sum of any two marked integers cannot be
marked. It turns out that (independent of what the given integers actually are!) we can always
mark at least one-third of them.

A subset B of an additive group is called sum-free if x+y 6∈ B for all x, y ∈ B (x = y is allowed).
For example, the set of all odd integers is sum-free, and the subset B = {n + 1, n + 2, , . . . , 2n} is
a sum-free subset of A = {1, . . . , 2n}. We are interested in the case when A is an arbitrary set of
numbers: can we also then choose large sum-free subsets?

Theorem 18.2 (Erdős 1965). Let A ⊆ Z be a set of N nonzero integers. Then there is a
sum-free subset B of A with |B| > N/3.

Proof. Let p = 3k + 2 be a prime, which satisfies p > 2 maxa∈A |a|. Such a prime exists
by Dirichlet’s prime number theorem, stating that for any two positive co-prime integers a and
d, there are infinitely many primes of the form a + nd, where n ≥ 0. In other words: there are
infinitely many primes which are congruent to a modulo d.

Write S = {k + 1, k + 2, . . . , k + (k + 1)}, and observe that S is a sum-free subset of the group
Zp (the integers modulo p), because, by the choice of p, the sum of any two numbers from S, taken
modulo p, does not belong to S. Indeed, the sum (k + 1) + (k + 1) = 2k + 2 > 2k + 1 is too large,
whereas the sum (2k + 1) + (2k + 1) = 4k + 2 = k mod p = k < k + 1 is too small.

We choose a subset of A as follows. Pick a random element t ∈ Zp \ {0}, and let

At = {a ∈ A : at mod p ∈ S} .

Note that At is sum-free, because for any a, b ∈ At, the residues of at and bt modulo p belong to S
(by definition of At) whereas the residue of (a + b)t = at + bt cannot belong to S, by sum-freeness
of S. It remains to show that At is large for some t. To do this, observe that for any fixed a 6= 0,
as t ranges over all numbers 1, 2, . . . , p − 1, the residues of a · t modulo p range over all nonzero
elements of Zp. Thus, Pr [at mod p ∈ S] = |S|/(p − 1) = (k + 1)/(3k + 1) > 1/3, for every a ∈ A.
By the linearity of expectation, we have that

E [|At|] =
∑

a∈A

Pr [a ∈ At] =
∑

a∈A

Pr [at mod p ∈ S] > 1
3
|A| ,

By the pigeonhole property of expectation, there is a value of t for which |At| > |A|/3. �

It is not clear what is the largest constant that works in place of 1/3 in the previous theorem.
It is only known (see Alon and Kleitman 1990) that it must be smaller than 12/29.

3. Dominating sets

A dominating set of vertices in a graph G = (V, E) is a set S ⊆ V such that every vertex of
G belongs to S or has a neighbor in S.

Theorem 18.3 (Alon 1990c). If G = (V, E) is an n-vertex graph with minimum degree d > 1,

then G has a dominating set with at most n 1+ln(d+1)
d+1 vertices.

Proof. Form a random vertex subset S ⊆ V by including each vertex independently with
probability p := ln(d + 1)/(d + 1). Given S, let T be the set of vertices outside S having no
neighbor in S; adding T to S yields a dominating set. So, it remains to estimate the expected
size of this union. Since each vertex appears in S with probability p, E [|S|] = np.

The random variable |T | is the sum
∑

v∈V Xv of n indicator variables Xv for whether indi-
vidual vertices v belong to T . We have Xv = 1 if and only if v and its neighbors all fail to be
in S, the probability of which is bounded by (1 − p)d+1, since v has degree at least d. Hence,
E [|T |] =

∑
v∈V E [Xv] ≤ n(1 − p)d+1. As (1 − p)d+1 ≤ e−p(d+1), we have

E [|S ∪ T |] ≤ np + ne−p(d+1) = n
1 + ln(d + 1)

d + 1
.
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By the pigeonhole property of the expectation, there must be some S for which S ∪ T is a domi-
nating set of size no larger than this. �

4. The independence number

The independence number α(G) of a graph G is the maximum number of vertices with no
edges between them. The following result is due to Caro (unpublished) and Wei (1981).

Theorem 18.4. Let G be a graph on n vertices and let di denote the degree of the i-th vertex.
Then

(102) α(G) ≥
n∑

i=1

1

di + 1
.

Proof. (Alon–Spencer 1992). Let V = {1, . . . , n} and let π : V → V be a random per-
mutation taking its values uniformly and independently with probability 1/n!. This permutation
corresponds to a random ordering of vertices in V . Let Ai be the event that all neighbors j of i
in G are greater than i in the ordering, i.e., that π(j) > π(i) for all di neighbors j of i. There are(

n
di+1

)
possibilities to choose a (di + 1)-element set S ⊆ V of possible π-images of i and all its di

neighbors. After that there are (|S|−1)! = di! possibilities to arrange the π-images of neighbors of
i within S (the place of π(i) is fixed – it must come first), and (n−|S|)! = (n−di −1)! possibilities
to arrange the vertices outside S. Thus,

Pr [Ai] =

(
n

di + 1

)
di!(n − di − 1)!

n!
=

1

di + 1
.

Let U be the set of those vertices i for which Ai holds. By linearity of expectation

E [|U |] =

n∑

i=1

Pr [Ai] =

n∑

i=1

1/(di + 1) .

Thus, for some specific ordering, |U | ≥ ∑n
i=1 1/(di + 1). Now let {i, j} be an edge of G. Then

either π(i) < π(j) or π(j) < π(i). In the first case j 6∈ U , and in the second case i 6∈ U . That is,
U is an independent set. �

The celebrated theorem due to P. Turán (1941) states: if a graph G has n vertices and has
no k-clique then it has at most (1 − 1/(k − 1)) n2/2 edges (see Theorem ??). Its dual form states
(see Exercise ??):

If G has n vertices and nk/2 edges, then α(G) ≥ n/(k + 1).

This dual form of Turán’s theorem also follows from Theorem ??: fixing the total number of
edges, the sum

∑n
i=1 1/(di + 1) is minimized when the di’s are as nearly equal as possible, and,

by Theorem ??, 1
2

∑n
i=1 di is exactly the number of edges in G.

5. Crossings and incidences

Given a set P of n points and a set L of m lines in the plane, the point-line incidence graph
is a bipartite n × m graph with parts P and L, where p ∈ P and l ∈ L are adjacent iff the point
p lies on the line l (see Fig. ??). How many edges can such a graph have?

4

3 3
pp4
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p p
1

1

2 2

3
3 p
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l

l

l

1 1

2 2

Figure 1. We have four points and three lines. The number of incidences (edges
in the point-line incidence graph on the right) is 7.
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Since any two points can lie on at most one common line, and two lines intersect in at most
one point, each point-line incidence graph is C4-free, that is, contains no cycles on four vertices.
We already know (see Exercise ??) that the number of edges in such graphs cannot exceed either
nm1/2 + m or mn1/2 + n. For n = m this is about n3/2. Szemerédi and Trotter (1983) obtained
a much better upper bound which, for n = m, is about n4/3 ≪ n3/2. We will derive this theorem
from another (seemingly unrelated) result about the number of crossings when a graph is drawn
on the plane.

5.1. Crossing number. Given a graph G, the crossing number of the graph, denoted cr(G),
is the minimum number of edge-crossings possible amongst all drawings of the graph with edges
as straight line segments and vertices as points in the plane. Thus a graph G is planar if and only
if cr(G) = 0. A natural question is: given a graph with e edges and n vertices, how large is its
crossing number?

The well-known Euler’s polyhedron formula states that if a finite, connected, planar graph
is drawn in the plane without any edge intersections, and n is the number of vertices, e is the
number of edges and f is the number of faces (regions bounded by edges, including the outer,
infinitely-large region), then n − e + f = 2. If e ≥ 3 then every face is adjacent to at least three
edges, whereas every edge is adjacent to exactly two faces. By double counting the edge-face
incidences, we get 3f ≤ 2e. Eliminating f , we conclude that e ≤ 3n − 6 for all planar graphs.

If a graph G can be drawn with only cr(G) crossings, then we can delete one of the crossings
by removing an edge associated with that crossing, and so we can remove all the crossings by
deleting at most cr(G) edges, leaving at least e − cr(G) edges (and v vertices). Since the graph
obtained is planar, we obtain the following lower bound on the crossing number of any graph G:

(103) cr(G) ≥ e − 3n + 6 > e − 3n .

By applying this inequality to random induced subgraphs of G, Ajtai, Chvátal, Newborn, and
Szemerédi (1982), and Leighton (1984) were able to improve this lower bound.

Theorem 18.5 (The crossing number inequality). Let G be a graph with n vertices and e ≥ 4n.
Then

cr(G) ≥ e3

64n2 .

Proof. Let G be embedded in the plane and suppose the crossing number of the drawing is
x. Independently select vertices of G with probability p, and let H be the (induced) subgraph of
edges between selected vertices. By the linearity of expectation, H is expected to have pn vertices
and p2e edges. (The events that each edge ends up in H are not quite independent, but the great
thing about linearity of expectation is that it works even without assuming any independence.)
Observe that each crossing involves two edges and four vertices. Thus, the probability that the
crossing survives in this drawing is only p4. By one last application of linearity of expectation, the
expected number of crossings of this drawing that survive for H is p4x. This particular drawing
may not be the optimal one for H, so we end up with an inequality E [cr(H)] ≤ p4x. By (??), the
number of crossings in any graph H is always at least the number of edges minus three times the
number of vertices of H. Consequently

p4x ≥ E [cr(H)] ≥ p2e − 3pn .

Taking p := 4n/e gives the desired lower bound on x = cr(G). �

5.2. The Szemerédi–Trotter theorem. From the above result on crossing numbers one
deduces a short proof of the Szemerédi–Trotter theorem in combinatorial geometry. It gives an
almost tight upper bound on the number of incidences, that is, on the number of point-line pairs
such that the point lies on the line.

Theorem 18.6 (Szemerédi–Trotter 1983). Let P be a set of n distinct points in the plane,
and let L be a set of m distinct lines. Then the number of incidences between P and the lines in
L is at most 4(mn)2/3 + m + 4n.
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The original proof of this theorem was somewhat complicated, using a combinatorial technique
known as cell decomposition. Later, Székely (1997) discovered a much simpler proof using crossing
numbers of graphs.

Proof (due to Székely 1997). Let x = |{(p, l) ∈ P × L : p ∈ l}| be the number of incidences. Let G
be the graph whose vertex set is P and whose vertices are adjacent if they are consecutive on some
line in L. A line l ∈ L which is incident to kl points in P will thus contain kl − 1 line segments
between points in P . Since the sum of all the kl over all lines l ∈ L is exactly the total number x
of incidences, the graph G has x − m edges. Clearly cr(G) < m2 since two lines cross at no more
than one point. By the result on crossing numbers, we deduce

m2 >
(x − m)3

64n2 − n

(we put “−n” just to eliminate the condition e ≥ 4n) and therefore x ≤ 4(mn)2/3 + m + 4n. �

To see that the theorem is tight up to a constant factor, take the grid P = [k] × [4k2] together
with the set L of all straight lines y = ax + b with slope a ∈ [k] and intercept b ∈ [2k2]. Then for
x ∈ [k] one has ax + b ≤ ak + b ≤ k2 + 2k2 < 4k2. So, for each x = 1, . . . , k each line contains a
point (x, y) of P . We get a total of roughly 2k4 incidences, as compared to the upper bound of
roughly 4k4.

In applications the following corollary of this theorem is often used (we will also use it in
Sect. ??). We will say that a function f “is at most about” another function g if f = O(g).

Theorem 18.7. For n points in the plane, the number of lines, each containing at least k of
them, is at most about n2/k3 + n/k.

Proof. Let P be a set of n points, and L a set of m lines, each of which contains at least
k points of P . Then these lines generate at least mk incidences and so, by Theorem ??, we have
that m(k − 1) ≤ 4(mn)2/3 + 4n. If n ≤ (nm)2/3 then the right-hand side is at most 8(mn)2/3,
from which m = O(n2/k3) follows. If n ≥ (nm)2/3 then the right hand side is at most 8n, from
which m = O(n/k) follows. �

The importance of Theorem ?? lies in the fact that the exponent of k in the denominator is
strictly larger than 2. A bound of m ≤

(
n
2

)
/
(

k
2

)
, which is about n2/k2, is trivial by just double-

counting the pairs of points. (Prove this!)
The so-called Two Extremities Theorem says that finite collections of points in the plane fall

into one of two extremes: one where a large fraction of points lie on a single line, and one where
a large number of lines are needed to connect all the points.

Theorem 18.8 (Beck 1983). Given any n points in the plane, at least one of the following
statements is true:

1. There is a line which contains at least Ω(n) of the points.
2. There exist at least Ω(n2) lines, each of which contains at least two of the points.

Proof. Consider a set P of n points in the plane. Let t be a positive integer. Let us say that
a pair of points x, y in the set P is t-connected if the (unique) line connecting x and y contains
between 2t and 2t+1 −1 points of P (including x and y). By Theorem ??, the number of such lines
is at most about n2/23t + n/2t. Since each such line connects together at most about 22t pairs of
points of P , we thus see that at most about n2/2t + n2t pairs of points can be t-connected.

Now, let C be a large constant. By summing the geometric series, we see that the number of
pairs of points which are t-connected for some t satisfying C ≤ 2t ≤ n/C is at most about n2/C.
On the other hand, the total number of pairs is

(
n
2

)
.

Thus if we choose constant C to be large enough, we can find at least, say, n2/4 pairs of points
which are not t-connected for any C ≤ 2t ≤ n/C. The lines that connect these pairs either pass
through fewer than C points, or pass through more than n/C points. If the latter case holds for
even one of these pairs, then we have the first conclusion of Beck’s theorem. Thus we may assume
that all of the n2/4 pairs are connected by lines which pass through fewer than C points. But
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each such line can connect at most C2 pairs of points. Thus there must be at least n2/4C2 lines
connecting at least two points of P . �

More about combinatorial problems in geometry as well as their cute solutions can be found
in a beautiful book by Matoušek (2002).

6. Far away strings

The Hamming distance between two binary strings is the number dist(x, y) of positions in
which these strings differ. How many binary strings can we find such that each two of them lie at
Hamming distance at least n/2? In Sect. ?? we used Hadamard matrices to construct such a set
consisting of 2n strings (see Theorem ??). But what if we relax the condition and only require
the pairwise distance be at least, say, n/4? It turns out that then much larger sets exist.

To show this, we will use the following Chernoff’s inequality: If X is the sum of n independent

and uniformly distributed 0-1 variables, then Pr [X ≤ n/2 − a] ≤ e−2a2/n.

Theorem 18.9. There exists a set of en/16 binary strings of length n such that any pair is at
Hamming distance at least n/4 from each other.

Proof. Consider a random string in {0, 1}n generated by picking each bit randomly and
independently. For any two such strings x and y, let Xi be the indicator random variable for
the event that xi 6= yi. Then E [Xi] = 1/2, and dist(x, y) = X1 + · · · + Xn. By the linearity of
expectation, E [dist(x, y)] = n/2. Using Chernoff’s inequality, we have that

Pr [dist(x, y) ≤ n/2 − a] ≤ e−2a2/n .

Now generate M := en/16 strings at random and independently. Set a := n/4. By the union
bound, the probability that any pair of these strings lies at distance at most n/4, is at most(

M
2

)
e−2a2/n < M2e−n/8 = 1 , implying that the desired set of strings exists. �

This result has an interesting interpretation in the Euclidean setting. Recall that a unit vector
is a vector x ∈ Rn such that ‖x‖ = 1, where ‖x‖ =

√
x2

1 + · · · + x2
n is the norm of x. The set of

all unit vectors forms the unit sphere. The Euclidean distance between two vectors x, y ∈ Rn is
the norm ‖x − y‖ of their difference.

Corollary 18.10. The unit sphere in Rn contains a set of en/16 points, each two of which
are at Euclidean distance at least one from each other.

Proof. Let P ⊆ {0, 1}n be the set of binary strings guaranteed by Theorem ??. Associate
with each binary string u = (u1, . . . , un) a unit vector xu ∈ Rn whose i-th coordinate is defined
by xu(i) := 1√

n
(−1)ui . Then, for any two vectors u, v ∈ P and for any coordinate i, we have that

(
xu(i) − xv(i)

)2
=

1

n

(
(−1)ui − (−1)vi

)2
=

{
0 if ui = vi,
4
n if ui 6= vi.

Hence,

‖xu − xv‖2 =

n∑

i=1

(
xu(i) − xv(i)

)2
=

4

n
· dist(x, y) ≥ 1 ,

as desired. �

7. Low degree polynomials

In this section we consider polynomials f(x1, . . . , xn) on n variables over the field F2. Such a
polynomial has degree at most d if it can be written in the form

f(x1, . . . , xn) = a0 +

m∑

i=1

∏

j∈Si

xj ,

where a0 ∈ {0, 1} and S1, . . . , Sm are subsets of {1, . . . , n} of size at most d; here and throughout
the section the sum is modulo 2.
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If f1, . . . , fm are polynomials of degree at most d, then their product can have degree up to dm.
The following result says that the product can still be approximated quite well by a polynomial
of relatively small degree.

Lemma 18.11 (Razborov 1987). Let f =
∏m

i=1 fi, where f1, . . . , fm are polynomials of degree
at most d over F2. Then, for any r ≥ 1, there exists a polynomial g of degree at most dr such that
g differs from f on at most 2n−r inputs.

Proof. Let S be a random subset of {1, . . . , m}, that is, we choose S randomly from the
family of all 2m subsets with probability 2−m. Let S1, . . . , Sr be independent copies of S. Consider
a (random) function of the form

(104) g =

r∏

j=1

hj , where hj = 1 −
∑

i∈Sj

(1 − fi) .

We claim that, for every (fixed) input a ∈ {0, 1}n,

(105) Pr [g(a) 6= f(a)] ≤ 2−r .

Indeed, if f(a) = 1 then all fi(a) = 1, and hence, g(a) = 1 with probability 1. Suppose now that
f(a) = 0. Then fi0

(a) = 0 for at least one i0. Since each of the sets S1, . . . , Sr contains i0 with
probability 1/2, we have that Pr [hj(a) = 1] ≤ 1/2 for all j = 1, . . . , r (consult Exercise ?? for this
conclusion). Hence,

Pr [g(a) = 0] = 1 − Pr [h1(a) = . . . = hr(a) = 1] ≥ 1 − 2−r ,

as claimed.
For an input vector a ∈ {0, 1}n, let Xa denote the indicator random variable for the event

that g(a) 6= f(a), and let X be the sum of Xa over all a. By (??) and the linearity of expectation,
the expected number of inputs on which g differs from f is

E [X] =
∑

a

E [Xa] =
∑

a

Pr [Xa = 1] ≤ 2n−r .

By the pigeonhole principle of expectation, there must be a point in the probability space for
which this holds. This point is a polynomial of the form (??); it has degree at most dr and differs
from f on at most 2n−r inputs. �

Razborov used this lemma to prove that the majority function cannot be computed by
constant-depth polynomial-size circuits with unbounded fanin And, Or and Parity gates. The ma-
jority function is a boolean function Majn(x1, . . . , xn) which outputs 1 if and only if x1 +· · ·+xn ≥
n/2.

Theorem 18.12 (Razborov 1987). Every unbounded fanin depth-c circuit with And, Or and

Parity gates computing Majn requires 2Ω(n1/2c) gates.

The idea is as follows. If f can be computed by a depth-c circuit of size ℓ then, by Lemma ??,
there exists a polynomial g of degree at most rc such that g differs from f on at most ℓ · 2n−r

inputs. The desired lower bound is then obtained by showing that the majority function cannot
be approximated sufficiently well by such polynomials (see Lemma ??). Taking r to be about

n1/(2c) and making necessary computations this leads to a lower bound ℓ ≥ 2Ω(n1/(2c)). This final
step requires some routine calculations, and we omit it.

8. Maximum satisfiability

In most of the above applications it was enough to take a uniform distribution, that is, every
object had the same probability of appearing. In this section we will consider the situation where
the distribution essentially depends on the specific properties of a given family of objects.
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An And-Or formula or a CNF (or simply, a formula) over a set of variables x1, . . . , xn is an
And of an arbitrary number of clauses, where a clause is an Or of an arbitrary number of literals,
each literal being either a variable xi or a negated variable xi. For example:

F = (x1 ∨ x3)(x1 ∨ x2 ∨ x3)(x2)(x1 ∨ x2) .

An assignment is a mapping which assigns each variable one of the values 0 or 1. We can look
at such assignments as binary vectors v = (v1, . . . , vn) ∈ {0, 1}n, where vi is the value assigned to
xi. If y is a literal, then we say that v satisfies y if either y = xi and vi = 1, or y = xi and vi = 0.
An assignment satisfies a clause if it satisfies at least one of its literals. An assignment satisfies
a formula if it satisfies each of its clauses. For the formula above, the assignment v = (1, 0, 0) is
satisfying. A formula is satisfiable if at least one assignment satisfies it. A formula F is k-satisfiable
if any subset of k clauses of F is satisfiable.

It is an interesting “Helly-type” phenomenon, first established by Lieberher and Specker
(1981), which says that if a formula is 3-satisfiable then at least 2/3 of its clauses are simul-

taneously satisfiable. For 2-satisfiable formulas this fraction is 2/(1 +
√

5) > 0.618 (the inverse of
the golden ratio). The original proof of these facts was rather involved. Yannakakis (1994) has
found a very simple proof of these bounds using the probabilistic method.

Theorem 18.13 (Yannakakis 1994). If F is a 3-satisfiable formula then at least a 2/3 fraction
of its clauses are simultaneously satisfiable.

Proof. Given a 3-satisfiable formula F , define a random assignment v = (v1, . . . , vn), where
each bit vi takes its value independently from other bits and with probability

Pr [vi = 1] =





2/3 if F contains a unary clause (xi);
1/3 if F contains a unary clause (xi);
1/2 otherwise.

Note that this definition is consistent since it is impossible to have the unary clauses (xi) and (xi)
in the same 3-satisfiable formula. Simple (but crucial) observation is that each singular literal
y ∈ {xi, xi}, which appears in the formula F , is falsified with probability ≤ 2/3 (independent of
whether this literal forms a unary clause or not). To see this, let y = xi and p = Pr [vi = 0]. We
have three possibilities:

- either (xi) is a unary clause of F , and in this case p = 1 − 2/3 = 1/3;
- or F contains a unary clause (xi), and in this case p = 1 − 1/3 = 2/3;
- or neither xi nor xi appears in a unary clause, in which case p = 1/2.

Using this observation, we can prove the following fact.

Claim 18.14. Every clause is satisfied by v with probability at least 2/3.

For unary clauses the claim is trivial. On the other hand, if C contains three or more literals,
then, by the above observation, each of these literals can be falsified with probability at most 2/3,
and hence, the clause is satisfied with probability at least 1 − (2/3)3 = 0.7037... > 2/3; for longer
clauses the probabilities are even better.

It remains to consider binary clauses. Assume w.l.o.g. that C = (x1 ∨ x2). If at least
one of x1 and x2 is satisfied with probability 1/2 then the clause C is satisfied with probability
1 − Pr [v1 = 0] · Pr [v2 = 0] ≥ 1 − 1

2 · 2
3 = 2

3 . Thus, the only bad case would be when both literals
x1 and x2 are satisfied only with probability 1/3. But this is impossible because it would mean
that the formula F contains the clauses (x1 ∨ x2), (x1), (x2), which contradicts the fact that F is
3-satisfiable.

We now conclude the proof of the theorem in a standard manner. Suppose that F consists of
the clauses C1, . . . , Cm. Let Xi denote the indicator random variable for the event “the i-th clause
Ci is satisfied by v”. Then X =

∑m
i=1 Xi is the total number of satisfied clauses of F . By Claim ??,

Pr [Xi = 1] ≥ 2/3 for each i, and by the linearity of expectation, E [X] =
∑m

i=1 E [Xi] ≥ 2m
3 . By

the pigeonhole property of the expectation, at least one assignment v must satisfy so many clauses
of F , as desired. �
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It is worth mentioning that, for large values of k, the right fraction for all k-satisfiable formulas
is 3/4. Namely, Trevisan (2004) has proved that, if rk stands for the largest real such that in any
k-satisfiable formula at least an rk-th fraction of its clauses are satisfied simultaneously, then
limk→∞ rk = 3/4.

9. Hash functions

A set V of vectors of length t over an alphabet A = {1, . . . , n} is called k-separated if for every
k distinct vectors there is a coordinate in which they are all distinct. How many vectors can such
a set have?

This question is equivalent to the question about the maximum size N = N(n, k, t) of a
domain for which there exists a family of (n, k) hash functions with t members, that is, a family of
t partial functions f1, . . . , ft mapping a domain of size N into a set of size n so that every subset
of k elements of the domain is mapped in a one-to-one fashion by at least one of the functions.
To see this equivalence, it is enough to consider the set of vectors (f1(x), . . . , ft(x)) for each point
x of the domain.

The problem of estimating N(n, k, t), which is motivated by the numerous applications of
perfect hashing in theoretical computer science, has received a considerable amount of attention.
The interesting case is when the number t of hash functions is much bigger than the size n of the
target set (and, of course, n ≥ k). The following are the best known estimates for N(n, k, t):

(106)
1

k − 1
log

1

1 − g(n, k)
.

1

t
log N(n, k, t)

and

(107)
1

t
log N(n, k, t) . min

1≤r≤k−1
g(n, r) log

n − r + 1

k − r
,

where

g(n, k) :=
(n)k

nk
=

n(n − 1) · · · (n − k + 1)

nk
.

In particular, (??) implies that

N(n, k, t) ≤
(

n

k

)t

.

The lower bound (??), proved by Fredman and Komlós (1984), can be derived using a probabilistic
argument (the deletion method) discussed in Chap. ??: one chooses an appropriate number of
vectors randomly, shows that the expected number of non-separated k-tuples is small, and omits
a vector from each such “bad” k-tuple. The proof of the upper bound (??) was much more
difficult. For r = k − 1, a slightly weaker version of this bound was proved in Fredman and
Komlós (1984), and then extended to (??) by Körner and Marton (1988). All these proofs rely on
certain techniques from information theory.

A short and simple probabilistic proof of (??), which requires no information-theoretic tools,
was found by Nilli (1994) (c/o Noga Alon). We only present the key lemma of this proof.

Lemma 18.15. Let U be a set of m vectors of length t over the alphabet B ∪ {∗}, where
B = {1, . . . , b}, and let xv denote the number of non-∗ coordinates of v ∈ U . Let x =

∑
xv/m be

the average value of xv. If for every d distinct vectors in U there is a coordinate in which they all
are different from ∗ and are all distinct, then

m ≤ (d − 1)

(
b

d − 1

)x

.

Proof. For every coordinate i, choose randomly and independently a subset Di of cardinality
d − 1 of B. Call a vector v ∈ U consistent if for every i, vi ∈ Di ∪ {∗}. Since each set Di has
size d − 1, the assumption clearly implies that for any choice of the sets Di there are no more
than d − 1 consistent vectors. On the other hand, for a fixed vector v and its coordinate i,
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Pr [vi ∈ Di] = (d − 1)/b. So, each vector v is consistent with probability
(
(d − 1)/b

)xv
and, by the

linearity of expectation, the expected number of consistent vectors in U is

∑

v∈U

(
d − 1

b

)xv

≥ m

(
d − 1

b

)x

,

where the inequality follows from Jensen’s inequality (see Proposition ??), since the function

g(z) =
(
(d − 1)/b

)z
is convex. �

10. Discrepancy

Let X1, . . . , Xk be n-element sets, and X = X1 × · · · × Xk. A subset Ti of X is called a
cylinder in the i-th dimension if membership in Ti does not depend on the i-th coordinate. That
is, (x1, . . . , xi, . . . , xk) ∈ Ti implies that (x1, . . . , x′

i, . . . , xk) ∈ Ti for all x′
i ∈ Xi. A subset T ⊆ X

is a cylinder intersection if it is an intersection T = T1 ∩ T2 ∩ · · · ∩ Tk, where Ti is a cylinder in the
i-th dimension. The discrepancy of a function f : X → {−1, 1} on a set T is the absolute value of
the sum of the values of f on points in T , divided by the total number |X| of points:

discT (f) =
1

|X|

∣∣∣∣∣
∑

x∈T

f(x)

∣∣∣∣∣ .

The discrepancy of f is the maximum disc(f) = maxT discT (f) over all cylinder intersections
T ⊆ X.

The importance of this measure stems from the fact that functions with small discrepancy have
large multi-party communication complexity. (We will discuss this in Sect. ?? devoted to multi-
party games.) However, this fact alone does not give immediate lower bounds for the multi-party
communication complexity, because disc(f) is very hard to estimate. Fortunately, the discrepancy
can be bounded from above using the following more tractable measure.

.  .  .

.  .  .

b

a a

b

a

b

k1

1 k2

2

Figure 2. A cube

A k-dimensional cube is defined to be a multi-set D = {a1, b1}×· · ·×{ak, bk}, where ai, bi ∈ Xi

(not necessarily distinct) for all i. Being a multi-set means that one element can occur several
times. Thus, for example, the cube D = {a1, a1} × · · · × {ak, ak} has 2k elements.

Given a function f : X → {−1, 1} and a cube D ⊆ X, define the sign of f on D to be the
value

f(D) =
∏

x∈D

f(x) .

Hence, f(D) = 1 if and only if f(x) = −1 for an even number of vectors x ∈ D. We choose a cube
D at random according to the uniform distribution. This can be done by choosing ai, bi ∈ Xi for
each i according to the uniform distribution. Let

E(f) := E [f(D)] = E

[ ∏

x∈D

f(x)

]

be the expected value of the sign of a random cube D. To stress the fact that the expectation is
taken over a particular random object (this time, over D) we will also write ED [f(D)] instead of
E [f(D)].
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Example 18.16. The difference between the measures disc(f) and E(f) can best be seen in
the case when k = 2. In this case X = X1 × X2 is just a grid, and each function f : X → {−1, 1}
is just a ±1 matrix Mf . Cylinder intersections T ⊆ X in this case correspond to submatrices of
Mf , and discT (f) is just the sum of all entries in T divided by |X|. Thus, to determine disc(f) we
must consider all submatrices of Mf . In contrast, to determine E(f) it is enough to only consider
all s × t submatrices with 1 ≤ s, t ≤ 2.

The following result was proved in Chung (1990) and generalizes a similar result from Babai et al.
(1992).

Theorem 18.17. For every f : X → {−1, 1},

disc(f) ≤ E(f)1/2k

.

The theorem is very useful because E(f) is a much simpler object than disc(f). For many
functions f , it is relatively easy to compute E(f) exactly (we will show this in the next section). In
Chung and Tetali (1993), E(f) was computed for some explicit functions, resulting in the highest
known lower bounds for the multi-party communication complexity of these functions.

Proof (due to Raz 2000). We will only prove the theorem for k = 2; the general case is similar.
So let X = X1 × X2 and f : X → {−1, 1} be a given function. Our goal is to show that
disc(f) ≤ E(f)1/4. To do this, pick at random (uniformly and independently) an element x ∈ X.
The proof consists of showing two claims.

Claim 18.18. For all functions h : X → {−1, 1}, E(h) ≥ (Ex [h(x)])4.

Claim 18.19. There exists h such that
∣∣Ex [h(x)]

∣∣ ≥ disc(f) and E(h) = E(f).

Together, these two claims imply the theorem (for k = 2):

E(f) = E(h) ≥ (Ex [h(x)])4 =
∣∣∣Ex [h(x)]

∣∣∣
4

≥ disc(f)4 .

In the proof of these two claims we will use two known facts about the mean value of random
variables:

(108) E
[
ξ2] ≥ E [ξ]

2
for any random variable ξ;

and

(109) E [ξ · ξ′] = E [ξ] · E [ξ′] if ξ and ξ′ are independent.

The first one is a consequence of the Cauchy–Schwarz inequality, and the second is a basic property
of expectation.

Proof of Claim ??. Take a random 2-dimensional cube D = {a, a′} × {b, b′}. Then

E(h) = ED [h(D)] = ED

[ ∏

x∈D

h(x)

]

= Ea,a′Eb,b′ [h(a, b) · h(a, b′) · h(a′, b) · h(a′, b′)]

= Ea,a′

[
(Eb [h(a, b) · h(a′, b)])

2
]

by (??)

≥ (Ea,a′Eb [h(a, b) · h(a′, b)])
2

by (??)

=
(
EaEb

[
h(a, b)2])2

Pr [a′] = Pr [a]

=
(

Ea (Eb [h(a, b)])
2
)2

by (??)

≥ (Ea,b [h(a, b)])
4

by (??). �

Proof of Claim ??. Let T = A × B be a cylinder intersection (a submatrix of X, since
k = 2) for which disc(f) is attained. We prove the existence of h by the probabilistic method.
The idea is to define a random function g : X1 × X2 → {−1, 1} such that the expected value
E [g(x)] = Eg [g(x)] is the characteristic function of T . For this, define g to be the product g(x) =
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g1(x) ·g2(x) of two random functions, whose values are defined on the points x = (a, b) ∈ X1 ×X2

by:

g1(a, b) =

{
1 if a ∈ A;

set randomly to ±1 otherwise

and

g2(a, b) =

{
1 if b ∈ B;

set randomly to ±1 otherwise.

These function have the property that g1 depends only on the rows and g2 only on the columns
of the grid X1 × X2. That is, g1(a, b) = g1(a, b′) and g2(a, b) = g2(a′, b) for all a, a′ ∈ X1 and
b, b′ ∈ X2. Hence, for x ∈ T , g(x) = 1 with probability 1, while for x 6∈ T , g(x) = 1 with
probability 1/2 and g(x) = −1 with probability 1/2; this is so because the functions g1, g2 are
independent of each other, and x 6∈ T iff x 6∈ A×X2 or x 6∈ X1 ×B. Thus, the expectation E [g(x)]
takes the value 1 on all x ∈ T , and takes the value 1

2
+ (− 1

2
) = 0 on all x 6∈ T , i.e., E [g(x)] is the

characteristic function of the set T :

E [g(x)] =

{
1 if x ∈ T ;

0 if x 6∈ T .

Now let x be a random vector uniformly distributed in X = X1 × X2. Then

discT (f) =
∣∣Ex [f(x) · Eg [g(x)]]

∣∣ =
∣∣ExEg [f(x) · g(x)]

∣∣

=
∣∣EgEx [f(x) · g(x)]

∣∣ .

So there exists some choice of g = g1 · g2 such that

|Ex [f(x) · g(x)]| ≥ discT (f)

and we can take h(x) := f(x) · g(x). Then
∣∣Ex [h(x)]

∣∣ ≥ disc(f). Moreover, E(h) = E(f) because
g1 is constant on the rows and g2 is constant on the columns so the product g(D) =

∏
x∈D g(x)

cancels to 1. �

This completes the proof of Theorem ?? in case k = 2. To extend it for arbitrary k, just
repeat the argument k times. �

Say that a (0, 1) matrix A is odd if the number of its all-1 rows is odd. Note that, if the
matrix has only two columns, then it is odd iff the scalar (or inner) product of these columns over
GF (2) is 1. By this reason, a boolean function, detecting whether a given matrix is odd, is called
the “generalized inner product” function. We will assume that input matrices have n rows and k
columns.

That is, the generalized inner product function gip(x) is a boolean function in kn variables,
arranged in an n × k matrix x = (xij), and is defined by:

gip(x) =

n⊕

i=1

k∧

j=1

xij .

Since we want our function to have range {−1, 1}, we will consider the function

(110) f(x) = (−1)gip(x) =
n∏

i=1

(−1)xi1xi2···xik .

Theorem 18.20. For the ±1 version f(x) of the generalized inner product function we have
that

(111) E(f) =

(
1 − 1

2k

)n

.
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Proof. In our case, the function f is a mapping f : X1 × X2 × · · · Xk → {−1, 1}, where the
elements of each set Xj are column vectors of length n. Hence, a cube D in our case is specified
by two n×k (0, 1) matrices A = (aij) and B = (bij). The cube D consists of all 2k n×k matrices,
the j-th column in each of which is either the j-th column of A or the j-th column of B. By (??),
we have that

f(D) =
∏

x∈D

f(x) =
∏

x∈D

n∏

i=1

(−1)xi1xi2···xik with xij ∈ {aij , bij}

=

n∏

i=1

∏

x∈D

(−1)xi1xi2···xik

=

n∏

i=1

(−1)(ai1+bi1)(ai2+bi2)···(aik+bik) .

Note that the exponent (ai1 + bi1)(ai2 + bi2) · · · (aik + bik) is even if aij = bij for at least one
1 ≤ j ≤ k, and is equal to 1 in the unique case when aij 6= bij for all j = 1, . . . , k, that is, when
the i-th row of B is complementary to the i-th row of A. Thus,

f(D) = −1 iff the number of complementary rows in A and B is odd.

Now, E(f) is the average of the above quantity over all choices of matrices A and B. We fix the
matrix A and show that the expectation over all matrices B is precisely the right-hand side of
(??). Let A1, . . . , An be the rows of A and B1, . . . , Bn be the rows of B. Then f(D) =

∏n
i=1 g(Bi),

where

g(Bi) := (−1)(ai1+bi1)(ai2+bi2)···(aik+bik) =

{
+1 if Bi 6= Ai ⊕ 1,

−1 if Bi = Ai ⊕ 1.

Thus, for every fixed matrix A, we obtain that

EB

[ n∏

i=1

g(Bi)

]
=

n∏

i=1

EBi
[g(Bi)] by (??)

=

n∏

i=1

1

2k

∑

Bi

g(Bi)

=

n∏

i=1

1

2k

(
2k − 1

)

=

(
1 − 1

2k

)n

. �

11. Large deviation inequalities

A simple, but one of the most basic inequalities concerning the expectation of random variables
states that a non-negative random variable X can take values much larger than E [X] with only
small probability.

Theorem 18.21 (Markov’s Inequality). If X is a non-negative random variable then, for every
real number a > 0,

Pr [X ≥ a] ≤ E [X]

a
, that is, Pr [X ≥ a · E [X]] ≤ 1

a
.

Proof.

E [X] =
∑

i

i · Pr [X = i] ≥
∑

i≥a

a · Pr [X = i] = a · Pr [X ≥ a] . �

Intuitively, when a ≤ E [X] the inequality is trivial. For a > E [X], it means the larger a is
relative to the mean, the harder it is to have X ≥ a. In particular, if A1, . . . , An is a sequence
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of events, then Markov’s inequality and the linearity of expectation (of their indicator random
variables) implies that

Pr [fewer than k events hold] ≥ 1 −
∑n

i=1 Pr[Ai]

k
.

In Markov’s inequality, X can be an arbitrary non-negative random variable. In applications,
however, X is often a sum of independent random variables. In these cases, Markov’s inequality
can be substantially sharpened. The main observation (due to Sergei Bernstein) is that, if X is a
random variable and t > 0, then Markov’s inequality yields

(112) Pr [X ≥ a] = Pr[etX ≥ eta] ≤ E[etX ] · e−ta .

There are many resulting inequalities known under a common name “Chernoff’s inequalities.” We
mention just one of them.

Theorem 18.22 (Chernoff’s Inequality). Let X1, . . . , Xn be independent random variables
taking their values in the interval [0, 1]. Let X = X1 + · · · + Xn and µ = E [X]. Then, for every

real number a > 0, both Pr [X ≥ µ + a] and Pr [X ≤ µ − a] are at most e−a2/2n.

Note that the variables Xi need not be 0-1 variables: they can take arbitrary real values in
the interval [0, 1]. Important restriction, however, is that these variables must be independent.

Proof. Consider random variables Yi = Xi − E [Xi]. Then E [Yi] = 0 and for their sum
Y = Y1 + · · · + Yn we have that Y =

∑n
i=1 Xi −∑n

i=1 E [Xi] = X − µ. Using (??) we have for
every t > 0,

Pr [X ≥ µ + a] = Pr [Y ≥ a] ≤ e−ta E
[
etY
]

= e−ta E
[
e
∑n

i=1
tYi

]

= e−taE
[ n∏

i=1

etYi

]
= e−ta

n∏

i=1

E
[
etYi

]
,(113)

where in the last equality we used the independence of random variables Yi, and hence, also of
random variables etYi .

In order to estimate E[etYi ] from above, consider the function f(x) = etx and its derivatives.
Since t > 0, the second derivative f ′′(x) is positive, meaning that f(x) is convex. Let c + dx be a
line through the points (−1, f(−1)) and (1, f(1)). Then c−d = f(−1) = e−t and c+d = f(1) = et,
from which

c =
et + e−t

2
and d =

et − e−t

2
follows. Since f(x) is convex, all values f(x) with x ∈ [−1, 1] must lie below the line c + dx, that
is, etx = f(x) ≤ c + dx for all x ∈ [−1, 1]. Since E [Yi] = 0, we obtain

E
[
etYi

]
≤ E [c + dYi] = c + d · E [Yi] = c =

1

2

(
et + e−t

)
.

Using the Taylor series ex =
∑∞

k=0 xk/k! we get

E
[
etYi

]
≤ 1

2

(
1 + t +

t2

2!
+

t3

3!
+

t4

4!
+ · · ·

)

+
1

2

(
1 − t +

t2

2!
− t3

3!
+

t4

4!
− · · ·

)

= 1 +
t2

2!
+

t4

4!
+ · · · +

t2k

(2k)!
+ · · ·

≤ 1 +
t2

21 · 1!
+

t4

22 · 2!
+ · · · +

t2k

2k · k!
+ · · · since 2k · k! ≤ (2k)!

= 1 + x +
x2

2!
+ · · · +

xk

k!
+ · · · for x = t2/2

= et2/2 .
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Together with (??) this gives the upper bound

Pr [X ≥ µ + a] ≤ e−ta+t2n/2 .

The desired upper bound Pr [X ≥ µ + a] ≤ e−a2/(2n) now follows by taking t = a/n.

To prove the second inequality Pr [X ≤ µ − a] ≤ e−a2/2n, it is enough to consider the random
variable X ′ := −X. Then X ≤ µ − a if and only if X ′ ≥ µ′ + a, where µ′ = E [X ′] = −µ. �

For sums of uniformly distributed ±1 random variables we have the following bounds. Let
Y = Y1 + · · · + Yn, where Pr [Yi = +1] = Pr [Yi = −1] = 1/2 and the Yi are mutually independent.

Then for any a > 0, both Pr [Y > a] and Pr [Y < −a] are smaller than e−a2/2n.
Using Jensen’s inequality to upper bound E

[
etXi

]
, the following more general inequality can be

derived: If X1, . . . , Xn are mutually independent random variables with |Xi| ≤ ci and E [Xi] = 0,
then

Pr [X1 + · · · + Xn > a] < exp

(
− a2

2(c2
1 + · · · + c2

n)

)
.

For sums of independent 0-1 random variables, the proof of Theorem ?? yields somewhat tighter
bounds. Let X = X1+· · ·+Xn be the sum of independent 0-1 random variables with Pr [Xi = 1] =
pi. Let µ = E [X] = p1 + · · · + pn. Since each Xi can only take values 0 or 1, the random variable
etXi can also take only values 1 or et. Hence, setting a = (1 + δ)µ and t = ln(1 + δ) in (??) and
using the estimate

E[(1 + δ)Xi ] = pi · (1 + δ) + (1 − pi) · 1 = 1 + δpi ≤ eδpi

we obtain that
Pr [X ≥ (1 + δ)µ] ≤ eδµ(1 + δ)−(1+δ)µ .

Depending on how large the parameter δ is, one obtains different estimates. For example, if
δ > 2e − 1 then (1 + δ)1+δ ≥ (2e)1+δ ≥ 21+δeδ, and we obtain that

Pr [X ≥ (1 + δ)µ] ≤ 2−(1+δ)µ

in this case. If 0 < δ < 1, then simple calculus yields

Pr [X ≥ (1 + δ)µ] ≤ e−δ2µ/3 .

Similarly, Pr [X ≤ (1 − δ)µ] ≤ e−δ2µ/2 holds for all δ > 0.

Exercises

Ex 18.1. We have n letters going to n different persons and n envelopes with their addresses.
We insert each letter into an envelope independently from each other at random (several letters
may go in the same envelope). What is the expected number of correct matches? (Answer: E = 1.)

Ex 18.2. There are k people in a lift at the ground floor. Each wants to get off at a random
floor of one of the n upper floors. What is the expected number of lift stops? Hint: Consider the
indicator random variables Xi for the events that at least one person is off at the i-th floor, and apply the
linearity of expectation. Answer: E = n(1 − (1 − 1/n)k).

Ex 18.3. Let Ω be a uniform sample space, and let X : Ω → {0, 1, . . . , M} be a random
variable with the expectation µ = M − a for some a. Prove that then, for any 1 ≤ b ≤ M ,
Pr [X ≥ M − b] ≥ (b − a)/b. Hint: Let B be the set of those points ω ∈ Ω for which X(ω) < M − b.
Then Pr [B] · (M − b) + Pr

[
B
]

· M ≥ M − a, or Pr [B] ≤ a/b.

Ex 18.4. Let T be a random tournament chosen uniformly among all tournaments on n
players. Then, by Szele’s theorem, the expected number µ of Hamiltonian paths in it is n!2−(n−1).
Use the argument of the previous exercise and Alon’s upper bound (??) to prove that, with
probability at least Ω(n−3/2), T has at least n!2−n Hamiltonian paths. Hint: Let M = ∆ · µ with
∆ = cn3/2, and take a = M(1 − 1/∆), b = M(1 − 1/2∆).

Ex 18.5. (Rédei 1934) Prove that every tournament contains a Hamiltonian path. Hint: Every
path missing at least one player can be prolonged by adding him to that path.
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Ex 18.6. Design an algorithm which, given an n-vertex graph G = (V, E) of minimal degree

d, constructs a dominating set S ⊆ V of size |S| ≤ n 1+ln(d+1)
d+1 , whose existence is guaranteed

by Theorem ??. Hint: For S ⊆ V , let D(S) be the set of vertices dominated by S (i.e., v ∈ D(S) if
either v ∈ S or v is joined by an edge with some vertex in S). Let N(S) = V \ D(S). First show that,
given S ⊆ V , there exists a vertex in V \ S which dominates at least |N(S)|(d + 1)/n vertices in N(S).
Now construct the desired set S by iteratively adding a vertex with the maximum number of neighbors
undominated by the vertices already chosen. Prove that at most n/(d + 1) vertices remain undominated
after n ln(d + 1)/(d + 1) steps, such that adding them yields a dominating set of size at most n 1+ln(d+1)

d+1
.

Ex 18.7. Show that Theorem ?? implies Turán’s theorem: if a graph G has n vertices and
nk/2 edges, then α(G) ≥ n/(k + 1) (see Exercise ??). Hint: Use the Cauchy–Schwarz inequality(∑n

i=1
aibi

)2 ≤
(∑n

i=1
a2

i

) (∑n

i=1
b2

i

)
with ai = (di + 1)1/2 and bi = 1/ai.

Ex 18.8. Prove the Lieberher-Specker result for 2-satisfiable formulas: if F is a 2-satisfiable
formula then at least γ-fraction of its clauses are simultaneously satisfiable, where γ = (

√
5−1)/2.

Sketch: (Yannakakis 1994): Define the probability of a literal y to be satisfied to be: a if y occurs in a
unary clause, and 1/2 otherwise. Observe that then the probability that a clause C is satisfied is a if C is
a unary clause, and at least 1 − a2 otherwise (at worst, a clause will be a disjunction of two literals whose
negations appear as unary clauses); verify that a = 1 − a2 for a = γ.

Ex 18.9. Prove that for any And-Or formula there is an input which satisfies at least half of
its clauses. Is this bound optimal?

Ex 18.10. Given a graph G = (V, E), define the And-Or formula

FG =
∧

{i,j}6∈E

(xi ∨ xj).

Each assignment v = (v1, . . . , vn) ∈ {0, 1}n can be interpreted as an incidence vector of the set of
vertices Sv = {i : vi = 1}. Show that Sv is a clique in G if and only if v satisfies the formula FG.

Ex 18.11. Let u be a random vector uniformly distributed over Fn
2 , and let u, v ∈ Fn

2 be
any two distinct vectors with v 6= 0. The scalar product of u and v over F2 is the sum 〈u, v〉 =∑n

i=1 uivi mod 2. Show that: Pr [〈u, v〉 = 1] = 1/2 for every v 6= 0, and Pr [〈u, v〉 = 〈u, w〉] = 1/2
for every v 6= w. Hint: Exercise ??.

Ex 18.12. Recall that the length (or the norm) ‖v‖ of a vector v ∈ Rn is the square root
of the scalar product 〈v, v〉. Prove that for any vectors v1, . . . , vn in {+1, −1}n there are scalars
ǫ1, . . . , ǫn ∈ {+1, −1} such that

‖ǫ1v1 + · · · + ǫnvn‖ ≤ n.

Hint: Choose the ǫi’s independently at random to be +1 or −1 with probability 1/2, and use the linearity of
expectation to evaluate the expected length of the vector

∑
ǫivi by computing the square of that quantity.

When doing this, use the fact that ǫi and ǫj are independent and therefore E [ǫi · ǫj ] = E [ǫi] · E [ǫj ] = 0.

Ex 18.13. Prove the following generalization of the previous result. Let v1, . . . , vn be vectors
in {+1, −1}n; p1 . . . , pn be real numbers in [0, 1], and set w = p1v1 + · · · + pnvn. Then there
exist ǫ1, . . . , ǫn ∈ {0, 1} such that, setting v = ǫ1v1 + · · · + ǫnvn, we have ‖w − v‖ ≤ n/2. Hint:
Pick the ǫi’s independently with Pr [ǫi = 1] = pi and Pr [ǫi = 0] = 1 − pi. Consider a random variable
X = ‖w − v‖2, and prove that E [X] ≤ n2/4.

Ex 18.14. Theorem ?? says that there exist (n, k)-universal sets of 0-1 vectors of size at most
r = k2k log n. Give an alternative proof of this result using the linearity of expectation. Hint:
Choose a random set A uniformly and independently from the family of all r-element subsets of {0, 1}n;

the probability of one particular subset to be chosen is hence
(

2n

r

)−1
. For a set S of k coordinates and a

vector u ∈ {0, 1}k, let XS,u denote the indicator random variable for the event u 6∈ projS(A), and let X

be the sum of these random variables over all S and u. Show that for r = k2k ln n, E [X] < 1.



CHAPTER 19

The Lovász Sieve

Assume that we have a family of “bad” events. How can we make sure that there is some
non-zero probability that none of the bad events will happen? By the union bound Pr [A ∪ B] ≤
Pr [A] + Pr [B], this probability is non-zero if the sum of probabilities of all these bad events
is smaller than 1. In one sense this is best possible: when bad events are pairwise disjoint, the
condition cannot be weakened. If we know that the bad events are independent, we can get a much
better bound, by multiplying all the probabilities that each single bad event does not happen. This
will work as long as each bad event has probability smaller than 1. But this will immediately fail,
if at least two of the bad events are not independent.

In such cases—when there is some relatively small amount of dependence between events—one
can use a powerful generalization of the union bound, known as the Lovász Local Lemma.

1. The Lovász Local Lemma

An event A is mutually independent of a collection of events if conditioning on any sub-
collection B1, . . . , Bm of these events does not affect the probability of A, that is,

Pr[A | C1 · · · Cm] = Pr [A]

for all Ci ∈ {Bi, Bi}, i = 1, . . . , m. Note that A might be independent of each of the events
B1, . . . , Bm, but not be mutually independent of them. To see this, consider flipping a fair coin
twice and the three events: B1, B2, A, where Bi is the event that the i-th flip is a head and A is the
event that both flips are the same. Then A is independent of B1 and of B2 but Pr[A | B1B2] = 1.

Let A1, . . . , An be events. A graph G = (V, E) on the set of vertices V = {1, . . . , n} is said to
be a dependency graph if, for all i, Ai is mutually independent of all the events Aj such that j is not
adjacent to i in G, i.e., for which {i, j} 6∈ E. We emphasize that Ai must not only be independent
of each such Aj individually but also must be independent of any boolean combination of the Aj ’s.
Such a graph G may be not uniquely defined, but we will not care about this. We will only be
interested in the smallest possible degree of such a graph, which we call the degree of dependence
of the events A1, . . . , An.

The following fact is known as the Lovász Local Lemma.

Lemma 19.1 (Erdős–Lovász 1975). Let A1, . . . , An be events with Pr[Ai] ≤ p for all i, and let
d be the degree of their dependence. If ep(d + 1) ≤ 1 then Pr[A1A2 · · · An] > 0.

As in the original proof of Erdős and Lovász, we will prove the lemma under the slightly
stronger condition 4pd ≤ 1, and later show that the lemma remains true under weaker condition
ep(d + 1) ≤ 1, as well.

In the proof we will use two properties of the conditional probability which follow fairly easily
from its definition as Pr [A | B ] = Pr [AB] /Pr [B]:

(114) Pr [A | BC ] =
Pr [AB | C ]

Pr [B | C ]

and

(115) Pr [A | BC ] · Pr [B | C ] · Pr [C] = Pr [ABC] .

Proof (Spencer 1995). Fix a dependency graph G of our events of degree d. We prove by induction
on m that for any m events (calling them A1, . . . , Am for convenience only)

Pr[A1 | A2 · · · Am] ≤ 2p.

203
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For m = 1 this is obvious. Let 2, . . . , k be the vertices from {2, . . . , m} which are adjacent to 1 in
the dependency graph G. Using the identity (??), we can write

(116) Pr[A1 | A2 · · · Am] =
Pr[A1A2 · · · Ak | Ak+1 · · · Am]

Pr[A2 · · · Ak | Ak+1 · · · Am]
.

We bound the numerator

Pr[A1A2 · · · Ak | Ak+1 · · · Am] ≤ Pr[A1 | Ak+1 · · · Am]

= Pr [A1] ≤ p

since A1 is mutually independent of Ak+1, . . . , Am. The denominator, on the other hand, can be
bounded by the induction hypothesis

Pr[A2 · · · Ak | Ak+1 · · · Am] = 1 − Pr[A2 ∪ · · · ∪ Ak | Ak+1 · · · Am]

≥ 1 −
k∑

i=2

Pr[Ai | Ak+1 · · · Am]

≥ 1 − 2p(k − 1) ≥ 1/2,

because k − 1 ≤ d and 2pd ≤ 1/2. Thus

Pr[A1 | A2 · · · Am] ≤ p/(1/2) = 2p,

completing the induction. Finally, by (??),

Pr[A1 · · · An] =

n∏

i=1

Pr[Ai | A1 · · · Ai−1] ≥ (1 − 2p)n > 0.

�

When the events Ai are not symmetric (i.e., when their probabilities might be very different) a
more general form of the Lovász sieve is appropriate. This generalization is due to Spencer (1977).

Lemma 19.2. Let G = (V, E) be a dependency graph of events A1, . . . , An. Suppose there exist
real numbers x1, . . . , xn, 0 ≤ xi < 1, so that, for all i,

Pr[Ai] ≤ xi ·
∏

{i,j}∈E

(1 − xj).

Then

Pr[A1A2 · · · An] ≥
n∏

i=1

(1 − xi).

In particular, with positive probability no event Ai holds.

Proof. The induction hypothesis of the earlier proof is replaced by

Pr[A1 | A2 · · · Am] ≤ x1,

and, using the same identity (??), the denominator of (??) is set equal to

k∏

j=2

Pr[Aj | Aj+1 · · · Am],

which by the induction hypothesis, is at least

k∏

j=2

(1 − xj) =
∏

{1,j}∈E

(1 − xj) . �

That, in the symmetric case, Lemma ?? holds with condition 4pd ≤ 1 replaced by ep(d+1) ≤ 1
follows from Lemma ?? by taking all xi = 1/(d + 1) and observing that

xi(1 − xi)
d =

1

d + 1

(
1 − 1

d + 1

)d

>
1

d + 1
· 1

e
≥ p ,
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by assumption of Lemma ?? and the fact that (1 − 1/(d + 1))d > 1/e. This last fact is equivalent
to 1 + 1/d < e1/d, and holds because the Taylor series of e1/d is (see (??)):

e1/d = 1 +
1

d
+

1

2!

(
1

d

)2

+
1

3!

(
1

d

)3

+ · · · .

The Lovász sieve works well when we have “much independence” between the events. In a
similar vein, there is also an estimate, due to Razborov (1988), which works well if the events are
“almost k-wise independent.”

Let A1, . . . , An be events, each of which appears with the same probability Pr [Ai] = p. If all
these events are mutually independent, then

Pr

[ n⋃

i=1

Ai

]
= 1 − Pr

[ n⋂

i=1

Ai

]
= 1 − (1 − p)n ≥ 1 − e−pn .

The mutual independence is a very strong requirement. It turns out that a reasonable estimate
can be obtained also in the case when Pr

[⋂
i∈I Ai

]
is only “near” to p|I| for the sets I of size up

to some number k; in this case the events A1, . . . , An are also called almost k-wise independent.

Lemma 19.3 (Razborov 1988). Let n > 2k be any natural numbers, let 0 < p, δ < 1, and let
A1, . . . , An be events such that, for every subset I ⊆ {1, . . . , n} of size at most k,

∣∣∣∣Pr

[⋂

i∈I

Ai

]
− p|I|

∣∣∣∣ ≤ δ.

Then

Pr

[ n⋃

i=1

Ai

]
≥ 1 − e−pn −

(
n

k + 1

)
(δk + pk).

Note that if the events are k-wise independent, then δ = 0 and the obtained estimate worse
by an additive term

(
n

k+1

)
pk than that for mutual independence.

Proof. Let us first consider the case where k is even. Let B1, . . . , Bn be independent events,
each having the success probability p. Applying the Bonferroni inequalities to Pr [

⋃n
i=1 Ai] and

Pr [
⋃n

i=1 Bi] (see Exercise ??), we obtain that

(117) Pr

[ n⋃

i=1

Ai

]
≥

k∑

ν=1

(−1)ν+1
∑

|I|=ν

Pr

[⋂

i∈I

Ai

]

and

(118) Pr

[ n⋃

i=1

Bi

]
≤

k∑

ν=1

(−1)ν+1
∑

|I|=ν

p|I| +
∑

|I|=k+1

pk+1.

The assumption of the lemma that A1, . . . , An are almost k-wise independent implies that the
right-hand side in (??) is at least

(119)

k∑

ν=1

(−1)ν+1
∑

|I|=ν

p|I| − δk

(
n

k

)
.

On the other hand, the independence of B1, . . . , Bn implies that

(120) Pr

[ n⋃

i=1

Bi

]
= 1 − (1 − p)n ≥ 1 − e−pn.

Combining (??), (??), (??) and (??) yields

Pr

[ n⋃

i=1

Ai

]
≥ 1 − e−pn − δk

(
n

k

)
− pk+1

(
n

k + 1

)

≥ 1 − e−pn −
(

n

k + 1

)
(δk + pk+1).
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In the case where k is odd, we use the above argument with k − 1 substituted for k. �

2. Disjoint cycles

By a digraph we will mean a directed graph without parallel edges. Such a graph is k-regular
if every vertex has exactly k outgoing edges.

Theorem 19.4. Every k-regular digraph has a collection of ⌊k/(3 ln k)⌋ vertex-disjoint cycles.

Proof. Let G = (V, E) be a k-regular digraph. Set r := ⌊k/(3 ln k)⌋, and color the vertices
uniformly at random using colors {1, . . . , r}. That is, each vertex v gets a particular color in-
dependently and with the same probability 1/r. Let Av be the event that v does not have any
out-neighbor of the same color as v. (An out-neighbor of v is the second endpoint of an edge
leaving v.) We need only to show that Pr[∩v∈V Av] > 0.

Since each vertex has k out-neighbors, we have that

Pr[Av] =
(

1 − 1

r

)k

< e−k/r ≤ e−3 ln k = k−3 .

For a vertex v, let N(v) be the set consisting of v and all its k out-neighbors. Then Av is mutually
independent of the events in {Au : N(u) ∩ N(v) = ∅}. Since this set contains at most (k + 1)2

events, the degree of dependence of the events Av is d ≤ (k + 1)2. Hence, to apply the Lovász
Local Lemma we only need that 4k−3(k + 1)2 ≤ 1, which is true for k ≥ 6. For k < 6 the theorem
is trivially true since then r = 1. �

Alon, McDiarmid and Molloy (1996) proved that, in fact, Ω(k2) vertex-disjoint cycles exist

and conjectured that at least
(

k+1
2

)
cycles should exist.

3. Colorings

A striking feature of the Lovász sieve is the lack of conditions on the total number n of events
– only the degree of their dependence is important. This is particularly useful when dealing with
large families whose members share not too many points in common. Let us demonstrate this
with several typical examples.

First, let us consider 2-colorings of hypergraphs. Recall that a family of sets F is 2-colorable
if it is possible to color the points of the underlying set in red and blue, so that no member of F
is monochromatic. A family is k-uniform if all its members have size k.

In Chap. ?? (see Theorem ??) we proved that if the family F is relatively small then it is
2-colorable: Every k-uniform family of fewer than 2k−1 sets is 2-colorable.

Let us recall the argument. Suppose F is a k-uniform family with at most 2k−1 − 1 sets.
Consider a random coloring, each element independently colored red or blue with probability 1/2.
Any one member of F will then be monochromatic with probability 2 · 2−k = 21−k, and so the
probability that some member will be monochromatic, does not exceed |F| ·21−k, which is strictly
smaller than 1. Therefore, at least one coloring must leave no member of F monochromatic.

Now suppose that F has more than 2k members. Then the above random coloring will be
doomed since the chances of it to be a proper 2-coloring will tend to zero. Fortunately, we do
not require a high probability of success, just a positive probability of success. For example, if
F is a family of m mutually disjoint k-element subsets of some set, then the events Ai=“the i-th
member of F is monochromatic” are mutually independent, and so the probability that none of
them holds is exactly

(
1 − 2−(k−1)

)m
, which is positive no matter how large m is. Therefore, F

is 2-colorable.
Of course for general families F , the events A1, . . . , Am are not independent as some pairs of

members may intersect. In such situations the Lovász sieve shows its surprising power.

Theorem 19.5 (Erdős–Lovász 1975). If every member of a k-uniform family intersects at
most 2k−3 other members, then the family is 2-colorable.
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Proof. Suppose F = {S1, . . . , Sm} is a family of k-element subsets of some set X. Consider
a random coloring of X, each point independently colored red or blue with probability 1/2. Let
Ai denote the event that Si is monochromatic. Then Pr[Ai] = p where p = 2(1/2)|Si| = 21−k.
Our goal is to show that Pr[A1 · · · Am] > 0. Define a dependency graph by joining Ai and Aj

if and only if Si ∩ Sj 6= ∅. By the assumption, this graph has degree at most d = 2k−3. Since
4dp = d23−k ≤ 1, Lemma ?? yields the result. �

In the general (not necessarily uniform) case we have the following.

Theorem 19.6 (Beck 1980). Let F be a family of sets, each of which has at least k (k ≥ 2)
points. Also suppose that for each point v,

∑

S∈F :v∈S

(1 − 1/k)−|S|2−|S|+1 ≤ 1

k
.

Then F is 2-colorable.

Proof. Let F = {S1, . . . , Sm} and (again) color the points with red and blue at random, in-
dependently of each other and with probability 1/2. Let Ai denote the event that Si is monochro-
matic; hence Pr[Ai] = 2−|Si|+1. Consider the same dependency graph G = (V, E) as above:
{i, j} ∈ E if and only if Si ∩ Sj 6= ∅. We shall prove that the condition of Lemma ?? is satisfied
with

xi := (1 − 1/k)
−|Si|

2−|Si|+1.

Indeed, by the definition of the graph G, for every i = 1, . . . , m we have

xi

∏

{i,j}∈E

(1 − xj) ≥ xi

∏

v∈Si

∏

j:v∈Sj

(1 − xj)

≥ xi

∏

v∈Si

[
1 −

∑

j:v∈Sj

xj

]
≥ xi(1 − 1/k)|Si|,

since, by the condition of the theorem,
∑

j:v∈Sj
xj ≤ 1/k. Thus,

xi

∏

{i,j}∈E

(1 − xj) ≥ xi (1 − 1/k)
|Si|

= 2−|Si|+1 = Pr[Ai].

By the application of Lemma ?? we obtain Pr[A1A2 · · · An] > 0, i.e., there is a 2-coloring in which
no set of F is monochromatic. �

Later, Beck (1991) was even able to design an efficient randomized algorithm finding a desired
coloring. This was the first time when an algorithmic version of the Lovász Local Lemma was
found.

Let us now consider yet another coloring problem. Let F be a family of k-element sets and
suppose that no point appears in more than l of its members. By induction on k, it can be shown
(see Exercise ??) that then it is possible to color the points in r = l(k − 1) + 1 colors so that no
member of F contains two points of the same color. On the other hand, if we have only r < k
colors, then every member of F will always have at least k/r points of the same color. Is it
possible, also in this case (when r < k) to find a coloring such that no member has much more
than k/r points of one color? The following result says that, if k = l and if we have about k/ log k
colors, then such a coloring exists.

Theorem 19.7 (Füredi–Kahn 1986). Let k be sufficiently large. Let F be a k-uniform family
of sets and suppose that no point belongs to more than k sets of F . Then it is possible to color the
points in r = ⌊k/ log k⌋ colors so that every member of F has at most v = ⌈2e log k⌉ points of the
same color.

In fact, Füredi and Kahn proved a stronger result, where v = ⌊4.5 log k⌋ and the members of
F have size at most k. The argument then is the same but requires more precise computations.
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Proof. Color the points of X by r colors, each point getting a particular color randomly and
independently with probability 1/r. Let A(S, i) denote the event that more than v points of S
get color i. We are going to apply Lemma ?? to these events. Events A(S, i) and A(S′, i′) can be
dependent only if S ∩ S′ 6= ∅. So, we consider the following dependency graph G for these events:
the vertex set consists of the pairs (S, i) where S ∈ F and 1 ≤ i ≤ r, and two vertices (S, i) and
(S′, i′) are joined by an edge if and only if S ∩ S′ 6= ∅.

Let d be the maximum degree of G. By the condition on our family F , every member can
intersect at most k(k − 1) other members, implying that d ≤ (1 + k(k − 1))r ≤ k3. By Lemma ??,
it remains to show that each of the events A(S, i) can happen with probability at most 1/(4k3).

Since |S| = k, the probability that only the points of a subset I ⊆ S get color i, is (1/r)|I|(1 −
1/r)k−|I|. Summing over all subsets I of S, then the event A(S, i) happens with probability at
most

∑

t>v

(
k

t

)(
1

r

)t(
1 − 1

r

)k−t

≤
(

k

v

)(
1

r

)v

<

(
ek

vr

)v

≤ 2−v < k−4.

By Lemma ??, with positive probability, none of the events A(S, i) will happen, and the desired
coloring exists. �

4. The k-SAT problem

Let x1, . . . , xn be boolean variables. A literal is a boolean variable xi or its negation xi. A k-
CNF formula (conjunctive normal form) is an And of clauses, each being an Or of k literals. Such
a CNF formula ϕ is satisfiable if these exists a truth assignment a ∈ {0, 1}n for which ϕ(a) = 1.

The k-SAT problem is, given a k-CNF, to decide whether it is satisfiable or not; here k ≥ 3 is
assumed to be a fixed constant. Of course, this question can always be solved in 2n trials: just test
all 2n possible assignments one by one. This dummy strategy will, however, take a huge amount
of time on formulas with, say, n = 100 variables. Are there any quicker algorithms working, say in
time nc for some constant c? To show that no such algorithm exists is one of the central problems
(if not the central) of the whole of computer science, and is known under the name “P vs. NP
problem.”

On the other hand, the Lovász Local Lemma gives us a tool to quickly recognize some satisfiable
CNFs by just looking at their structure!

We say that two clauses overlap if they have a common variable xi, regardless of whether the
variable is negated or not in the clauses. In this case we also say that the clauses share the variable
xi.

Lemma 19.8. Let ϕ be a k-CNF formula. If each of its clauses overlaps with at most 2k−2

clauses, then ϕ is satisfiable.

Note that the total number n of variables is irrelevant here!

Proof. Consider a random experiment where the variables in ϕ are assigned truth values by
independent tosses of a fair coin. Let Ai be the event that the i-th clause of ϕ is not satisfied. For
this event to happen, all k literals in Ci must receive a “wrong” value. Hence, p = Pr[Ai] = 2−k.
Further, each Ai is mutually independent of the set of all Aj such that the i-th clause Ci and
the j-th clause Cj of ϕ do not overlap. Hence, the dependency graph of the events Ai has degree
d ≤ 2k/4. Since 4dp ≤ 42k−22−k = 1, Lemma ?? applies and ϕ will be satisfied with non-zero
probability. �

This lemma is “non-constructive:” it gives no clue on how to find a satisfying assignment in
a reasonable (polynomial) time.

Beck (1991) achieved a breakthrough by proving that a polynomial-time algorithm exists which
finds a satisfying assignment to every k-CNF formula in which each clause has a neighbourhood of
at most 2k/48 other clauses. His approach was deterministic and used the nonconstructive version
of the Lovász Local Lemma as a key ingredient, basically proving that even after truncating
clauses to a 48th of their size (a step used to simplify the formula and make it fall apart into small
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components), a solution remains guaranteed and can then be looked for by exhaustive enumeration.
Alon (1991) simplified Beck’s algorithm and analysis by introducing randomness and presented an
algorithm that works up to neighbourhoods of 2k/8 in size. Czumaj and Scheideler (2000) later
demonstrated that a variant of the method can be made to work for the non-uniform case where
clause sizes vary. Srinivasan (2008) improved the bound of what was polynomial-time feasible to
essentially 2k/4 by a more accurate analysis. Finally, Moser (2009) published a polynomial-time
algorithm that can cope with neighbourhood size up to 2k−5 neighbours, which is asymptotically
optimal with a constant gap. Recently, Moser and Tardos (2010) gave a randomized algorithm for
the general (non-symmetric) version of the Lovász Local Lemma.

Theorem 19.9 (Moser 2009). There is a constant c such that, given a k-CNF formula ϕ with
m clauses, none of which overlaps with more than r = 2k−c other clauses, one can find a satisfying
assignment for ϕ in expected time polynomial in m.

We are not going to prove this theorem in full detail. We rather give a coarse, intuitive and
convincing argument that this “must” hold.

Moser’s algorithm Solve(ϕ) is a randomized algorithm consisting of recursive calls of (also
recursive) procedures Fix(C) for clauses C of ϕ: Pick a random assignment a ∈ {0, 1}n; while
there is an unsatisfied clause C, call Fix(C). The procedure Fix(C) itself is the following recursive
procedure:

Step 1: Replace the variables of C with new random values.
Step 2: While there is a clause D that shares a variable with C that is not satisfied, call
Fix(D).

First, observe that, if Fix(C) terminates, then every clause A that was satisfied before Fix(C)
is called will remain satisfied after Fix(C) is called. This holds because each flipping of the variables
in a clause C can only affect the values of clauses that share a common variable with C. So, if the
value of A is turned from true to false at some moment of the execution of Fix(C), then Fix(A)
is called.

By this observation, Solve makes at most m calls to Fix, if Fix(C) always terminates. So we
need to show all the Fix(C) terminate. Suppose the algorithm makes at least s Fix calls including
all the recursive ones. We will show that s is bounded by O(m log m), and thus the algorithm
terminates in almost linear expected time.

This can be proved (at least at an intuitive level) by Kolmogorov complexity arguments. An
extensive account concerning these arguments can be found in the book by Li and Vitányi (2008).
Here we just describe this argument on an informal level.

The Kolmogorov complexity, K(x), of a string x is the length of the string’s shortest description
in some fixed universal description language. Such a description language can be based on any
programming language. If P is a program which outputs a string x, then P is a description of
x. The length of the description is just the length of P as a character string. In determining the
length of P , the lengths of any subroutines used in P must be accounted for. The length of any
integer constant n which occurs in the program P is the number of bits required to represent n,
that is (roughly) log2 n. For example, a huge string x = 010101 · · · 01 with 01 repeated 2100 times
can be described as a program “repeat 01 2100 times”, whose length (after binary encoding) is only
about 100 bits. In general, any string containing some repeating patterns has small Kolmogorov
complexity. On the other hand, random strings are “resistant” against compression, and hence,
have large Kolmogorov complexity.

It is straightforward to compute upper bounds for K(x): simply compress the string x with
some method, implement the corresponding decompresser in the chosen language, concatenate the
decompresser to the compressed string, and measure the resulting string’s length.

A string x is compressible by a number c if it has a description whose length does not exceed
|x| − c, that is, if K(x) ≤ |x| − c, where |x| is the length of (number of symbols in) x. Otherwise
x is incompressible by c. A string incompressible by 1 is said to be simply incompressible or
Kolmogorov random; by the pigeonhole principle, incompressible strings must exist, since there
are 2n bit strings of length n but only 2n − 1 shorter strings, that is strings of length n − 1 or less.
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For the same reason, "most" strings are complex in the sense that they cannot be significantly
compressed: K(x) is not much smaller than |x|, the length of x in bits. To make this precise,
fix a value of n. There are 2n binary strings of length n. Let x be a string chosen uniformly at
random with probability 2−n. It is easy to show that the probability that x is compressible by c is
negligible: it is 2−c+1 − 2−n. To see this, it is enough to observe that the number of descriptions
of length not exceeding n − c is given by the geometric series: 1 + 2 + 22 + · · · + 2n−c = 2n−c+1 − 1,
and there remain at least 2n − 2n−c+1 + 1 binary strings of length n that are incompressible by c.

Now, the so-called incompressibility argument works as follows: In order to show that some
condition holds, assume it does not hold and use this assumption to show that then some Kol-
mogorov random string x would have a description much shorter than K(x).

After this short excursion into Kolmogorov complexity, let us return to Moser’s algorithm.
Fix a Kolmogorov random string x of length n + sk (where n is the total number of variables) and
assume the algorithm uses the first n bits as the initial assignment a, and k bits each to replace
the variables in each Fix call. (If we choose the string x randomly then it will be Kolmogorov
random with high probability.) The random string x is used in Step 1 of Fix(C) to replace the
values of variables in C by “fresh” random values, and each time next k bits of x are used.

If we know which clause is being fixed, we know the clause is violated so we know all the bits
of this clause and thus we learn k bits of x (recall that assignments used by an algorithm are from
the string x). We then replace those bits with another part of x.

So we can describe x by the list of clauses we fix plus the remaining n bits of the final
assignment. We can describe each clause C such that Fix(C) is called by Solve using O(m log m)
bits. The remaining fixed clauses can be described by log2 r + α bits (for a constant α) because
either it is one of r clauses that intersects the previous clause or we indicate the end of a recursive
call (keeping track of the recursion stack). This is exactly the place where the compression comes:
Since the clause was not satisfied, we reveal k bits of information about the string x, but since
r ≤ 2k−c, we can describe this information using only k−c bits. Since the string x was Kolmogorov
random, we must have

O(m log m) + s(log r + α) + n ≥ n + sk

or s(k − log r − α) ≤ O(m log m). Now, if r ≤ 2k−c for c > α, then k − log r − α is a positive
constant (not exceeding k, which is also a constant), implying that s = O(m log m).

Exercises

Ex 19.1. Let A1, . . . , An be events, and suppose that each of them is mutually independent
of all the other events except for at most d of them. Let 0 < ǫ < 1, and assume that

Pr[Ai] ≤ ǫ

n

(
1 − ǫ

n

)d

for all i = 1, . . . , n Prove that then Pr[∩iAi] ≥ 1 − ǫ.

Ex 19.2. Let F be a k-uniform k-regular family, i.e., each set has k points and each point
belongs to k sets. Let k ≥ 10. Show that then at least one 2-coloring of points leaves no set of F
monochromatic.

Ex 19.3. The van der Waerden number W (2, k) is the least number n such that any coloring
of {1, 2, . . . , n} in two colors gives a monochromatic arithmetic progression with k terms. Prove
that W (2, k) > 2k/(2ek). Hint: Assume that n ≤ 2k/(2ek) and observe that one progression with k

terms intersects at most nk others.

Ex 19.4. (Erdős–Lovász 1975). Consider the colorings of real numbers in r colors. Say that
a set of numbers is multicolored if it contains elements of all r colors. Fix a finite set X of real
numbers, and let m be such that

4rm(m − 1)

(
1 − 1

r

)m

< 1.
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Using Lemma ?? prove that then, for any set S of m numbers there is an r-coloring under which
every translate x + S := {x + y : y ∈ S}, with x ∈ X, is multicolored. Hint: Take a random
r-coloring Y =

⋃
x∈X

(x + S) which, for every point y ∈ Y , takes a particular color randomly and
independently with probability 1/r. Consider events Ax saying that x + S is not multicolored, and show
that Pr[Ax] ≤ r

(
1 − 1

r

)m
. Also observe that for each point x there are at most m(m − 1) other points x′

for which (x + S) ∩ (x′ + S) 6= ∅.

Ex 19.5. (Füredi–Kahn 1986). Let F be a family of rank a, i.e., each member has at most
a points, and suppose that no point belongs to more than b members of F . Prove that then it
is possible to color the points in r = (a − 1)b + 1 colors so that every member of F is differently
colored, i.e., no member of F has two points of the same color. Hint: By induction on a. The case
a = 2 is Exercise ??. For the induction step, select a sequence of points V = {x1, x2, . . . , xm} by the
following rule: at the i-th step take a set F ∈ F disjoint from {x1, . . . , xi−1}, and let xi be an arbitrary
point in this set. If we delete the points V from all members of F , we obtain a family F ′ of rank at most
a − 1. By the induction hypothesis, F ′ can be differently colored using only (a − 2)b + 1 colors. So, it
remains to color the deleted points. For this, consider the graph G = (V, E) where two points are joined
by an edge iff both these points belong to the same member of F . Show that ∆(G) ≤ b − 1 and apply
Exercise ??.





CHAPTER 20

The Deletion Method

As described in previous sections, the basic probabilistic method works as follows: trying to
prove that an object with certain properties exists, one defines an appropriate probability space
of objects and then shows that the desired properties hold in this space with positive probability.
In this section, we consider situations where the “random” object does not have all the desired
properties but may have a few “blemishes.” With a small alteration, we remove the blemishes,
giving the desired structure.

1. Edge clique covering

An edge clique covering of a graph G is a family of complete subgraphs of G such that every
edge of G is an edge of at least one member of the family. The minimum cardinality of such a
family is the edge clique covering number of G, denoted by cc(G).

The following general upper bound on this number was proved by Alon (1986b). A non-
neighbor of a vertex v in a given graph is a vertex u 6= v which is non-adjacent to v.

Theorem 20.1 (Alon 1986b). Let G be a graph on n vertices such that every vertex has at
least one neighbor and at most d non-neighbors. Then

cc(G) = O(d2 ln n) .

As often happpens in probabilistic proofs, the following estimates turn out to be very useful

(see inequalities (??) and (??) in Chap. ??): For every t > 0, 1 + t < et and 1 − t > e−t−t2/2.

Proof. Consider the following procedure for choosing a complete subgraph of G = (V, E).
In the first phase, pick every vertex v ∈ V independently, with probability p = 1/(d + 1), to get
a set W . In the second phase remove from W all vertices having at least one non-neighbor in W .
Clearly, the resulting set is the set of vertices of a complete subgraph of G.

Now apply the above procedure, independently, t times to get t complete subgraphs K1, . . . , Kt

of G; here, t is a parameter to be specified soon. Let us estimate the expected value of the number
of edges of G that are not covered by the union of the Ki’s. Let uw be an edge of G, and fix an
i, 1 ≤ i ≤ t. Note that the edge uw is covered by Ki, if both its endpoints u and w and none of
their ≤ 2d non-neighbors were chosen in the first phase. Hence

Pr [Ki covers uw] ≥ p2(1 − p)2d =
1

(d + 1)2

(
1 − 1

d + 1

)2d

≥ 1

e2(d + 1)2 .

By the union bound,

Pr [none of the Ki’s covers uw] ≤
(

1 − 1

e2(d + 1)2

)t

≤ exp(−t/e2(d + 1)2) .

By the linearity of expectation, the expected number of non-covered edges is at most
(

n

2

)
· exp(−t/e2(d + 1)2) .

By taking t := ⌊cd2 log2 n⌋ for a sufficiently large (absolute) constant c, this expectation can be
made < 1. Hence, by the pigeonhole principle of expectation, there is at least one choice of t
complete subgraphs of G that form a clique covering of G and cc(G) ≤ t, as needed. �

213
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2. Independent sets

Here is a short argument that gives roughly half of Turán’s celebrated theorem. A set of
vertices in a graph is independent if no two vertices from this set are joined by an edge; the
independence number α(G) is the maximum number of vertices in G with no edges between them.
Turán’s theorem states: if G has n vertices and nk/2 edges, then α(G) ≥ n/(k + 1). We can get
“halfway” to this result with the deletion method.

Theorem 20.2. If a graph G = (V, E) has n vertices and nk/2 edges, then α(G) ≥ n/2k.

Proof (Spencer 1987). Form a random subset S ⊆ V of vertices by including each vertex indepen-
dently with probability p. That is, we take a coin which comes up heads with probability p and
flip it for each x ∈ V to see if x is “chosen” to be in S. Let X denote the number of vertices in S,
and let Y denote the number of edges of G, both ends of which lie in S. For each edge e ∈ E, let
Ye be the indicator random variable for the event e ⊆ S. Then for each edge e ∈ E, E[Ye] = p2 as
two vertices must be chosen for e to be inside S. So, by linearity of expectation,

E[Y ] =
∑

e∈E

E[Ye] =
nk

2
p2.

Clearly, E[X] = np, so, again by linearity of expectation,

E[X − Y ] = np − nk

2
p2.

We choose p = 1/k to maximize this quantity, giving

E[X − Y ] =
n

k
− n

2k
=

n

2k
.

Thus, there exists at least one point in the probability space for which the difference X − Y is at
least n/2k. That is, there is a set S which has at least n/2k more vertices than edges. Delete one
vertex from each edge from S leaving a set S′. This set S′ is independent and has at least n/2k
vertices. �

3. Coloring large-girth graphs

A cycle of length k in a graph G = (V, E) is a sequence of vertices v1, v2, . . . , vk such that:
v1 = vk, vi 6= vj for all 1 < i < j ≤ k, and all the edges {vi, vi+1} belong to E. The girth g(G)
of a graph is the length of the shortest cycle in G. Recall also that the chromatic number χ(G) is
the minimal number of colors which we need to color the vertices of G so that no two vertices of
the same color are joined by the edge.

A striking example of the deletion method is the proof that for fixed k and l, there are graphs
with girth at least l and chromatic number at least k. This result was proved by Erdős, and is
highly unintuitive. If the girth is large there is no simple reason why the graph could not be
colored with a few colors: locally it is easy to color such a graph with three colors. Thus, we can
force the chromatic number only by some global considerations and the deletion method helps
in doing this. The proof we present here is a simplification of the Erdős proof, due to Alon and
Spencer (1992).

Theorem 20.3 (Erdős 1959). For all k, l there exists a finite graph G with χ(G) ≥ k and
g(G) ≥ l.

Since every color class must be an independent set, we have an obvious relation: χ(G) ≥
n/α(G). So, instead of showing that χ(G) ≥ k it is sufficient to show that α(G) ≤ n/k. We will
use this simple trick in the proof below.

Proof (Alon–Spencer 1992). Fix θ < 1/l. Let n be large enough and let G be a random graph on
n vertices, where each pair of nodes is joined by an edge with independent probability p = nθ−1.
Let X be the number of cycles in G of length at most l. How many cycles v1, v2, . . . , vi, v1 of
length i can our graph have?
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There are (n)i = n(n − 1) · · · (n − i + 1) sequences v1, v2, . . . , vi of distinct vertices, and each
cycle is identified by 2i of those sequences: there are two possibilities to choose the “direction” and
i possibilities to choose the first vertex of the cycle. Thus, for 3 ≤ i ≤ t there are (n)i/2i ≤ ni/2i
potential cycles of length i, each of which is in G with probability pi. By the linearity of the
expectation

E [X] =
l∑

i=3

(n)i

2i
pi ≤

l∑

i=3

nθi

2i
= o(n)

as θl < 1. By Markov’s inequality,

Pr [X ≥ n/2] ≤ 2E [X]

n
= o(1).

Set x := ⌈ 3
p

ln n⌉, so that

Pr [α(G) ≥ x] ≤
(

n

x

)
(1 − p)(

x
2) <

[
ne−p(x−1)/2

]x

= o(1).

Let n be sufficiently large so that both these events have probability less than 1/2. Then there
is a specific G with less than n/2 “short” cycles, i.e., cycles of length less than l, and with
α(G) < x ≤ 3n1−θ ln n. Remove from G a vertex from each short cycle. This gives a graph G′

which has no short cycles and still has at least n/2 vertices. Hence, G′ has girth greater than l
and α(G′) ≤ α(G) (since α(G) cannot grow when we delete vertices). Thus

χ(G′) ≥ |G′|
α(G′)

≥ n/2

3n1−θ ln n
=

nθ

6 ln n
.

To complete the proof, it remains to take n sufficiently large so that this is greater than k. �

4. Point sets without obtuse triangles

Around 1950, Erdős conjectured that every set of more than 2n points in Rn determines at
least one obtuse angle, that is, an angle that is strictly greater than π/2. In other words, any set
of points in Rn which only has acute angles (including right angles) has size at most 2n.

In 1962, Danzer and Grünbaum proved this conjecture. They also constructed configurations
of 2n−1 points in Rn with only acute angles, and conjectured that this may be best possible. But
21 years later, Erdős and Füredi – using a probabilistic argument – disproved this conjecture. It
turns out that, if the dimension n is high, the bound 2n − 1 is not even near to the truth.

Theorem 20.4 (Erdős–Füredi 1983). For every n ≥ 1 there is a set of at least m = ⌊ 1
2 ( 2√

3
)n⌋

points in the n-dimensional Euclidean space Rn, such that all angles determined by three points
from the set are strictly less than π/2.

The theorem is an easy consequence of the following lemma.

Lemma 20.5. For every n ≥ 1 there is a family F of m = ⌊ 1
2 ( 2√

3
)n⌋ subsets of {1, . . . , n},

such that there are no three distinct members A, B, C of F satisfying

(121) A ∩ B ⊆ C ⊆ A ∪ B.

Proof of Lemma ??. Let A be a random subset of {1, . . . , n}, where each element appears randomly
and independently with probability 1/2. Let A be a family of 2m independent copies of A. For
a triple A, B, C of sets in A, what is the probability that they satisfy the condition (??)? This
condition just means that for each i = 1, . . . , n, neither i ∈ A ∩ B, i 6∈ C nor i 6∈ A ∪ B, i ∈ C

hold. For each i, each of these two events happens with probability (1/2)3 = 1/8. Therefore, the
sets A, B, C satisfy the condition (??) with probability (1−2/8)n = (3/4)n. Since there are 3

(2m
3

)

possible triples A, B, C (there are 3 possibilities to choose C in a triple), the expected number of
triples that satisfy (??) is

3

(
2m

3

)
(3/4)n = m(2m − 1)(2m − 2)(3/4)n < m(2m)2(3/4)n ≤ m,

where the last inequality follows from the choice of m.



216 20. THE DELETION METHOD

Thus, there is a choice of a family A of 2m subsets of {1, . . . , n} in which the number of triples
A, B, C satisfying (??) is at most m. By deleting one set from each such triple we obtain a family
F of at least 2m − m = m subsets satisfying the assertion of the lemma. Notice that the members
of F are all distinct since (??) is trivially satisfied if A = C. This completes the proof of the
lemma. �

Proof of Theorem ??. We select the points of a set X in Rn from the points of the n-dimensional
cube {0, 1}n. We view the vertices of the cube, which are 0-1 vectors of length n, as the incidence
vectors of subsets of an n-element set.

It is easy to verify that the three points a, b and c of the n-cube, corresponding to the sets
A, B and C, respectively, determine a right angle at c if and only if (??) holds.

Indeed, the angle θ at c is the angle between the vectors u = a − c and v = b − c. This angle
can be computed from

cos θ =
〈u, v〉

‖u‖ · ‖v‖ ,

where 〈u, v〉 =
∑n

i=1 uivi is the scalar product and ‖u‖ =
(∑n

i=1 u2
i

)1/2
is the norm of u. Since

a, b and c are 0-1 vectors, the angle θ can be right if and only if 〈u, v〉 = 0. This can happen if
and only if (ai − ci)(bi − ci) = 0 for all i = 1, . . . , n, which in its turn can happen if and only if
for each i neither ai = bi = 0, ci = 1 nor ai = bi = 1, ci = 0 hold. This is precisely the condition
(??), and the result follows immediately from Lemma ??. �

5. Affine cubes of integers

A collection C of integers is called an affine d-cube if there exist d + 1 positive integers
x0, x1, . . . , xd so that

C =

{
x0 +

∑

i∈I

xi : I ⊆ {1, 2, . . . , d}
}

.

Such a cube is replete if all the sums are distinct, i.e., if |C| = 2d. If an affine cube is generated
by x0, x1, . . . , xd then we write C = C(x0, x1, . . . , xd). For example, C(1, 1, 1) = {1, 2, 3} is not
replete, while C(1, 3, 9) = {1, 4, 10, 13} is a replete affine 2-cube. Note also that C(x0, x1, . . . , xd)
may be different from, say, C(x1, x0, . . . , xd).

Typical extremal problems related to affine cubes are the following:

1. Partition problem: Given r and d, what is the smallest integer n = H(r, d) such that, for
any partition of {1, . . . , n} into r classes, at least one class contains an affine d-cube?

2. Density problem: Given a set of integers A ⊆ {1, 2, . . .}, how large must A be to contain
an affine d-cube?

Concerning the first (partition) problem, the existence of H(r, d) for all r and d was first
proved by Hilbert (1892). This result was then strengthened by van der Waerden (1927), whose
celebrated theorem says that, for every r and d there is an integer n = W (r, d) such that, for any
partition of {1, . . . , n} into r classes, at least one class contains an arithmetic progression with d
terms. We will prove this theorem in Chap. ??. Note that it implies Hilbert’s result because any
such progression a, a + b, a + 2b, . . . , a + (d − 1)b is also an affine (d − 1)-cube C(a, b, b, . . . , b).

At present not much is known about the rate of growth of van der Waerden’s function W (r, d)
except that it is primitive recursive (Shelah 1988). For small values of r and d we know better
bounds. Using the counting sieve we have proved that W (2, d) > 2d/2 (see Theorem ??). Behrend
(1949) proved a lower bound for the density of sets without arithmetic progressions of length three:

there are subsets A of [n] with |A| ≥ n · 2−O(
√

log n) and no length-three arithmetic progressions
(see Theorem ??).

If we consider affine cubes instead of arithmetic progressions then the situation is better. In
particular, the following bounds for Hilbert’s function H(r, d) are known. Brown et al. (1985) have

shown that there exist constants ǫ > 0 and c > 0 such that rǫd ≤ H(r, d) ≤ rcd

, where c ∼ 2.6
follows from Hilbert’s original proof. Quite recently, these bounds were improved by Gunderson
and Rödl (1998):
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Theorem 20.6. For any integers d ≥ 3 and r ≥ 2,

(122) r(1−ǫ)(2d−1)/d ≤ H(r, d) ≤ (2r)2d−1

,

where ǫ → 0 as r → ∞.

The proof of the upper bound in (??) is based on the following density result, known as Sze-
merédi’s cube lemma whose strengthened version, found by Graham (1981) and Graham, Roth-
schild and Spencer (1990), is as follows (see Sect. ?? for the proof).

Lemma 20.7. Let d ≥ 2 be given. Then, for every sufficiently large n, every subset A of

{1, . . . , n} of size |A| ≥ (4n)1−1/2d−1

contains an affine d-cube.

The proof of the lower bound in (??) is based on the following lemma, whose proof gives one
more illustration of the deletion method at work.

Lemma 20.8 (Gunderson–Rödl 1998). For each d ≥ 2 and every set X of positive integers,
there exists an A ⊆ X with

|A| ≥ 1
8
|X|1−d/(2d−1),

which does not contain any replete affine d-cubes.

Proof. Fix d ≥ 3, a set X, and let

p := |X|−d/(2d−1).

Without loss of generality, we can assume that X is large enough so that 1
8
p|X| > 2d − 1, because

if not, then any set A of at most 2d − 1 elements would satisfy the lemma.
Let Y be a random subset of X whose elements are chosen independently with probability p.
Since any replete affine d-cube C = C(x0, x1, . . . , xd) is uniquely determined by d + 1 distinct

integers x0, x0+x1, . . . , x0+xd in X, the expected number of replete affine d-cubes in Y is bounded
above by ( |X|

d + 1

)
· Pr [C ⊆ Y ] =

( |X|
d + 1

)
· p2d

.

Therefore (by Markov’s inequality), with probability at least 1/2, the number of replete affine
d-cubes in Y does not exceed

(123) 2

( |X|
d + 1

)
p2d

< 1
3
|X|p,

because

2 ·
( |X|

d + 1

)
· p2d

< 2

(
e|X|
d + 1

)d+1

· p2d

= 2

(
e

d + 1

)d+1

|X|d+1 · |X|−d2d/(2d−1)

≤ 1
3
|X|1−d/(2d−1) = 1

3
|X|p.

On the other hand, the number |Y | of elements in a random subset Y of X is a binomially
distributed random variable with expectation |X|p. It can be shown (see Exercise ??) that then

(124) Pr [|Y | ≤ 1
2
|X|p] < 2

(
2

e

)|X|p/2

.

Since p|X| > 8(2d − 1) and d ≥ 2, this implies that

(125) Pr [|Y | ≥ ⌊ 1
2
|X|p⌋] >

1

2
.

Hence, there must exist an instance Y ⊆ X of Y satisfying both above events; fix such Y . Due to
(??) and (??), this set has at least ⌊ 1

2
|X|p⌋ elements and contains fewer that 1

3
|X|p replete affine
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d-cubes. Deleting an element from each of these cubes, we get a set A ⊆ Y with no replete affine
d-cubes such that

|A| > |Y | − 1
3
|X|p ≥ ⌊ 1

2
|X|p⌋ − 1

3
|X|p > 1

3
|X|p,

where the last inequality follows from our assumption that |X|p is larger than 8(2d − 1) ≥ 24. �

Exercises

Ex 20.1. Prove the following analogon of Theorem ?? for bipartite graphs: If a bipartite
n × n graph has minimum degree n − d, then its edges can be covered by at most O(d log n)
complete bipartite subgraphs. Hint: Pick every vertex on the left side independently, with probability
p = 1/(d + 1) to get a set S, and let T be the set of all vertices on the right side joined to all vertices in
S. Show that O(d log n) such bipartite complete subgraphs S × T are enough to cover all edges.

Ex 20.2. Let Sn = X1+· · ·+Xn where Xi are independent random variables with Pr [Xi = 1] =
p and Pr [Xi = 0] = 1 − p. Show that

Pr [Sn ≤ pn/2] < 2(2/e)pn/2.

Hint: Recall that Pr [Sn ≤ pn/2] =
∑

k≤pn/2

(
n
k

)
pk(1 − p)n−k; show that each term in this sum is more

than two times larger than the previous one, and hence, Pr [Sn = pn/2 − k] < 2−kPr [Sn = pn/2], for
k < pn/2. Sum up and use the estimate for

(
n

pn

)
obtained in Exercise ??.

Ex 20.3. Show that every graph on n vertices has an independent set of size at least n/(2d),
where d is the average degree of its vertices. Hint: Combine Theorem ?? with Euler’s theorem from
Chap. ??.

Ex 20.4. (Gunderson–Rödl 1998). Prove that if a finite collection X of distinct positive
integers contains an affine d-cube then either X contains a replete affine d-cube or an arithmetic
progression of length 3 (or both). Hint: First, show that if C = C(x0, x1, . . . , xd) ⊆ X is an affine
d-cube, but is not replete (i.e., |C| < 2d) then we can find two subsets I, J ⊂ [n] such that I 6= J but∑

i∈I\J
xi =

∑
j∈J\I

xj 6= 0, and consider the triple of integers

x0 +
∑

i∈I∩J

xi, x0 +
∑

i∈I

xi, x0 +
∑

i∈I∪J

xi.

Ex 20.5. (Zarankiewicz’s problem; Erdős–Spencer 1974). Let ka(n) be the minimal k such
that all n × n 0-1 matrices containing more than k ones contain an a × a submatrix consisting
entirely of ones (the “all-ones” submatrix). Prove that for every constant a ≥ 2 there is an ǫ > 0
such that ka(n) ≥ ǫn2−2/a. Hint: Argue as in the proof of Theorem ??. Take a random n×n 0-1 matrix
A, each entry of which takes value 1 independently and with probability p = n−2/a. Associate with each
a × a submatrix e of A the indicator random variable Ye for the event “e is an all-ones submatrix.” Switch
one entry of each such submatrix to 0 and argue that in the resulting matrix we still can expect at least
n2p−

(
n
a

)2
pa2

ones. (A more accurate choice of p leads to a somewhat better bound ka(n) ≥ ǫn2−2/(a+1).)

Ex 20.6. (Reiman 1958). Improve the above bound on ka(n) when a = 2: show that k2(n) ≥
(1 − o(1))n3/2. Hint: Let n = p2 + p + 1 for a prime p, and consider the incidence matrix of lines in a
projective plane of order p (see Sect. ??).

Ex 20.7. (Spencer 1990). Let F be an r-uniform family of subsets on an n-element set.
Supose that, in average, each element belongs to d members of F . Prove that there exists a
set S of elements such that S is independent (i.e., contains no member of F) and has size
|S| ≥ (1 − 1/r) · n · d−1/(r−1). Hint: Argue as in the proof of Theorem ?? with p = d−1/(r−1).



CHAPTER 21

The Second Moment Method

The pigeonhole property of expectation says that a random variable X cannot always be
smaller (or always greater) than its expectation E [X]. The second moment property tells us

more: if the variance of X is much smaller than E [X]
2

then X is almost always near to E [X],
that is, the values of X are concentrated around its expectation.

1. The method

Let X be a random variable and Var [X] be its variance,

Var [X] = E
[
(X − E [X])2] = E

[
X2]− E [X]

2
.

The second moment method uses the fact that, if Var [X] = o(E [X]
2
), then X ∼ E [X], i.e., X is

almost always almost equal to its expectation E [X]. This follows from Chebyshev’s inequality

(126) Pr [|X − E [X] | ≥ t] ≤ Var [X]

t2

which itself is an easy consequence of Markov’s inequality (see Exercise ??). In particular, setting
t = E [X] we arrive at

(127) Pr [X = 0] ≤ Pr [X ≥ 0] ≤ Var [X]

E [X]
2 .

The following refined form of this inequality is often useful:

(128) Pr [X = 0] ≤ Var [X]

E [X2]
.

To prove this inequality, let IX be the indicator random variable for the event X 6= 0. Using the
Cauchy–Schwarz inequality (see Proposition ??) we obtain

E [X]
2

= E [IX · X]
2 ≤ E [IX ] E

[
X2] = Pr [X 6= 0] · E

[
X2] ,

or equivalently,

Pr [X = 0] = 1 − Pr [X 6= 0] ≤ 1 − E [X]
2

E [X2]
=

Var [X]

E [X2]
.

If X = X1 + · · · + Xn is a sum of random variables, then the variance can be computed by the
formula

Var [X] =

n∑

i,j=1

Cov (Xi, Xj) =

n∑

i=1

Var [Xi] +
∑

i6=j

Cov (Xi, Xj) ,

where Cov (Xi, Xj) is the covariance and is defined as

Cov (Xi, Xj) := E [XiXj ] − E [Xi] · E [Xj ] .

In general, if Xi and Xj are independent, then E [XiXj ] = E [Xi]·E [Xj ], and hence, Cov (Xi, Xj) =
0. This often considerably simplifies the variance calculations.

Let us mention that there are several forms of Chebyshev’s inequality – the usual form (stated
above), and the following, less standard form (see, for example, Hardy, Littlewood and Pólya
(1952), Theorem 43):

219
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Proposition 21.1. Let a1, . . . , an be a non-decreasing sequence and b1, . . . , bn be a non-
increasing sequence of non-negative numbers. Then,

n∑

i=1

aibi ≤ 1

n

( n∑

i=1

ai

)( n∑

i=1

bi

)
.

2. Distinct sums

Let f(n) denote the maximal m such that there exists a set x1, . . . , xm of m distinct numbers
in [n] = {1, . . . , n} all of whose sums are distinct. An example of such a set consists of all numbers
of the form 2i with i ≤ log2 n; this shows that f(n) ≥ 1+⌊log2 n⌋. We now use the second moment
method to show that this lower bound is almost optimal: f(n) ≤ (1 + o(1)) log2 n.

Theorem 21.2. f(n) ≤ log2 n + log2 log2 n + O(1).

Proof. Let x1, . . . , xm be a subset of m = f(n) integers in [n] all of whose sums are distinct.
Let I1, . . . , Im be independent random variables, each taking values 0 and 1 with equal probability
1/2. Consider the random variable X = I1x1 + · · · + Imxm. Then

E [X] =
x1 + · · · + xm

2
and Var [X] =

x2
1 + · · · + x2

m

4
≤ n2m

4
.

Setting Y := X − E [X] and using Chebyshev’s inequality with t := 2
√

Var [X] ≤ n
√

m, after
reversing the inequality we obtain

Pr [|Y | ≤ t] ≥ 1 − 1

4
= 0.75 .

On the other hand, due to the assumption that all sums of x1, . . . , xm are distinct, the probability
that X takes a particular value is either 0 or 2−m. In particular, Pr [Y = s] ≤ 2−m for every
integer s in the interval [−t, t]. Since there are only 2t + 1 such integers, the union bound implies
that

Pr [|Y | ≤ t] ≤ 2−m(2t + 1) .

Comparing the above inequalities and remembering that t ≤ n
√

m leads to 0.75 · 2m ≤ 2t + 1 ≤
2n

√
m + 1, it follows that 2m/

√
m ≤ Cn for a constant C, and the desired upper bound on

m = f(n) follows. �

3. Prime factors

Number theory has its foundation in the Fundamental Theorem of Arithmetic, which states
that every integer x > 1 can be written uniquely in the form

x = pk1
1 pk2

2 · · · pkr
r ,

where the pi’s are primes and the ki’s are positive integers. Given x, we are interested in the
number r of prime factors of x, that is, in the number of distinct primes pi in such a representation
of x. This number of primes dividing x is usually denoted by ν(x).

An important result in number theory, due to Hardy and Ramanujan (1917) states that almost
every integer number between 1 and n has about ln ln n prime factors. “Almost all” here means
all but o(n) numbers.

Theorem 21.3. Let α = α(n) be an arbitrarily slowly growing function. Then almost all

integers x in [n] satisfy |ν(x) − ln ln n| ≤ α
√

ln ln n.

Proof (due to Turán 1934). Throughout this proof, let p, q denote prime numbers. We need two
well known results from number theory, namely,

(129)
∑

p≤x

1

p
≤ ln ln x + O(1) ,

(130) π(x) = (1 + o(1))
x

ln x
,

where π(x) denotes the number of primes smaller than x.
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We now choose x randomly from the set {1, . . . , n}. For prime p, let Xp be the indicator
random variable for the event that p divides x, and let X =

∑
p≤x Xp; hence, X = ν(x).

Since x can be chosen in n different ways, and in ⌊n/p⌋ cases it will be divisible by p, we have
that

E [Xp] =
⌊n/p⌋

n
≤ 1

p
,

and by (??) we also have

E [X] ≤
∑

p≤x

1

p
≤ ln ln n + O(1) .

Now we bound the variance

Var [X] =
∑

p≤x

Var [Xp] +
∑

p6=q≤n

Cov (XpXq) ≤ E [X] +
∑

p6=q≤n

Cov (XpXq) ,

since Var [Xp] ≤ E [Xp]. Observe that XpXq = 1 if and only if both p and q divide x, which
further implies that pq divides x. In view of this we have

Cov (XpXq) = E [XpXq] − E [Xp] E [Xq] =
⌊n/(pq)⌋

n
− ⌊n/p⌋

n
· ⌊n/q⌋

n

≤ 1

pq
−
(1

p
− 1

n

)(1

q
− 1

n

)

≤ 1

n

(1

p
+

1

q

)
.

Then by (??)
∑

p6=q≤n

Cov (XpXq) ≤ 2π(n)

n

∑

p≤n

1

p
= O

( ln ln n

ln n

)
→ 0 .

Applying Chebyshev’s inequality with t = α
√

ln ln n yields the desired result. �

4. Separators

In complexity theory we often face the following problem. We have a set of players, each of
whom can see some small portion of the input bits, and we want to split the players into two
groups so that for each group there is a large set of “forbidden” bits which are seen by no member
of that group. To avoid trivial situations, we also assume that every bit is seen by at least one
player. This question can be formalized as follows.

Let F = {F1, . . . , Fm} be a family of subsets of some set X. By a separator for F we will
mean a pair (S, T ) of disjoint subsets of X such that each member of F is disjoint from either S
or from T ; the size of such a separator is the minimum of |S| and |T |.

To approach the question raised at the beginning, interpret X as the set of bits and let Fi be
the set of bits seen by the i-th player. The problem is, given F , to make the sets of “forbidden
bits” S and T as large as possible. Intuitively, if no bit is seen by too many players then these sets
should be large. Using the averaging principle for partitions (a prototype of Markov’s inequality),
we have shown in Exercise ?? that this is true if no bit is seen by too many players. Using the
second moment method, Beame, Saks, and Thathachar (1998) have shown that we may relax this
condition, and only require that on average, no bit is seen by too many players.

The degree dx of a point x in F is the number of members of F that contain x. The average
degree of F is

d =
1

|X|
∑

x∈X

dx .

Theorem 21.4 (Beame–Saks–Thathachar 1998). Let F be a family of non-empty sets of an
n-element set, each containing at most r points. Let d be the average degree of F . Then, F has
a separator of size at least (1 − δ)2−dn, where

δ =

√
dr2d+1

n
.
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In particular, if 4rd2d+1 ≤ n, then F contains a separator of size at least n/2d+1.

Proof. Let X =
⋃

F ∈F F and n = |X|. Color each set F ∈ F red or blue uniformly and
independently with probability 1/2. Define S (respectively, T ) to be the set of points x such that
every set that contains x is colored red (respectively, blue). Since every element of X occurs in
at least one set, it follows that S and T are disjoint. Moreover, for each F ∈ F , either F ∩ S

or F ∩ T is empty. To complete the proof, we show that with positive probability both S and T

have at least (1 − δ)2−dn elements.
Let Zx be the indicator random variable for the event “x ∈ S.” By the definition of S, this

event occurs with probability 2−dx , implying that

E [Zx] = Pr [Zx = 1] = 2−dx .

Let Z =
∑

x Zx and observe that Z = |S|. Using the arithmetic-geometric mean inequality (??),
we obtain

(131) E [Z] =
∑

x

E [Zx] =
∑

x

2−dx ≥ n · 2−
∑

x
dx/n = n2−d.

Using the second moment argument, we show below that Z is close to its expected value with high
probability. By Chebyshev’s inequality (??) we need only to upper-bound the variance

(132) Var [Z] =
∑

x

Var [Zx] +
∑

x6=y

Cov (Zx, Zy) ,

where Cov (Zx, Zy) = E [ZxZy] − E [Zx] E [Zy] is the covariance of Zx and Zy. Consider the first
term in the right-hand side of (??). For any x, Zx is a Bernoulli random variable, so Var [Zx] =

E [Zx] − E [Zx]
2 ≤ E [Zx], implying that

(133)
∑

x

Var [Zx] ≤ E [Z] .

To bound the second term in the right-hand side of (??), observe that if no member of F contains
both x and y, then Zx and Zy are independent, implying that Cov (Zx, Zy) = 0. Thus, we are
only interested in those pairs (x, y) such that some member of F contains both x and y. For any
fixed x, the number of such pairs (x, y) is at most (r − 1)dx. For each such pair,

Cov (Zx, Zy) ≤ E [ZxZy] ≤ E [Zx] ≤ 2−dx .

Therefore, ∑

x6=y

Cov (Zx, Zy) ≤ (r − 1)
∑

x

dx2−dx .

The last term above can be bounded as follows. Order the x’s so that the sequence {dx} is
non-decreasing. Now the second Chebyshev inequality (Proposition ??) can be applied to the
sequences {dx} and {2−dx}. We obtain

(134)
∑

x6=y

Cov (Zx, Zy) ≤ r − 1

n

(∑

x

2−dx

)(∑

x

dx

)
= d(r − 1)E [Z]

because (
∑

x dx)/n = d, and
∑

x 2−dx = E [Z]. Substitute the bounds (??) and (??) into (??).
We obtain

Var [Z] ≤ (d(r − 1) + 1)E [Z] ≤ drE [Z] ,

where the last inequality holds because each x ∈ X occurs in at least one set, implying that
d =

∑
x dx/n ≥ 1. Using Chebyshev’s inequality (??), we have

Pr [Z < (1 − δ) · E [Z]] <
Var [Z]

δ2 · E [Z]
2 ≤ dr

δ2E [Z]
.

Substituting for δ its value as given by the statement of the theorem, and using the inequality
(??), we obtain

Pr [Z < (1 − δ) · E [Z]] <
drn

dr2d+1E [Z]
=

n

2d+1E [Z]
≤ n

2d+12−dn
=

1

2
.
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In a similar fashion, we obtain Pr [|T | < (1 − δ) · E [Z]] < 1/2. Thus, with positive probability,
both S and T have size at least

(1 − δ) · E [Z] ≥ (1 − δ)2−dn.

We conclude that there is a coloring of the sets in F such that the induced S and T satisfy the
theorem. �

5. Threshold for cliques

The second moment method is a useful tool for determining the threshold function of an
event, i.e., a threshold such that below it, the probability of the event tends to 0, and above it,
the probability tends to 1.

A k-clique is a complete graph on k vertices. We write ω(G) ≥ k if the graph G contains a
k-clique. A random graph G(n, p) is a graph on n vertices where each edge appears independently
with probability p.

How large does p have to be before a random graph G is very likely to contain a 4-clique? The
answer is remarkable: there is a sharply defined threshold value of p such that, if p is above this
value then G is almost certain to contain a 4-clique, and if p is below it then G is almost certain
not to contain such a clique.

Theorem 21.5. The threshold for a random graph G(n, p) to contain a 4-clique is p = n−2/3.

Proof. For a subset of four vertices S, let AS be the event that S induces a clique in G(n, p),
and let XS be the indicator variable of AS . Clearly, Pr [XS = 1] = p6 for every S (every 4-clique
has six edges). We define X =

∑
XS . Our goal is to show that Pr [X ≥ 1] tends to 0 if p ≪ n−2/3,

and to 1 if p ≫ n−2/3.
The first claim follows from Markov’s inequality:

Pr [X ≥ 1] ≤ E [X] =

(
n

4

)
· p6 ∼ n4p6

24
→ 0, if p ≪ n−2/3.

To prove the second claim, suppose p ≫ n−2/3. We must show that Pr [X = 0] tends to 0. By the
second moment method,

Pr [X = 0] ≤ Var [X]

E [X]
2 ,

so all what we need is to estimate the variance. As we have already mentioned above, the variance
can be written in the form

(135) Var [X] =
∑

S

Var [XS ] +
∑

S 6=T

Cov (XS , XT ) .

Since XS is an indicator random variable, its variance Var [XS ] = E [XS ] − E [XS ]
2 ≤ E [XS ] = p6

as six different edges must lie in G(n, p). Since there are
(

n
4

)
= O(n4) sets S, the total contribution

of the first sum in (??) is O(n4p6). Let us now estimate the contribution of pairs S 6= T .
If the events AS and AT are independent, then Cov (XS , XT ) = 0, and these pairs contribute

nothing. Now, since S 6= T , the events AS and AT can be dependent if and only if the cliques S
and T have common edges – that is, if and only if |S ∩ T | = 2 or |S ∩ T | = 3.

There are O(n6) pairs S, T with |S ∩T | = 2 and for each of these Cov (XS , XT ) ≤ E [XSXT ] =
p11 as S ∪ T has 11 different edges. So, the total contribution of these pairs is O(n6p11).

Similarly, there are O(n5) pairs S, T with |S ∩ T | = 3 and for each of these E [XSXT ] = p9,
since in this case S ∪ T has 9 different edges; and the total contribution of these pairs is O(n5p9).

Putting all this together in (??) gives

Var [X] = O
(
n4p6 + n6p11 + n5p9) = o(n8p12) = o(E [X]

2
),

since p ≫ n−2/3. Therefore, Pr [X = 0] = o(1) and hence G(n, p) is almost certain to contain a
4-clique. �
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Let us consider a more general question: given a graph G, what is the threshold function for
the property that a random graph G(n, p) contains a copy of G as an induced subgraph? (Recall
that induced subgraphs are obtained by deleting vertices together with all the edges incident to
them.) In the previous section we have solved this question for the case when G is a complete
graph on 4 vertices. What about other graphs? Using the second moment method, a surprisingly
general answer to this question was found.

The density of a graph G = (V, E) is the fraction d(G) := |E|/|V |. The subgraph density m(G)
of a graph is the maximum density d(H) of its subgraph H = (V ′, E′). A graph G is balanced if
d(H) ≤ d(G) for all subgraphs H of G.

It turns out that n−1/m(G) is the right threshold for an arbitrary (!) balanced graph G. This
fundamental result was proved by Erdős and Rényi (1960). Bollobás (1981) and Ruciński and
Vince (1986) extended it by removing this restriction on G (of being balanced).

Theorem 21.6 (Erdős–Rényi 1960). Let G be a balanced graph on k vertices. The threshold
for the property that a random graph G(n, p) contains a subgraph isomorphic to G is n−1/m(G).

This theorem can be proved in a similar way to Theorem ??. But the computations are more
involved, and we omit the proof – the interested reader can find it in the book of Alon and Spencer
(1992) or in the survey paper of Karoński (1995).

Exercises

Ex 21.1 (Chebyshev’s Inequality). If X is a non-negative random variable with mean µ =
E [X] and a a real number, then Markov’s inequality gives an upper bound Pr [X ≥ a] ≤ µ/a
(see Theorem ??). Use this inequality to prove the following Chebyshev’s Inequality. Let X be a
random variable with mean µ = E [X] and variance σ2 = Var [X]. Then for any real a > 0,

Pr [|X − µ| ≥ aσ] ≤ 1

a2 .

Hint: Apply Markov’s inequality to a random variable Y := (X − µ)2.

Ex 21.2. Show that Chebyshev’s inequality cannot be improved. Hint: Consider a random
variable X taking its values in {−1, 0, +1} with probabilities Pr [X = −1] = 1/2a2, Pr [X = 0] = 1 − 1/a2

and Pr [X = +1] = 1/2a2.

Ex 21.3 (Cantelli’s Inequality). Prove the following one-sided Chebyshev’s inequality:

Pr [X ≥ µ + aσ] ≤ 1

1 + a2 .

Hint: Let t ≥ −µ be a parameter, consider the random variable Y := (X + t)2, compute its expectation,
apply Markov’s inequality and show that the probability Pr [X ≥ µ + aσ] is minimized when t = σ2/a−µ.

Ex 21.4. Let A1, . . . , An be arbitrary events. Define a =
∑n

i=1 Pr[Ai] and b =
∑

i<j Pr[Ai ∩
Aj ]. Prove that

Pr[A1 · · · An] ≤ a + 2b

a2 − 1

and

Pr[A1 ∪ · · · ∪ An] ≥ a2

a + b
.

Hint: Let X be the number of Ai’s that occur. For the first inequality, use Chebyshev’s inequality to
show that Pr [X = 0] ≤ a−2E[(X − a)2], and use the linearity of expectation to expand the righthand
expression. For the second inequality, rewrite (??) as Pr[X > 0] ≥ E [X]2 /E [X]2.

Ex 21.5. Let k > 0 be an integer, and let p = p(n) be a function of n such that p ≥ (6k ln n)/n
for large n. Prove that “almost surely” the random graph G = G(n, p) has no large independent
set of vertices. Namely, show that Pr

[
α(G) ≥ n

2k

]
→ 0 as n → ∞.

Ex 21.6. Let ǫ > 0 and p = p(n) > 0, and let r ≥ (1+ǫ)(2 ln n)/p be an integer-valued function
of n. Show that “almost surely” the random graph G(n, p) does not contain r independent vertices.
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Ex 21.7. A forest is a graph without non-trivial cycles (i.e., cycles of length ≥ 3). Prove that,
if np → 0 as n → ∞, then Pr [G(n, p) is a forest] → 1. Hint: Count the expected number of cycles
and apply Markov’s inequality.

Ex 21.8. Let p be constant. Show that with a probability approaching 1 the graph G(n, p)
has the property that every pair of its vertices has a common neighbor, i.e., a vertex, adjacent to
both of them. Hint: Consider indicator random variables Xij for the event that i and j do not have a
common neighbor. Argue that E [Xij ] = (1 − p2)n−2 and apply Markov’s inequality.

Ex 21.9. Prove that p = ln n/n is a threshold probability for the disappearance of isolated
vertices. Hint: Consider the random variable X = X1 + . . . + Xn where Xi indicates whether vertex i

is isolated in G(n, p). When estimating the variance of X, observe that XiXj = 1 iff both vertices are
isolated. That requires forbidding 2(n − 2) + 1 edges, so E [XiXj ] = (1 − p)2n−3.





CHAPTER 22

The Entropy Function

Although the concept of entropy was originally a thermodynamic construct, it has been
adapted to other fields, including information theory. In this theory, entropy is a measure of
the uncertainty associated with a random variable. It measures the average information con-
tent one is missing when one does not know the value of the random variable. The concept was
introduced by Claude E. Shannon in his 1948 paper "A Mathematical Theory of Communication."

A fair coin has an entropy of one bit. However, if the coin is not fair, then the uncertainty
is lower (if asked to bet on the next outcome, we would bet preferentially on the most frequent
result), and thus the Shannon entropy is lower.

In this chapter we will consider some applications of this concept—the Shannon entropy—in
combinatorics.

1. Quantifying information

The information size h0 (A) of a finite set A is the number of bits that is necessary to encode
each element of A separately, that is,

h0 (A) = log2 |A| .

If we have two sets A and B, then h0 (A × B) = h0 (A)+h0 (B). This justifies the logarithm. The
next notion, the information gain, is also intuitive.

Suppose we need to uncover a certain English word. We manage to obtain one letter, say, an
“e.” But this letter is common in English, so this provides little information. If, on the other hand,
the letter that we discover is “z” (the least common in English), the search has been narrowed
and we obtain more information. The notion of “information gain” quantifies this situation.

Let (A, p) be a discrete probability space. That is, A is a finite set, and each element a ∈ A
has probability pa = Pr[a]. As before, the probability of an event B ⊆ A is p(B) =

∑
a∈B pa. The

information gain

H(B|A) := log2
1

p(B)
= − log2 p(B)

measures the gain obtained by the knowledge that the outcome belongs to the set B. The infor-
mation gain has the following additivity property. Let B ⊂ C ⊂ A. The gain for knowing that
the outcome is in C is H(C|A) = − log2 p(C). The gain for knowing that it is in B, after knowing
that it is in C, is

H(B|C) = − log2 Pr[B | C] = − log2
p(B)

p(C)
.

It follows that H(B|A) = H(C|A) + H(B|C), as it should be.

2. Limits to data compression

Let A = {a1, . . . , an} be a finite set of letters (or symbols). A (binary) code is an assignment
ai 7→ c(ai) of binary strings (codewords) c(ai) to symbols. A code is a prefix code if no codeword
occurs as the beginning of another codeword. Such codes are uniquely decodable codes where a
sequence of binary numbers can be decoded sequentially. That is, one reads the binary numbers
from the left, one by one, until one recognizes the code of a letter. One extracts the letter, and
reads the next binary numbers until the next letter is identified.

The folowing lemma tells us that we cannot have short codewords for all letters: if some letters
have short codewords, there must be letters with long ones.

227
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Lemma 22.1 (Kraft Inequality). For every prefix code with codeword lengths ℓ1 ≤ ℓ2 ≤ . . . ≤
ℓn, we have that

(136)

n∑

i=1

2−ℓi ≤ 1 .

Conversely, for a given set of natural numbers ℓ1 ≤ ℓ2 ≤ . . . ≤ ℓn, satisfying the above inequality,
there exists a prefix code with those codeword lengths.

By using Jensen’s inequality f(
∑

i λixi) ≤ ∑
i λif(xi) with λi = 1/n and f(x) = 2−x, (??)

implies that
∑n

i=1 ℓi ≥ n log2 n. That is, the average length of a codeword is always at least log2 n.

Proof. Any given prefix code can be represented by a binary tree of depth ℓn where the i-th
codeword is represented by a path to a leaf at depth ℓi. This guarantees that no codeword is a
prefix of another. For each leaf in such a code tree, consider the set of descendants Ai ⊆ {0, 1}ℓn

that each would have at depth ℓn in a full tree. Then Ai ∩ Aj = ∅ for all i 6= j, and |Ai| = 2ℓn−ℓi .
Thus, given that the total number of nodes at depth ℓn is 2ℓn ,

2ℓn

n∑

i=1

2−ℓi =

n∑

i=1

|Ai| =

∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣ ≤ 2ℓn

from which (??) follows.
Conversely, given any ordered sequence of n natural numbers, ℓ1 ≤ · · · ≤ ℓn satisfying the

Kraft inequality, one can construct a prefix code with codeword lengths equal to ℓi by pruning
subtrees from a full binary tree of depth ℓn. First choose any node v1 from the full tree at depth ℓ1

and remove all of its descendents. This removes a 2−ℓ1 fraction of the nodes from the full tree from
being considered for the rest of the remaining codewords. In the next iteration choose any node v2

from the remaining tree at depth ℓ2, not on the path to v1, and remove all of its descendents. This
removes a 2−ℓ2 fraction of the full tree for a total of 2−ℓ1 + 2−ℓ2 . After m iterations, a

∑m
i=1 2−ℓi

fraction of the full tree nodes are removed from consideration for any remaining codewords. But,
by the assumption, this sum is less than 1 for all m < n, thus a prefix code with lengths ℓi can be
constructed for all n letters in our alphabet. �

The following inequality turns out to be very useful when dealing with sums involving loga-
rithms.

Lemma 22.2 (Gibbs’ Inequality). Let x1, . . . , xn and y1, . . . , yn be positive real numbers such
that

∑
i yi ≤ ∑i xi. Then

n∑

i=1

xi log2 xi ≥
n∑

i=1

xi log2 yi .

Proof. Multiplying both sides by ln 2 we may assume that all logarithms are natural. Using
the inequality ln x ≤ x − 1 (see ??), we get

∑
xi ln yi −

∑
xi ln xi =

∑
xi ln

(
yi

xi

)
≤
∑

xi

(
yi

xi
− 1

)

=
∑

yi −
∑

xi ≤ 0. �

An important special case of Shannon’s noiseless coding theorem gives a limit for data com-
pression for any probability distribution p1, . . . , pn on A = {a1, . . . , an}.

Given a prefix code c, which encodes each letter ai by a string c(ai) ∈ {0, 1}ℓi , the average
length of a codeword is

L(A, c) :=

n∑

i=1

piℓi .

If p1 = . . . = pn = 1/n then the Kraft inequality implies that L(A, c) ≥ log2 n. Shannon’s
theorem extends this to arbitrary distributions p1, . . . , pn on A = {a1, . . . , an}. To do this, define
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the entropy of the probability distribution on A by:

(137) H (A) =

n∑

i=1

pi log2
1

pi
.

That is, H (A) is just the expectation of the random variable ai 7→ log2(1/pi). Note that H (A) =
log2 n if all pi = 1/n.

Theorem 22.3 (Limits to compression). For any alphabet A, and any probability distribution
p on A, the average length L(A, c) of an optimal prefix code c satisfies

H (A) ≤ L(A, c) ≤ H (A) + 1 .

Thus, the expected length is minimized and is equal to H (A) only if the code-lengths are
equal to the Shannon information contents: ℓi = log2(1/pi). That is, frequent letters should be
coded with small length. This clearly comes at the expense of other letters, that will need longer
strings in order for the code to be decodable.

Proof. For the lower bound, consider a prefix code c with lengths ℓi = |c(ai)|. Define
z :=

∑n
j=1 2−ℓj and qi := 2−ℓi/z. By the Kraft inequality, we have that z ≤ 1, and hence,

log2 z ≤ 0. Together with the Gibbs inequality, we obtain

L(A, c) =
n∑

i=1

piℓi = −
n∑

i=1

pi log2 qi − log2 z ≥ −
n∑

i=1

pi log2 pi = H (A) .

For the upper bound, define ℓi = ⌈− log2 pi⌉. Then

n∑

i=1

2−ℓi ≤
n∑

i=1

pi = 1 .

This shows that the Kraft inequality holds for the lengths ℓi, so there exists a prefix code c with
these lengths. The expected length is easy to estimate:

L(A, c) =

n∑

i=1

pi⌈− log2 pi⌉ ≤
n∑

i=1

pi(− log2 pi + 1) = H (A) + 1 . �

A basic problem in information theory deals with encoding large quantities of information.
We start with a finite set A, which could for instance be the 26 letters from the Latin alphabet,
or the 128 ASCII symbols. We consider a message (a string) that contains n symbols from A
with n large. How many bits are required so that the message can be encoded without loss of
information? The answer is given by the information size: h0 (An) = n · h0 (A).

The question becomes more interesting, and the answer more surprising, if we allow an error
probability δ > 0. We now seek to encode only messages that only use symbols in a subset B ⊆ A
of “typical” characters, such that p(B) = Pr[B] ≥ 1−δ. If a message turns out to contain symbols
in A \ B, then we lose the information. The information size is given by

hδ (A) = inf
p(B)≥1−δ

log2 |B| .

Notice that hδ (A) → h0 (A) as δ → 0. We want to say something about hδ (An) as n → ∞. That
is, a string of n characters is selected at random using some probability. One wants to encode
this string, to send (or to store) it, and to decode it. We assume that no error is committed
during these operations, except that the string may lie outside the set Bn of codable strings. This
modeling is behind all compression algorithms.

So, given an alphabet A with a probability distribution a 7→ p(a), we want to say something
about hδ (An) as n → ∞. Notice that the probability of each string a = (a1, . . . , an) in An is
p(a) =

∏n
i=1 p(ai), that is, we assume independence. Both hδ (A) and

H (A) =
∑

a∈A

p(a) log2
1

p(a)
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are at most the information size h0 (A) = log2 |A| of the alphabet A. And we also have that
h0 (An) = n · h0 (A), but hδ (An) can be smaller than n · hδ (A) in general. It turns out that
hδ (An) ≈ n · H (A) for any δ > 0. That is, if we allow a tiny error, and if our message is long
enough, the number of required bits is roughly n · H (A).

Theorem 22.4 (Shannon’s source coding theorem). For any δ > 0,

lim
n→∞

1

n
hδ (An) = H (A) .

Proof. This is a consequence of the weak law of large numbers: If X is a random variable
with finite expectation E [X], and if X1, X2, . . . are independent copies of X, then

X1 + · · · + Xn

n

tends to E [X] with probability tending to 1, as n → ∞. If we define a random variable X : A → R

by X(a) := − log2 p(a), then

E [X] =
∑

a∈A

−p(a) log2 p(a) = H (A) .

On the other hand, for a random string (a1, . . . , an) in An we have that

− log2 p(a1, . . . , an) = − log2

n∏

i=1

p(ai) =

n∑

i=1

− log2 p(ai) =

n∑

i=1

Xi .

Thus, for an arbitrary small constant ǫ > 0, there exists a set An,ǫ ⊆ An such that limn→∞ p(An,ǫ) =
1, and any (a1, . . . , an) ∈ An,ǫ satisfies

2−n(H(A)+ǫ) ≤ p(a1, . . . , an) ≤ 2−n(H(A)−ǫ) .

Since 1 ≥ p(An,ǫ) ≥ |An,ǫ|2−n(H(A)+ǫ), we have that |An,ǫ| ≤ 2n(H(A)+ǫ). For any δ > 0, we can
choose n large enough so that p(An,ǫ) > 1 − δ. Then

hδ (An) ≤ log2 |An,ǫ| ≤ n(H (A) + ǫ) .

It follows that

lim sup
n→∞

1

n
hδ (An) = H (A) .

For the lower bound, let Bn,δ ⊆ An be the minimizer for Hδ, that is, p(Bn,δ) ≥ 1 − δ and

hδ (An) = log2 |Bn,δ| ≥ log2 |Bn,δ ∩ An,ǫ| .

Since limn→∞ p(An,ǫ) = 1, we have that p(An,ǫ) ≤ δ for n large enough. So,

p(Bn,δ ∩ An,ǫ) = p(Bn,δ) − p(Bn,δ ∩ An,ǫ) ≥ 1 − 2δ ,

implying that

|Bn,δ ∩ An,ǫ| ≥ (1 − 2δ)2n(H(A)−ǫ) .

We obtain

1

n
hδ (An) ≥ 1

n
log2(1 − 2δ) + H (A) − ǫ .

This gives the desired lower bound for the lim sup, and Shannon’s theorem follows. �
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Figure 1. The binary entropy function H2(x) = −x log2 x − (1 − x) log2(1 − x).

3. Shannon entropy

We now turn to a general notion of Shannon entropy and its properties.
Let X be a random variable taking values in some range B, and let pb denote the probability

that the value of X is b. The binary entropy of X, denoted by H (X), is just the expected
information gain of X:

H (X) :=
∑

b∈B

= pb log2
1

pb
= −

∑

b∈B

pb log2 pb

where 0 log2 0 is interpreted as 0. For example, if X takes only two variables 0 and 1 with
Pr [X = 1] = p, then H (X) = −p log2 p − (1 − p) log2(1 − p). Since this quantity only depends
on the probability distribution p, it is also often written as H(p) or H2(p), and this is the binary
entropy function, which we already introduced earlier.

Given an alphabet A = {a1, . . . , an} together with a probability distribution p1, . . . , pn, we
can consider A as a random variable with Pr[A = i] = pi. Then H (A) is precisely the quantity
(??) we considered above.

In general, entropy has the following basic properties:

(a) If |B| = 2t then H (X) ≤ t. Convexity arguments show that if the pb’s are smaller then the
entropy must be larger. The extreme case is pb = 2−t for all b ∈ B, then H (X) = t. Moreover,

(138)
∑

b∈S

pb log2
1

pb
≤ log2 |S|

for any subset S ⊆ B (see Exercise ??).
(b) Entropy has the concentration property. If H (X) ≤ t then there must be some b for which

Pr [X = b] ≥ 2−t.

(c) Entropy is subadditive: if X = (X1, . . . , Xn) is a random variable taking values in the set
B = B1 × · · · × Bn, where each Xi is a random variable taking values in Bi, then

H (X) ≤
n∑

i=1

H (Xi) .

The first two properties follow directly from the definition. The last needs a proof, and we give it
in Sect. ??.

If E is some event, it is natural to define the conditional entropy of X given E by

H(X|E) :=
∑

b∈B

−Pr [X = b | E ] · log2 Pr [X = b | E ] .

In the same way, if Y is any other random variable taking values in some range A, we define the
conditional entropy of X given Y by

H(X|Y ) :=
∑

a∈A

H(X|Y = a) · Pr [Y = a] .
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We think of H(X|Y ) as the uncertainty of X given a particular value of Y , averaged over the
range of values that Y can take. Fairly direct consequences of the definitions are:

(d) H(X|X) = 0;
(e) H(X|Y ) = 0 if and only if X = f(Y ) for some function f ;
(f) H(X|Y ) = H (X) if and only if X and Y are independent;
(g) H(X|Y, Z) ≤ H(X|Y ).

The main property of conditional entropy is the following:

(139) H (X, Y ) = H (Y ) + H(X|Y ) .

This equation also follows (though not so immediately) from definitions, and we leave the proof as
an exercise. Using this equality we can derive the following analogue of the equality Pr [A ∩ B] =
Pr [A] + Pr [B] − Pr [A ∪ B] :

(140) H (X, Y, Z) ≤ H (X, Y ) + H (Y, Z) − H (Y ) .

Indeed

H (X, Y, Z) = H (X, Y ) + H(Z|X, Y ) ≤ H (X, Y ) + H(Z|Y )

= H (X, Y ) + H (Y, Z) − H (Y ) .

4. Subadditivity

Just like expectation has the additivity property for the sums X = X1 + · · · + Xn, entropy
has similar (though weaker) property for strings X = (X1, . . . , Xn) of random variables.

Theorem 22.5. If X and Y are two random variables taking only finitely many values, then
H (X, Y ) ≤ H (X) + H (Y ), with equality only holding when X and Y are independent.

Proof. Suppose X and Y take their values in A and B, respectively. Let pa,b denote the
probability that (X, Y ) = (a, b), pa denote the probability that X = a and pb denote the probability
that Y = b. Since

∑
b∈B pa,b = pa and

∑
a∈A pa,b = pb, we have

H (X) + H (Y ) =
∑

a∈A

−pa log pa +
∑

b∈B

−pb log pb

=
∑

a∈A

∑

b∈B

−pa,b log pa +
∑

b∈B

∑

a∈A

−pa,b log pb

=
∑

(a,b)∈A×B

−pa,b log(pa · pb) .

Since
∑

a,b pa · pb =
∑

a pa (
∑

b pb) = 1, we can apply Lemma ?? to get

H (X) + H (Y ) ≥
∑

(a,b)∈A×B

−pa,b log pa,b = H (X, Y ) .

Equality holds only when pa,b = papb for all a ∈ A and b ∈ B. But this is exactly the condition
that X and Y are independent. �

Theorem ?? generalizes readily to more than two variables (we leave the proof as an exercise).

Theorem 22.6. Let X = (X1, . . . , Xn) be a random variable taking values in the set B =
B1 × · · · × Bn, where each of the coordinates Xi of X is a random variable taking values in Bi.
Then H (X) ≤ ∑n

i=1 H (Xi) with equality only holding when X1, . . . , Xn are mutually independent.

An interesting extension was proved by Chung, Frankl, Graham, and Shearer (1986). As in
Theorem ??, let X = (X1, . . . , Xn) be a random variable taking values in the set B = B1×· · ·×Bn,
where each Xi is a random variable taking values in Bi. Also assume that all Bi = {0, 1}. For a
subset of coordinates S, let XS denote the random variable (Xi)i∈S .
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Theorem 22.7 (Generalized Subadditivity). Let X = (X1, . . . , Xn) and B be as above and let
S1, . . . , Sm be subsets of [n] = {1, . . . , n} such that every i ∈ [n] belongs to at least k of S1, . . . , Sm.
Then

(141) H (X) ≤ 1

k

m∑

i=1

H (XSi
) .

Proof. For k = 1 the assertion follows from Theorem ??. Now assume k > 1. Let ν denote
the minimum number of Si’s whose union is [n]. We will prove (??) by induction on k and ν. If
ν = 1 then, say S1 = [n], and every point of [n] belongs to at least k − 1 of the sets S2, . . . , Sm.
By induction (on k) we have in this case that

(k − 1)H (X) ≤
m∑

i=2

H (XSi
)

and consequently, k · H (X) ≤ ∑m
i=1 H (XSi

) since X = XS1
.

Suppose ν > 1. We may assume w.l.o.g. that S1 ∪ S2 ∪ · · · ∪ Sν = [n]. Let S′
1 := S1 ∪ S2 and

S′
2 := S1 ∩S2. Clearly, every element of [n] is in at least k of the sets S′

1, S′
2, S3, . . . , Sm. Moreover,

already ν − 1 of these sets cover [n] because [n] = S′
1 ∪ S3 ∪ · · · ∪ Sν . By induction (on ν),

k · H (X) ≤
m∑

i=3

H (XSi
) + H

(
XS′

1

)
+ H

(
XS′

2

)
.

Since by (??) we have (we address this conclusion in the exercises) that

(142) H (XS1∪S2
) ≤ H (XS1

) + H (XS2
) − H (XS1∩S2

) ,

the desired inequality (??) follows. �

5. Combinatorial applications

Theorem ?? was used by Kleitman, Shearer, and Sturtevant (1981) to derive several interesting
applications in extremal set theory. Their basic idea can be illustrated by the following simple
corollary of Theorem ??.

Corollary 22.8. Let F be a family of subsets of {1, 2, . . . , n} and let pi denote the fraction
of sets in F that contain i. Then

log2 |F| ≤
n∑

i=1

H(pi) ,

where H(y) := −y log2 y − (1 − y) log2(1 − y).

Proof. Associate each set F ∈ F with its incidence vector vF , which is a binary vector
of length n. Let X = (X1, . . . , Xn) be the random variable taking values in {0, 1}n, where
Pr [X = vF ] = 1/|F| for all F ∈ F . Clearly,

H (X) = |F|
(

− 1

|F| log2
1

|F|

)
= log2 |F|,

and since here H (Xi) = H(pi) for all 1 ≤ i ≤ n, the result follows from Theorem ??. �

This corollary supplies a quick proof for the following well-known estimate for sums of binomial
coefficients (cf. Exercise ??).

Corollary 22.9. For every integer n and for every real 0 < p ≤ 1/2,

∑

i≤np

(
n

i

)
≤ 2nH(p).
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Proof (due to P. Frankl). Let F be the family of all subsets of cardinality at most pn of {1, 2, . . . , n}.
If pi is the fraction of subsets of F that contain i then p1 = . . . = pn. Counting in two ways we
obtain that

∑n
i=1 pi ≤ pn, and hence pi ≤ p for all i. Since the function H(p) is increasing for

0 ≤ p ≤ 1/2 this, together with Corollary ??, implies that

∑

i≤np

(
n

i

)
= |F| ≤ 2

∑n

i=1
H(pi) ≤ 2nH(p),

as needed. �

The following easy consequence of Theorem ?? tells us that a family cannot have many
members if its “projections” are small. For a family F ⊆ 2[n] of subsets of [n] = {1, . . . , n}, the
projection of F onto a subset S ⊆ [n] is the family of all intersections S ∩ A with A ∈ F .

Theorem 22.10 (Product Theorem). Let S1, . . . Sm be subsets of [n] such that each element
of [n] is contained in at least k of them. Let F ⊆ 2[n] and let Fi be the projection of F onto Si.
Then

|F|k ≤
m∏

i=1

|Fi| .

Proof. Let B1 = . . . = Bn = {0, 1}, and let X = (X1, . . . , Xn) be the random variable
taking values in B1 × · · · × Bn, where for each F ∈ F , X is equal to the incidence vector of F with
probability 1/|F|. By Theorem ??, k · H (X) ≤ ∑m

i=1 H (XSi
). But H (X) = log2 |F|, whereas

H (XSi
) ≤ log2 |Fi|, implying the desired result. �

The generalized subadditivity of the entropy function can be used to prove some non-trivial
“intersection theorems” (cf. Chap. ??). The following three results were obtained by Chung,
Frankl, Graham, and Shearer (1986).

Recall that a family F ⊆ 2[n] is intersecting if A ∩ B 6= ∅ for all A, B ∈ F . If F is intersecting
then |F| ≤ 2n−1, since F cannot contain both a set and its complement. Moreover, this is optimal
(just take the family of all subsets of [n] containing one fixed point). To make the question more
interesting we can require that the members of F not just intersect, but that these intersections
contain at least one of the given configurations. We first consider one easy example.

Theorem 22.11. Let F ⊆ 2[n] a family, and suppose that the intersection of any two of its
members contains a pair of consecutive numbers. Then

|F| ≤ 2n−2 .

Note that this upper bound is optimal: just let F be the family of all subsets containing the
set {1, 2}

Proof. By our assumption, for every A, B ∈ F there must be an i such that {i, i+1} ⊆ A∩B.
Let S0 and S1 be the set of all even and odd numbers in [n], respectively. Consider the projections
Fa = {A∩Sa : A ∈ F} of our family F onto these two sets, a = 0, 1. Note that the intersection of
any two members of Fa has the form (A∩B)∩Sa for some A, B ∈ F . Since |{i, i+1}∩Sa| = 1 for
every i and a, both of the families Fa are intersecting, and hence, |Fa| ≤ 2|Sa|−1 for both a = 0, 1.
Using Theorem ?? (with k = 1) we conclude that

|F| ≤ |F0| · |F1| ≤ 2|S0|−1 · 2|S1|−1 = 2n−2 . �

Theorem ?? also has not so trivial consequences. For example, one may take U to be the set
of all

(
n
2

)
edges of a complete graph Kn. We can look at the subsets A ⊆ U as (labeled) subgraphs

of Kn. (Dealing with “labeled” subgraphs means that we do not identify isomorphic ones.)

Theorem 22.12. Suppose that F is a family of (labeled) subgraphs of Kn such that for all
A, B ∈ F , the graph A ∩ B does not contain any isolated vertices. Then

|F| ≤ 2(n
2)− n

2 .

Note that this requirement is rather severe: each of the n vertices must be incident with at
least one common edge in A ∩ B. Is this upper bound optimal? (See Exercise ??.)
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Proof. Choose Si to be the star at the i-th vertex, i.e., Si consists of all n − 1 edges {i, j},
j 6= i. Clearly, every edge is in exactly two of S1, . . . , Sn. Consider the projections Fi := {A ∩ Si :
A ∈ F} of F onto these stars, i = 1, 2, . . . , n. Note that the intersection of any two members of
Fi has the form (A ∩ B) ∩ Si for some A, B ∈ F , and hence, is non-empty because the vertex i
cannot be isolated in the subgraph A ∩ B. Thus, each of the families Fi is intersecting, and hence,
|Fi| ≤ 2|Si|−1 = 2n−2 for all i = 1, 2, . . . , n. Applying Theorem ?? (with k = 2) we conclude that

|F| ≤
( n∏

i=1

|Fi|
)1/2

≤ 2n(n−2)/2 = 2(n
2)− n

2 . �

Let us say that a family F of subgraphs of Kn is triangle-intersecting if A ∩ B contains a
triangle for all A, B ∈ F .

Theorem 22.13. Let n ≥ 4 be even and let F be a family of (labeled) subgraphs of Kn. If F
is triangle-intersecting then

|F| ≤ 2(n
2)−2 .

It is not known if this bound is optimal, i.e., if 2(n
2)−2 can be replaced by 2(n

2)−3, the number
of subgraphs of Kn containing a fixed triangle.

Proof. We choose Si, 1 ≤ i ≤ m := 1
2

(
n

n/2

)
, to be all possible disjoint unions of two complete

(labeled) subgraphs on n/2 vertices each. That is, each Si has the form KU ∪ KU for some subset
of vertices U ⊆ {1, . . . , n} with |U | = n/2. Note that the intersection of any two members of Fi

has the form (A ∩ B) ∩ Si for some A, B ∈ F and Si = KU ∪ KU . By our assumption, A ∩ B must
contain three edges e1, e2, e3 forming a triangle. Since no triangle can lie entirely in a bipartite
graph, at least one of these three edges must belong to Si. So, each projection Fi is an intersecting

family, implying that |Fi| ≤ 2|Si|−1. Each of the graphs Si has s := 2
(

n/2
2

)
edges, and each edge

of Kn is in k :=
(

n−2
n/2

)
of the Si’s. By Theorem ??,

|F| ≤
( m∏

i=1

2|Si|−1
)1/k

= 2(s−1)m/k.

Substituting the values of s, m and k, we conclude that

(s − 1)m

k
=

1

2

[
2

(
n/2

2

)
− 1

](
n

n/2

)(
n − 2

n/2

)−1

≤
(

n

2

)
− n(n − 1)

n(n/2 − 1)
≤
(

n

2

)
− 2 . �

Exercises

Ex 22.1. Prove the properties (a), (b) and (d)—(g) of the entropy. Hint: To (??): use Gibbs’
inequality with yb = 1/|S|.

Ex 22.2. Prove the equation (??).

Ex 22.3. Let X be a random variable taking its values in some set B, and let Y = f(X)
where f is some function on B. Prove that H (Y ) ≤ H (X). Show that equality holds if and only
if f is one-to-one on the set of all b ∈ B such that Pr [X = b] > 0.

Ex 22.4. Show that for any random variables H (X, Y ) ≥ H (X).

Ex 22.5. Show that, for any random variable X, H(X2|X) = 0, but give an example to show
that H(X|X2) is not always zero. Hint: Let X take the values +1 and −1 with equal probability.

Ex 22.6. The random variable Y takes the integer values 1, 2, . . . , 2n with equal probability.
The random variable X is defined by X = 0 if Y is even, and X = 1 if Y is odd. Show that
H(Y |X) = H (Y ) − 1, but that H(X|Y ) = 0.
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Ex 22.7. Prove the inequality (??). Hint: Take X = XS1\S2 , Y = XS1∩S2 , Z = XS2\S1 and apply
(??).

Ex 22.8. Use Lemma ?? to prove that the entropy function is concave (or convex down) in the
following sense. Assume that X and Y are random variables distributed over {1, . . . , n} (these two
random variables may be dependent). Let α ∈ [0, 1] be any real number. Define a new random
variable Z, also distributed over {1, . . . , n}, with probability distribution

Pr [Z = z] = αPr [X = z] + (1 − α)Pr [Y = z] .

Prove that then
H (Z) ≥ αH (X) + (1 − α)H (Y ) .

Ex 22.9. Show that for even n the bound of Theorem ?? is best possible. Hint: Consider the
family of all subgraphs of Kn containing a fixed matching.



CHAPTER 23

Random Walks

There are n rocks forming a circle in a river, and there is a frog on one of these rocks. The frog
remains stationary with probability 1/3, jumps to the right rock with probability 1/3 and jumps
to the left one with probability 1/3. The frog problem is: where will the frog be after time t?

This is, perhaps, the most popular illustration of what is known as a random walk, a concept
which arises in many models of mathematics and physics. The reader can find such applications
in any standard probability book containing a chapter about random walks or Markov chains.
Besides these, random walks have found interesting applications in the theory of computing as
well. In this chapter we present some of them.

1. The satisfiability problem

A k-CNF (conjunctive normal form) is an And of an arbitrary number of clauses, each being
an Or of k literals; a literal is a variable xi or its negation xi. Given such a CNF F , we seek an
assignment of constants 0 and 1 to variables such that all the clauses are satisfied. For example,
if F = (x1 ∨ x2)(x2 ∨ x3)(x1 ∨ x3), then (1, 1, 0) is a satisfying assignment for this CNF. A CNF
is satisfiable if it has at least one satisfying assignment.

The k-SAT problem is: Given a k-CNF F , decide whether it is satisfiable. It is well known that
for any (even fixed) k ≥ 3, this problem is very hard—it is a so-called “NP-complete” problem.
It is therefore not very likely that the problem can be solved in polynomial (in the number n of
variables) time. In contrast, the case k = 2 is much easier.

1.1. Papadimitriou’s algorithm for 2-SAT. Let F be a 2-CNF, and suppose that we
know that it is satisfiable. How quickly can we find a satisfying assignment? Papadimitriou
(1991) proposed the following simple randomized procedure.

Suppose we start with an arbitrary assignment of values to the literals. As long as there is
a clause that is unsatisfied, we modify the current assignment as follows: we choose an arbitrary
unsatisfied clause and pick one of the (two) literals in it uniformly at random; the new assignment is
obtained by complementing the value of the chosen literal. After each step we check whether there
is an unsatisfied clause; if not, the algorithm terminates successfully with a satisfying assignment.

Theorem 23.1 (Papadimitriou 1991). Suppose that F is a satisfiable 2-CNF in n variables.
Then, with probability at least 1/2, the above algorithm will find a satisfying assignment in 2n2

steps.

Proof. Fix an arbitrary satisfying assignment a ∈ {0, 1}n for F , and refer to the values
assigned by a to the literals as the “correct values.”

The progress of the above algorithm can be represented by a particle moving between the
integers {0, 1, . . . , n} on the real line. The position of the particle indicates how many variables
in the current solution have “incorrect values,” i.e., values different from those in a. At each
iteration, we complement the current value of one of the literals of some unsatisfied clause, so that
the particle’s position changes by 1 at each step. In particular, a particle currently in position i,
for 0 < i < n, can only move to positions i − 1 or i + 1:

- i 11i i+ n0 1 .  .  . .  .  .

237
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Let t(i) denote the expected number of steps which a particle, starting in position i, makes
until it reaches position 0. Our goal is to show that t(i) ≤ n2 for all i.

A particle at location n can only move to n − 1, and the process terminates when the particle
reaches position 0 (although it may terminate earlier at some other position with a satisfying
assignment other than a). Hence, t(n) ≤ t(n − 1) + 1 and t(0) = 0. In general, we have that

t(i) = pi,i−1 · (1 + t(i − 1)) + pi,i+1 · (1 + t(i + 1)) ,

where pi,j is the probability that the particle moves from position i to position j ∈ {i − 1, i + 1}.
The crucial observation is the following: in an unsatisfied clause at least one of the literals

has an incorrect value. Thus, with probability at least 1/2 we decrease the number of variables
having false values. The motion of the particle thus resembles a random walk on the line where the
particle moves from the i-th position (0 < i < n) to position i − 1 with probability pi,i−1 ≥ 1/2.
This implies that

t(i) ≤ t(i − 1) + t(i + 1)

2
+ 1.

Replace the obtained inequalities by equations

x(0) = 0,

x(i) =
x(i − 1) + x(i + 1)

2
+ 1,

x(n) = x(n − 1) + 1.

This resolves to x(1) = 2n − 1, x(2) = 4n − 4 and in general x(i) = 2in − i2. Therefore,
t(i) ≤ x(i) ≤ x(n) = n2, as desired.

By Markov’s inequality, a random variable can take a value 2 times larger than its expectation
with probability at most 1/2. Thus, the probability that the particle will make more than 2 · t(i)
steps to reach position 0 from position i, is smaller than 1/2. Hence, with probability at least 1/2
the process will terminate in at most 2n2 steps, as claimed. �

1.2. Schöning’s algorithm for 3-SAT. Can one design a similar algorithm also for 3-
SAT? In the algorithm for 2-SAT above the randomness was only used to flip the bits—the
initial assignment can be chosen arbitrarily: one could always start, say, with a fixed assignment
(1, 1, . . . , 1). But what if we choose this initial assignment at random? If a formula is satisfiable,
then we will “catch” a satisfying assignment with probability at least 2−n. Interestingly, the success
probability can be substantially increased to about (3/4)n via the following simple algorithm
proposed by Schöning (1999):

1. Pick an initial assignment a ∈ {0, 1}n uniformly at random. The assignment a can be obtained
as a result of n independent experiments, where at the i-th experiment we flip a coin to
determine the i-th bit of a.

2. If a satisfies all clauses of F , then stop with the answer “F is satisfiable.”
3. If F is not satisfied by a, then pick any of its unsatisfied clauses C, choose one of C’s literals

uniformly at random, flip its value, and go to step (2).
4. Repeat (3) n times.

For a satisfiable 3-CNF F , let p(F ) be the probability that Schöning’s algorithm finds a
satisfying assignment, and let p(n) = min p(F ) where the minimum is over all satisfiable 3-CNFs
in n variables. So, p(n) lower bounds the success probability of the above algorithm.

It is clear that p(n) ≥ (1/2)n: any fixed satisfying assignment a∗ will be “caught” in Step
(1) with probability 2−n. It turns out that p(n) is much larger—it is at least about p = (3/4)n.
Thus, the probability that after, say, t = 30(4/3)n re-starts we will not have found a satisfying
assignment is at most (1 − p)t ≤ e−pt = e−30, an error probability with which everybody can live
quite well.

Theorem 23.2 (Schöning 1999). There is an absolute constant c > 0 such that

p(n) ≥ c

n

(
3

4

)n

.
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Proof. Let F be a satisfiable 3-CNF in n variables, and fix some (unknown for us) assignment
a∗ satisfying F . Let dist(a, a∗) = |{i : ai 6= a∗

i }| be the Hamming distance between a and a∗.
Since we choose our initial assignment a at random,

Pr [dist(a, a∗) = j] =

(
n

j

)
2−n for each j = 0, 1, . . . , n.

Hence, if qj is the probability that the algorithm finds a∗ when started with an assignment a of
Hamming distance j from a∗, then the probability q that the algorithm finds a∗ is

q =

n∑

j=0

(
n

j

)
2−nqj .

To lower bound this sum, we concentrate on the value j = n/3. As in the case of 2-CNFs,
the progress of the above algorithm can be represented by a particle moving between the integers
0, 1, . . . , n on the real line. The position of the particle indicates how many variables in the current
solution have “incorrect values,” i.e., values different from those in a∗. If C is a clause not satisfied
by a current assignment, then C(a∗) = 1 implies that in Step (3) a “right” variable of C (that is,
one on which a differs from a∗) will be picked with probability at least 1/3. That is, the particle
will move from position i to position i − 1 with probability at least 1/3, and will move to position
i + 1 with probability at most 2/3. We have to estimate the probability qn/3 that the particle
reaches position 0, if started in position n/3.

Let A be the event that, during n steps, the particle moves n/3 times to the right and 2n/3
times to the left. Then

qn/3 ≥ Pr [A] =

(
n

n/3

)(
1

3

)2n/3(
2

3

)n/3

.

Now we use the estimate
(

n

αn

)
≥ 1

O(
√

n)
2n·H(α) =

1

Θ(
√

n)

[( 1

α

)α( 1

1 − α

)1−α
]n

,

where H(α) = −α log2 α − (1 − α) log2(1 − α) is the binary entropy function (see Exercise ??).
Therefore, setting α = 1/3,

q ≥
(

n

n/3

)
qn/32−n

≥
(

n

n/3

)2(
1

3

)2n/3(
2

3

)n/3

2−n

≥ 1

Θ(n)

[
32/3

(3

2

)4/3(1

3

)2/3(2

3

)1/3
2−1
]n

=
1

Θ(n)

(3

4

)n

. �

2. Random walks in linear spaces

Let V be a linear space over F2 of dimension d, and let v be a random vector in V . Starting
with v, let us “walk” over V by adding independent copies of v. (Being an independent copy
of v does not mean being identical to v, but rather having the same distribution.) What is the
probability that we will reach a particular vector v ∈ V ? More formally, define

v(r) = v1 ⊕ v2 ⊕ · · · ⊕ vr,

where v1, v2, . . . , vr are independent copies of v. What can be said about the distribution of v(r)

as r → ∞? It turns out that, if Pr [v = 0] > 0 and v is not concentrated in some proper subspace
of V , then the distribution of v(r) converges to a uniform distribution, as r → ∞. That is, we will
reach each vector of V with almost the same probability!
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Lemma 23.3 (Razborov 1988). Let V be a d-dimensional linear space over F2. Let b1, . . . , bd

be a basis of V and

p = min {Pr [v = 0] , Pr [v = b1] , . . . , Pr [v = bd]} .

Then, for every vector u ∈ V and for all r ≥ 1,∣∣∣Pr
[
v(r) = u

]
− 2−d

∣∣∣ ≤ e−2pr.

Proof. Let 〈x, y〉 = x1y1 ⊕ · · · ⊕ xnyn be the scalar product of vectors x, y over F2; hence
〈x, y〉 = 1 if and only if the vectors x and y have an odd number of 1s in common. For a vector
w ∈ V , let pw = Pr [v = w] and set

(143) ∆v :=
∑

w∈V

pw(−1)〈w,v〉.

Then, for every u ∈ V ,
∑

v∈V

∆v(−1)〈u,v〉 =
∑

v∈V

∑

w∈V

pw(−1)〈u⊕w,v〉

=
∑

w∈V

pw

∑

v∈V

(−1)〈u⊕w,v〉 = 2dpu,

since

(144)
∑

v∈V

(−1)〈x,v〉 =

{
0 if x 6= 0;
2d if x = 0.

Therefore,

(145) pu = 2−d
∑

v∈V

∆v(−1)〈u,v〉.

Fix an arbitrary vector u ∈ V . We claim that

(146) Pr
[
v(r) = u

]
= 2−d

∑

v∈V

∆r
v(−1)〈u,v〉.

We show this by induction on r. If r = 1 then equation (??) is just equation(??).
Suppose now that equation (??) holds for v(r−1), and prove it for v(r). We have

Pr
[
v(r) = u

]
= Pr

[
v(r−1) ⊕ vr = u

]

=
∑

w∈V

Pr
[
v(r−1) = w

]
· Pr [vr = u ⊕ w]

=
∑

w

(
2−d

∑

v

∆r−1
v (−1)〈w,v〉

)(
2−d

∑

v′

∆v′(−1)〈u⊕w,v′〉
)

= 2−2d
∑

w

∑

v

∑

v′

∆r−1
v ∆v′(−1)〈w,v〉⊕〈u,v′〉⊕〈w,v′〉

= 2−2d
∑

v

∑

v′

∆r−1
v ∆v′(−1)〈u,v′〉∑

w

(−1)〈w,v⊕v′〉

= 2−d
∑

v

∆r
v(−1)〈u,v〉.

Here, the last equality follows from (??), because the last sum is 2d if v′ = v, and is 0 otherwise.
By (??), ∆0 = 1. For each other vector v 6= 0, there exist vectors w1, w2 in {0, b1, . . . , bd}

such that 〈w1, v〉 6= 〈w2, v〉, implying that

|∆v| ≤ 1 − 2p

(if A + x = 1 then A − x = 1 − 2x). This together with (??) yields the desired estimate:
∣∣∣Pr
[
v(r) = u

]
− 2−d

∣∣∣ ≤ max
v∈V
v 6=0

|∆r
v| ≤ (1 − 2p)r ≤ e−2pr.
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�

2.1. Small formulas for complicated functions. Razborov (1988) used Lemma ?? to
establish the following (counterintuitive) phenomenon: some combinatorialy complicated graphs
may be represented by small boolean circuits.

Boolean circuits compute boolean functions. So, our first goal is to associate graphs with
boolean functions. For this, fix an arbitrary linear order � on {0, 1}n; for example, we can take �
to be the lexicographic order: given two vectors a 6= b, look for the smallest index i on which these
vectors differ, and set a ≺ b if and only if ai < bi. After we fix such an order on the n-cube, every
boolean function f(x1, . . . , xn, . . . , x2n) on 2n variables defines the following undirected graph
G(f) on N = 2n vertices:

-: the vertices of G(f) are vectors in {0, 1}n, and
-: two vertices a 6= b are joined by an edge if and only if a ≺ b and f(a, b) = 1.

Intuitively, if the graph G(f) has a “complicated” combinatorial structure then the function
f should be “hard” to compute (require large circuits or formulas). It turns out that this intuition
is sometimes false!

Consider, for example, Ramsey graphs. Recall that a clique in a graph is a subset of vertices,
each pair of which is joined by an edge. Similarly, an independent set is a set of vertices with no
edge between them. Say that a graph is K-Ramsey graph if it contains no clique or independent
set of size K.

Ramsey’s theorem implies that no graph on N = 2n vertices is n/2-Ramsey. On the other
hand, using the probabilistic argument we have already proved (see Theorem ??) that most graphs
on N = 2n vertices are 2n-Ramsey; let us call these graphs strongly Ramsey. However, no explicit

construction of strongly Ramsey graphs is known. Explicit graphs that are 2
√

n log n-Ramsey were
constructed by Frankl and Wilson (1981) using a powerful linear algebra method (see Theorem ??
for the construction).

In the bipartite case the situation was even worse. Say that a bipartite graph on two sets of N
vertices is a K-Ramsey bipartite graph if it has no K × K complete or empty bipartite subgraph.
While Erdős’ result on the abundance of 2n-Ramsey graphs holds as is for bipartite graphs, until
recently the best explicit construction of bipartite Ramsey graphs was 2n/2-Ramsey, using the
Hadamard matrix (see Exercise ??). This was recently improved, first to o(2n/2) by Pudlak and

Rödl (2004), then to 2o(n) by Barak et al. (2005), and to 2no(1)

by Barak et al. (2006).
This—the difficulty to explicitly construct strongly Ramsey graphs—serves as a serious indi-

cation that these graphs have a rather “complicated” combinatorial structure.
It is therefore surprising that boolean functions corresponding to these graphs can be computed

by very small boolean formulas of depth-3 with And and Parity gates. These formulas have the
form:

F = F1 ⊕ F2 ⊕ · · · ⊕ Fr,

where each Fi has the form

Fi =

m∧

j=1

n⊕

k=1

λijkxk ⊕ λij , with λijk, λij ∈ {0, 1}.

The size of such a formula F is the number rmn of literals in it. Let L(f) denote the minimum
size of such a formula computing f .

Theorem 23.4 (Razborov 1988). There exists a sequence fn of boolean functions in 2n vari-
ables such that the graph G(fn) is strongly Ramsey and L(fn) = O(n5 log n).

This result is even more surprising because Razborov (1987) had proved earlier that the model
of constant depth formulae is rather weak: some seemingly “simple” boolean functions, like the
majority function (which outputs 1 if and only if the input vector contains more 1s than 0s) require
constant depth formulas of size exponential in n (cf. Sect. ??).

The proof of Theorem ?? is based on the following lemma about the distribution of a random
depth-3 formula, which may be derived from Lemma ??.



242 23. RANDOM WALKS

Let h be a random boolean formula in n variables given by:

h = λ0 ⊕ λ1x1 ⊕ λ2x2 ⊕ · · · ⊕ λnxn,

where all λi’s are independent random variables taking their values from {0, 1} with probability
1/2. Let

g = h1 ∧ h2 ∧ · · · ∧ hm,

where h1, h2, . . . , hm are independent copies of h. Finally, let f = fn,m,r be a random boolean
function given by

f = g1 ⊕ g2 ⊕ · · · ⊕ gr,

where g1, g2, . . . , gr are independent copies of g.
If f : {0, 1}n → {0, 1} is a boolean function and E ⊆ {0, 1}n, then fE denotes the function f

restricted to E.

Lemma 23.5. Let E ⊆ {0, 1}n and φ : E → {0, 1} be a boolean function defined on E. If
|E| ≤ 2m−1, then ∣∣∣Pr [fE = φ] − 2−|E|

∣∣∣ ≤ e−r/2m

.

Proof. Recall that f is a sum modulo 2 of r independent copies of g. We are going to apply
Lemma ?? in the situation when V = {0, 1}E is the linear space of all boolean functions defined
on E, and v = gE .

As the basis of our space V we take all d = |E| boolean functions χa, a ∈ E, such that
χa(b) = 1 if and only if a = b.

It is clear that for every a ∈ {0, 1}n, Pr [h(a) = 1] = 1/2. Moreover, for a 6= b, h(a) and h(b)
are two different linear forms 6= 0 of independent parameters λ0, λ1, . . . , λn that are uniformly dis-
tributed on {0, 1}. Therefore, h(a) and h(b) are independent, implying that Pr [h(a) = 1 | h(b) = 1]
= 1/2, for any a 6= b. Since g is an And of m independent copies of h, we obtain

Pr [g(a) = 1 | g(b) = 1] = Pr [g(a) = 1] = 2−m.

Using this and the condition d ≤ 2m−1 we obtain that

Pr [gE ≡ 0] = 1 − Pr [∃a ∈ E : g(a) = 1] ≥ 1 − |E| · 2−m ≥ 1/2

and

Pr [gE = χa] = Pr [g(a) = 1 and g(b) = 0 for all b ∈ E, b 6= a]

= Pr [g(a) = 1] · Pr [∀b 6= a : g(b) = 0 | g(a) = 1]

≥ 2−m

[
1 −

∑

b∈E,b6=a

Pr [g(b) = 1 | g(a) = 1]

]

≥ 2−m
(
1 − d · 2−m

)
≥ 2−m−1.

Thus, the minimum of Pr [gE ≡ 0] and Pr [gE = χa] (a ∈ E) is at least 2−m−1, and we can apply
Lemma ?? with p = 2−m−1. This completes the proof of Lemma ??. �

Proof of Theorem ??. Set m := ⌊2 log2 n + 3⌋, r := ⌊40n4⌋ and consider the random boolean
function f = f2n,m,r. Then the graph G(f) is not strongly Ramsey if and only if there is a subset
of vertices S ⊆ {0, 1}n of size |S| = 2n + 1 which either forms a clique or is an independent set in
G(f). This event happens only if fE ≡ 1 or fE ≡ 0, where E is the set of all pairs (a, b) such
that a, b ∈ S and a ≺ b. As |S| = 2n + 1, we have

|E| ≤ 1 + 2 + · · · + 2n = n(2n + 1),

and hence, the condition d ≤ 2m−1 of Lemma ?? is satisfied (with d = n(2n + 1)). Applying this
lemma, we obtain that

Pr [fE ≡ 1 ∨ fE ≡ 0] = O(e−r/2m

) = O(2−n(2n+1)) ,



3. RANDOM WALKS AND DERANDOMIZATION 243

and hence,

Pr [G(f) is not strongly Ramsey] ≤
(

2n

2n + 1

)
· Pr [fE ≡ 1 ∨ fE ≡ 0]

= O

((
2n

2n + 1

)
· 2−n(2n+1)

)
= o(1) .

This means that there exists a depth-3 formula f = f2n,m,r of size 2nmr = O(n5 log n) whose
graph G(f) is strogly Ramsey. �

3. Random walks and derandomization

Let G = (V, E) be a d-regular graph on n vertices. A random walk starting in a vertex v0 ∈ V
is a sequence v0, v1, . . . , vt of vertices, where each vi+1 is a random neighbor of vi chosen uniformly
at random with probability 1/d among all its d neighbors. Note that one and the same vertex
may appear in this sequence several times. In a random t-walk we first choose the start vertex v0

uniformly at random, and then run a random walk of length t starting in v0.
Given a subset of vertices S ⊆ V , what is the probability that a random t-walk v0, v1, . . . , vt

will never leave S? Small-degree graphs, where this probability is small, play an important role
in many applications, one of them being “derandomization” of probabilistic algorithms, that is,
reduction of the number of random bits used by algorithm.

We now give an upper bound on this probability in terms of the second eigenvalue of the graph
G.

Theorem 23.6 (Hitting property of expander walks). Let G = (V, E) be a d-regular n-vertex
graph, and λ2 the second-largest eigenvalue of its adjacency matrix A. Then for every subset
S ⊆ V ,

Pr [random t-walk will stay inside S] ≤
(

λ2

d
+

|S|
n

)t

.

Thus, if both λ2/d and |S|/n are less than 1/2, then with exponentially large probability
1 − 2Ω(−t) a random t-walk will hit a vertex outside S.

Proof. For technical reasons it will be convenient to consider not the adjacency matrix of
G itself, but its normalized adjacency matrix A = (aij) with aij = 1/d if i and j are adjacent,
and aij = 0 otherwise. The reason to consider this matrix (and not the adjacency matrix) is only
technical: the matrix A is doubly-stochastic, that is, the entries in each row and each column sum
up to 1. Note that λ := λ2/d is then the second-largest eigenvalue of A.

At the beginning, each of the vertices 1, 2, . . . , n could be chosen as the start vector v0 with
the same probability 1/n. So, the probability distribution for the start vertex v0 is given by the
vector

u = (1/n, 1/n . . . , 1/n) .

Then Au is the probability distribution of the first reached vertex v1, and Aiu is the probability
distribution for the i-th reached vertex vi. Fix now a subset of vertices S ⊆ V . Let D be the
“characteristic matrix” of S. This is a diagonal 0-1 matrix whose i-th diagonal entry is 1 iff i ∈ S.

Lemma 23.7. The probability that the random t-walk does not leave S is precisely the sum of
entries of the vector (DA)tDu = (DAD)tu.

Proof. Induction on t. The base case is t = 0. The i-th entry of (DA)0Du = Du is 1/n if
i ∈ S, and is 0 if i 6∈ S. Hence, the sum |S|/n of entries of Du is exactly the probability that the
start vertex v0 will belong to S.

Now assume the hypothesis holds up to some t − 1. Then the i-th entry of (DA)tDu is the
probability that the random walk is at vertex i after t steps, and never leaves S until possibly the
last step. Multiplying by D, we zero out all components for vertices not in S and leave the others
unchanged. Thus, we obtain the probability that the random walk is at vertex i after t steps, and
never leaves S. �
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Lemma 23.8. Let µ := |S|/n, and let D be the characteristic matrix of S. Then for every
vector w,

‖DADw‖ ≤ (λ + µ)‖w‖ .

Proof. First note that there is no loss in assuming that w is supported by D, that is, Dw = w.
Otherwise we may replace w by Dw. This leaves the left-hand side unchanged (since D · D = D)
and does not increase the right-hand side, since D is a contraction (that is, ‖Dw‖ ≤ ‖w‖).
Similarly, we may assume that w is non-negative. Also, by linearity of both sides we may assume
that

∑n
i=1 wi = 1 and so w can be expressed as:

Dw = w = u + z where z is orthogonal to u.

Since A is doubly-stochastic and all entries of u are the same (equal to 1/n), it follows that

DADw = DAu + DAz = Du + DAz

and hence
‖DADw‖ ≤ ‖Du‖ + ‖DAz‖ .

We now prove that ‖Du‖ ≤ µ · ‖w‖ and ‖DAz‖ ≤ λ · ‖w‖, which together imply the claim.
Since

∑
i wi = 1, and w has at most |S| = µn nonzero coordinates, the Cauchy–Schwarz

inequality yields 1 =
∑

i wi ≤ √
µn · ‖w‖. Since ‖Du‖ =

√
µ/n, we obtain ‖Du‖ = µ/

√
µn ≤

µ · ‖w‖.
As for the second term, we have ‖Az‖ ≤ λ · ‖z‖, since z is orthogonal to 1 and therefore is

a linear combination of eigenvectors of A with eigenvalues of absolute values ≤ λ. But ‖DAz‖ ≤
‖Az‖, since D is a contraction. Also w = u + z with u ⊥ z implies that

‖z‖2 =
∑

i

z2
i ≤

∑

i

(u2
i + z2

i ) =
∑

i

(ui + zi)
2 = ‖w‖2 ,

where the second equality holds because
∑

i uizi = 0. Hence,

‖DAz‖ ≤ ‖Az‖ ≤ λ · ‖z‖ ≤ λ · ‖w‖ ,

as needed. �

Now we turn to the actual proof of Theorem ??. Let p be the probability that the random
t-walk will not leave the set S. By Lemma ??, we known that p is the sum of entries in the
vector x := (DA)tDu, where u = (1/n, 1/n . . . , 1/n). By the Cauchy–Schwarz inequality 〈x, y〉 ≤
‖x‖ · ‖y‖, we have that x1 + · · · + xn ≤ √

n · ‖x‖. Hence, since ‖u‖ = 1/
√

n, Lemma ?? implies
that

p ≤ √
n · ‖(DA)tDu‖ =

√
n · ‖(DAD)tu‖

≤ √
n · (λ + µ)t‖u‖ = (λ + µ)t =

(
λ2

d
+

|S|
n

)t

,

as claimed. �

To explain how Theorem ?? can be used to drastically reduce the number of random bits used
by probabilistic algorithms, let us consider the following simplified scenario. We have a set S ⊆ [n]
of “good” elements in some large set [n]. We know nothing about S except that, say |S| ≥ n/2. A
probabilistic algorithm tries to find a good element with some large probability, at least 1 − 1/K.

A trivial algorithm is to take t independent, uniformly distributed elements of [n]. Since
|S| ≥ n/2, the probability of missing S is at most 2−t, so it is enough to take t = log2 K random
points. But to generate a random point we need m = log2 n random 0-1 bits. Thus, our algorithm
uses about O(m · log K) random bits in total.

Using expanders we can reduce the number of random bits in our algorithm from O(m · log K)
to O(m+log K) as follows. Take an explicitly constructed expander G of constant degree d on [n].
Take a random t-walk, where t is chosen such that the probability of missing S is at most 1/K. By
Theorem ??, taking t = O(log K) suffices, provided λ < (1− ǫ)d for some constant ǫ > 0. We need
about m = log n random bits to generate an initial vertex of a walk and a constant number log2 d
random bits in each step. Thus, the required number of random bits is at most O(log n + log K).
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Exercises

Ex 23.1. Let P = (pi,j) be a transition matrix of a random walk on an undirected connected
graph G = (V, E) with n vertices V = {1, . . . , n}. That is, pi,j = 1/d(i) if {i, j} ∈ E, and pi,j = 0
otherwise. Let Hij be the expected number of steps needed to visit state j for the first time, when
starting from state i. Define the vector π = (π1, . . . , πn) by

πi :=
d(i)

2|E| for i = 1, . . . , n.

Show that
∑n

i=1 πi = 1; π · P = π, and Hii = 1/πi for all i = 1, . . . , n.

Ex 23.2. Let N = 2n. The bipartite N ×N Sylvester graph G = (U ∪V, E) with U = V = Fn
2

contains vectors in Fn
2 as vertices, and two vectors x ∈ U and y ∈ V are adjacent iff their scalar

product over F2 is equal to 1. Show that this graph is 2n/2-Ramsey. Hint: Use Lindsey’s Lemma
(Lemma ??).

Ex 23.3. (Razborov 1988). Let V = {1, . . . , N} be a set of players, N = 2n. A tournament
is an oriented graph T = (V, E) such that (i, i) 6∈ E for all i ∈ V , and for any two players i 6= j
exactly one of (i, j) and (j, i) belongs to E. A tournament is transitive if there exists a permutation
σ of the players so that (i, j) ∈ E if and only if σ(i) < σ(j). Let v(T ) be the largest number
of players in a transitive subtournament of T . It is known that: (a) v(T ) ≥ n + 1 for every
tournament T , and (b) tournaments T with v(T ) ≤ 2n + 1 exist.

Every boolean function f(x, y) on 2n variables defines a tournament T (f) with N = 2n players
in a natural way: players are vectors in {0, 1}n, and player a beats player b iff either a ≺ b and
f(a, b) = 1, or b ≺ a and f(b, a) = 0. Prove that there exists a sequence of boolean functions
fn(x, y) such that L(fn) = O(n5 log n) and v(T (f)) ≤ 2n + 1. Hint: Argue as in the proof of
Theorem ??. Instead of sets V of size 2n + 1 take sets of size 2n + 2, and instead of the event “fE = 1 or
fE = 0” consider the event “fE induces a transitive subtournament of T (f).”





CHAPTER 24

Derandomization

Probabilistic thinking turns out to be uncannily effective for proving the existence of com-
binatorial objects. Such proofs can often be converted into randomized algorithms. There exist
efficient randomized algorithms for problems that are not known to have efficient deterministic
solutions. Even when both deterministic as well as randomized algorithms are available for a
problem, the randomized algorithm is usually simpler. This fact may be enough to favor the ran-
domized algorithm in practice. Sometimes, the route to deterministic solution is via a randomized
one: after a randomized algorithm has been discovered, we may be able to remove the use of
randomness. We will illustrate such “derandomization” techniques.

1. The method of conditional probabilities

The aim of this method is to convert probabilistic proofs of existence of combinatorial struc-
tures into efficient deterministic algorithms for their actual construction. The idea is to perform
a binary search of the sample space Ω for a good point. At each step, the current sample space is
split into two equal halves and the conditional probability of obtaining a good point is computed
for each half. The search is then restricted to the half where the conditional probability is higher.
The search terminates when only one sample point (which must be good) remains. This method
is applicable to large sample spaces Ω since it requires only log2 |Ω| steps. In situations where
the corresponding conditional probabilities can be effectively computed (or at least approximated)
this approach works pretty well. To explain the idea, let us consider the following problem.

Given a 3-CNF formula F (x1, . . . , xn), we want to find an assignment of values 0 or 1 to
x1, . . . , xn satisfying as many clauses as possible. If we assign to each variable the value 0 or 1 at
random independently and with equal probability, then we may expect that at least 7/8 fraction
of clauses will be satisfied, just because each clause is satisfied with probability 1 − 2−3 = 7/8 (see
Proposition ??).

But where is the assignment? The argument above guarantees only the existence of such an
assignment and gives no idea about how to find it. An exhaustive search will always lead us to
the desired assignment. But this dummy strategy will require exponential (in n) number of steps.
Can we do better? It turns out that we can “derandomize” the probabilistic proof of existence
so that it leads to a deterministic algorithm which is only polynomial in the length of the input
formula.

Before we turn to a formal description of the method, let us first try to solve our special
problem with the help of a chimpanzee (this beautiful explanation is due to Maurice Cochand).

We build a binary tree whose 2n leaves correspond to the 2n possible assignments. Leaves are
close to the sky, as they should be. Going up to the left branch at level i corresponds to choosing
the value 0 for xi, going up to the right gives xi the value 1.

In order to motivate the chimpanzee for this fascinating problem, we attach at every leaf of
the tree a black box containing a number of bananas equal to the number of clauses satisfied by
the assignment corresponding to that leaf. We do then invite the chimpanzee to go up in order to
bring down one of the black boxes, making him most clearly the potential benefit of the operation.

We repeat this experiment many times, with many different trees corresponding to as many
formulas F , having different number of variables and clauses. The chimpanzee never looked at the
list of clauses (although he was allowed to do it), did not even care about the number of variables.
He moved up quickly along the tree, and always brought back a box having a number of bananas
at least equal to 7/8 times the number of clauses!

247
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We asked him for his secret (he definitely had one, this was more than luck!). For a number
of bananas we do not dare to mention here, he gave the following answer:

“Embarrassingly simple,” he said. “At every junction I do the same: because of the weight,
the branch supporting the subtree having the biggest number of bananas is not as steep as the
other one, there I go!”

1.1. A general frame. Suppose we have a sample space Ω, and assume, for simplicity, that
it is symmetric (i.e., each point has probability 1/|Ω|) and that Ω = {0, 1}n. Let A1, . . . , Am be
a collection of events, and consider the random variable X = X1 + · · · + Xm where Xi is the
indicator random variable for Ai. Hence, E[X] =

∑m
i=1 Pr[Ai]. Also suppose that we have a proof

that E[X] ≥ k. So, there is a point (a1, . . . , an) in the sample space in which at least k of the
events hold. Our objective is to find such a point deterministically.

Introduce n random variables Y1, . . . , Yn where each Yi takes value 0 or 1 independently with
equal probability. We find the bits a1, a2, . . . sequentially as follows. Assume a1, . . . , aj have
already been fixed. Our goal is to choose aj+1. We make this choice based on the value of
“conditional” expectation

E[X|a1, . . . , aj ] :=

m∑

i=1

Pr[Ai | a1, . . . , aj ],

where here and in what follows “a1, . . . , aj” stands for the event that Y1 = a1, . . . , Yj = aj . By
Adam’s Theorem (Exercise ??), for each choice of a1, . . . , aj and for each event Ai, the conditional
probability

Pr[Ai | a1, . . . , aj ]

of the event Ai given the values Y1 = a1, . . . , Yj = aj is the average

Pr[Ai | a1, . . . , aj , 0] + Pr[Ai | a1, . . . , aj , 1]

2
.

of the two conditional probabilities corresponding to the two possible choices for Yj+1. Conse-
quently,

E[X|a1, . . . , aj ] =
E[X|a1, . . . , aj , 0] + E[X|a1, . . . , aj , 1]

2
≤ max {E[X|a1, . . . , aj , 0], E[X|a1, . . . , aj , 1]} .

Therefore, if the values aj+1 are chosen, each one in its turn, so as to maximize the value of
E[X|a1, . . . , aj+1], then this value cannot decrease. Since this value is k at the beginning, it
follows that it is at least k at the end. But at the end, each ai is fixed, and hence the value of
E[X|a1, . . . , an] is precisely the number of events that hold at the point (a1, . . . , an), showing that
our procedure works.

Note that the procedure above is efficient provided n is not too large (as is usually the
case in combinatorial examples) and, more importantly, provided the conditional probabilities
Pr[Ai | a1, . . . , aj ] can be computed efficiently.

To see how the “chimpanzee algorithm” from the previous section fits in this general frame,
just observe that the total weight of the bananas in the subtree reached by the chimpanzee after j
moves a1, . . . , aj is the number of clauses X in F , times the conditional expectation E[X|a1, . . . , aj ].

1.2. Splitting graphs. A widely applied remark of Paul Erdős is that a graph with m edges
always contains a bipartite subgraph of at least m/2 edges. This fact has a quick probabilistic
proof.

Theorem 24.1 (Erdős 1965c). Every graph with m edges always contains a bipartite subgraph
of at least m/2 edges.

Proof. Let G = (V, E) with the vertex set V = {1, . . . , n}. Take a random subset U ⊆ V
given by Pr[i ∈ U ] = 1/2, these probabilities being mutually independent. Call an edge e = {i, j}
crossing if exactly one of i, j is in U . Let X be the number of crossing edges. Then X =∑

e∈E Xe, where Xe is the indicator random variable for the edge e being crossing. For a given
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edge e, E[Xe] = 1/2 as two fair coin flips have probability 1/2 of being different. By linearity of
expectation,

E[X] =
∑

e∈E

E[Xe] =
|E|
2

.

Thus, X ≥ |E|/2 for some choice of U , and the set of those (corresponding to this particular U)
edges forms the desired bipartite subgraph. �

The proof of this theorem gives us a randomized algorithm to find a bipartite subgraph whose
expected number of edges is at least |E|/2. Moreover, Luby (1986) has shown how it can be
converted to a linear time deterministic algorithm.

We use the conditional expectations to derandomize the algorithm. Introduce n random
variables Y1, . . . , Yn where Yi = 1 if i ∈ U , and Yi = 0, otherwise. Select an a1 ∈ {0, 1} such that
E[X|Y1 = a1] ≥ E[X|Y1 = a1 ⊕ 1], and set Y1 = a1. Repeat this process for all Yi’s. At the end we
have an assignment for all Yi’s such that E[X|Y1 = a1, . . . , Yn = an] ≥ |E|/2. But X is no longer
a random variable at this point (since U is completely defined), so X ≥ |E|/2.

What is the running time? To determine each ai, we need to count the number of edges
between vertices in the current U and vertex i, the number of edges between vertices in the
current V \ U and vertex i. If the former is smaller than the latter, we set ai = 1; otherwise, we
set ai = 0. This means that we only need to check the edges incident to vertex i to determine ai.
So the running time of this algorithm is O(n + |E|).

1.3. Maximum satisfiability: the algorithmic aspect. Recall that a k-CNF formula (or
conjunctive normal form) over a set of variables x1, . . . , xn is an And of an arbitrary number of
clauses, where a clause is an Or of k literals, each literal being either a variable xi or a negated
variable xi. An assignment is a mapping which assigns each variable one of the values 0 or 1. An
assignment satisfies a clause if it satisfies at least one of its literals.

Proposition 24.2. For any k-CNF formula there is an assignment that satisfies at least
(1 − 2−k) fraction of its clauses.

Proof. Let F be a k-CNF formula on n variables x1, . . . , xn with m clauses. Assign each
variable xi the value 0 or 1 independently at random with probability 1/2. Since each clause will
be satisfied with probability 1 − 2−k, the expected number of satisfied clauses is m(1 − 2−k). By
the pigeonhole principle of expectation, there must exist an assignment satisfying this many of
clauses. �

Using conditional expectations, this proof can be transformed to a deterministic algorithm. If
Z = Z(x1, . . . , xn) is the number of satisfied by our random assignment clauses, then (as before)

E[Z|(x1, . . . , xi) = (a1, . . . , ai)] =
1

2
E[Z|(x1, . . . , xi+1) = (a1, . . . , ai, 0)]

+
1

2
E[Z|(x1, . . . , xi+1) = (a1, . . . , ai, 1)] ,

for i = 0, . . . , n − 1. We iteratively choose a1, a2, . . . , an to maximize the conditional expectation.
The above equality implies that in doing so the conditional expectation never goes below the
starting point m(1 − 2−k) guaranteed by Proposition ??.

2. The method of small sample spaces

The problem with randomized algorithms is that usually their sample spaces are of exponential
size, so that an exhaustive search is impossible. It turns out however, that a (uniform) sample
space Ω associated with a randomized algorithm always contains a polynomial-sized subspace
S ⊆ Ω which still has a good point for each possible input, i.e., for every input x there is a point
r ∈ S such that A(x, r) = f(x).

Theorem 24.3 (Adleman 1978). There exists a set S ⊆ Ω of size |S| ≤ n such that for every
input x ∈ {0, 1}n there is at least one good point in S.
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Proof. Let M = (mx,r) be a 2n × |Ω| 0-1 matrix whose rows are labeled by inputs and
columns by points in the sample space, such that mx,r = 1 if r is a good point for x, and mx,r = 0,
otherwise.

The desired set S ⊆ Ω is constructed iteratively. Initially, S is empty. Since Pr[A(x, r) =
f(x)] ≥ 1/2, each row of M has at least |Ω|/2 ones. Thus, for at least one column r in M , at least
half of its entries must be 1s, and hence, there exists a point r ∈ Ω that is good for at least half
of the inputs x. We add this point r to S, delete all the rows in M corresponding to inputs for
which r is good, and repeat the argument for the resulting submatrix. After at most log2 2n = n
iterations there will be no rows, and the obtained set S of points has the desired properties. �

Unfortunately, the above result is highly non-constructive and it cannot be used to actually
derandomize algorithms. This difficulty was overcome in certain cases by constructing a (different)
polynomial-sized sample spaces.

2.1. Reducing the number of random bits. Let f(x) be some function; for simplicity
assume that its domain is the n-cube {0, 1}n. A randomized algorithm A for f works as follows.
For a given input x, the algorithm first performs a sequence of coin flips to produce a random
string r ∈ {0, 1}m, and then computes the value A(x, r). Hence, for each input x, the output of
the algorithm is a random value. The algorithm computes f with error probability ǫ ≤ 1/2 if for
each input x ∈ {0, 1}n,

Prr [A(x, r) 6= f(x)] ≤ ǫ .

For various reasons it is important to keep the number m of random bits as small as possible. If
m ≫ log2 n, then the number of random bits can be reduced to about log2 n.

Theorem 24.4 (Newman 1991). For every δ > 0 there is a randomized algorithm B of error
probability ǫ + δ and the same run-time for f which uses only about log(n/δ2) random bits.

Proof. Let Z(x, r) be the indicator random variable for the event that A(x, r) 6= f(x).
Because A computes f with ǫ error, we have Er [Z(x, r)] ≤ ǫ, for all x. We will build a new
algorithm B, which uses fewer random bits, using the probabilistic method.

Let t be a parameter (to be fixed) and r1, . . . , rt be strings in {0, 1}m. For such strings, define
an algorithm Br1,...,rt

as follows: For each input x, choose i ∈ [t] uniformly at random (using log2 t
random bits) and then compute A(x, ri). We now show that there exist strings r1, . . . , rt such
that Ei [Z(x, ri)] ≤ ǫ + δ, for all inputs x.

To do this, we choose the t strings r1, . . . , rt independently at random. Consider a particular
input x and compute the probability that Ei [Z(x, ri)] > ǫ + δ, where i in this expectation
is uniformly distributed in [t]. This probability is exactly the probability that the sum X :=∑t

j=1 Z(x, rj) is larger than (ǫ + δ)t. Since Er [Z(x, r)] ≤ ǫ, we have that E [X] ≤ ǫt. Chernoff’s

inequality (see Theorem ??) implies that

Pr[X ≥ ǫt + δt] ≤ e−δ2t2/2t = e−δ2t/2 .

By choosing t = Θ(n/δ2), this is smaller than 2−n. Thus, for a random choice of r1, . . . , rt the
probability that Ei [Z(x, ri)] > ǫ + δ for some input x is smaller than 2n · 2−n = 1. This implies
that there exists a choice of r1, . . . , rt, where for every x the error of the algorithm Br1,...,rt

is
at most ǫ + δ. Finally note that the number of random bits used by this algorithm is log2 t =
O(log(n/δ2)). �

2.2. k-wise independence. Another way of constructing a small sample space is by show-
ing that the probabilistic choices of the randomized algorithm are only required to be k-wise
independent; then a sample space of size O(nk) suffices. Another way is to consider “small bias”
probability spaces, i.e., to construct small probability spaces that “behave similarly” to larger
probability spaces in certain senses.

Let X1, . . . , Xn be random variables taking their values in a finite set S. These variables are k-
wise independent if any k of them are mutually independent, i.e., if for every sequence (si1

, . . . , sik
)
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of k values sij
∈ S,

Pr[Xi1
= si1

, . . . , Xik
= sik

] =

k∏

j=1

Pr[Xij
= sij

].

To illustrate how k-wise independence can help us to derandomize probabilistic proofs, let us
look more carefully at the proof of Theorem ??. This theorem states that every graph G = (V, E)
contains a bipartite subgraph of at least |E|/2 edges. That is, there is a subset U ⊆ V of vertices
such that at least one half of the edges in E join vertices from U with those from V \ U . We used
random variables to produce the desired (random) subset U . Namely, for each vertex i ∈ V , we
flip a coin to decide whether to include this vertex into the set U or not. This requires n = |V |
coin flips, and hence, the whole sample space is huge – it has 2n points.

A closer look at this proof shows that the independence is used only to conclude that, for any
two vertices i 6= j, the events i ∈ U and j ∈ U are independent. We need this independence to
show that

Pr[i ∈ U , j 6∈ U ] = Pr[i ∈ U ] · Pr[j /∈ U ] = 1/4.

So, in this proof 2-wise independence of the indicator random variables Xi for the events “i ∈ U”
suffices. This observation allows us to substantially reduce the size of a sample space as follows
(see Exercise ?? for more direct construction).

Look at our random set of vertices U ⊆ V as a sequence of random colorings X1, . . . , Xn :
V → {0, 1}, where Xi = 1 iff i ∈ U . Our goal is to construct as small as possible sample space for
these colorings, in which they are pairwise independent.

Suppose for simplicity that n = 2d for some d, and identify the vertices with the elements of
the field Fn. Choose two elements a and b of this field randomly and independently, and define
for each element i the random variable Zi = a · i + b.

Claim 24.5. Z1, . . . , Zn are 2-wise independent.

Proof.

Pr[Zi = x, Zj = y] = Pr[ai + b = x, aj + b = y]

= Pr

[
a =

x − y

i − j
, b =

yi − xj

i − j

]
=

1

n2

= Pr[Zi = x] · Pr[Zj = y]. �

Encode the elements of Fn by binary strings of length d, and let Xi be the first bit of the code
of i-th element. By the claim, the random variables Xi are also 2-wise independent and uniform
on {0, 1}. Now color the vertex i by the color Xi. Each coloring so obtained is defined by the pair
(a, b) of elements from our field Fn. Thus, the whole sample space has size only n2, and we can
perform an exhaustive search of it to find the desired coloring.

Another example is Theorem ?? from Sect. ?? saying that the edges of Kn can be colored
in two colors so that we get no monochromatic K2 log n. In this proof, a variable Xi gives the
color of the i-th edge. Their independence is used only to estimate the probability that all the
edges of some fixed clique on 2 log n vertices, receive the same color. Hence, once again, the k-wise
independence with k =

(2 log n
2

)
= O((log n)2) is sufficient. The reader is encouraged to convince

himself/herself that in most of the previous proofs k-wise independence with k ≪ n works.
Now suppose that for some probabilistic proof, k-wise independence is enough. One may

expect that then a sample space Ω of a size much smaller than 2n would suffice. How much?
In combinatorial terms, we are looking for a set Ω ⊆ {0, 1}n with the following property: for

every set of k coordinates, each vector from {0, 1}k is a projection (onto these k coordinates) of
one and the same number of vectors in Ω. Thus, if we let X = (X1, . . . , Xn) be a string chosen
uniformly from Ω then, for any k indices i1 < i2 < · · · < ik and any k-bit string α ∈ {0, 1}k,

Pr[(Xi1
, Xi2

, . . . , Xik
) = α] = 2−k,

i.e., the coordinates Xi are k-wise independent.
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Taking the duals of binary BCH codes, it is possible, for every fixed k, to construct a k-wise
independent sample space Ω of size |Ω| = O(n⌊k/2⌋). The construction can be found, for example,
in the book of Alon and Spencer (1992); see also Exercise ??. The idea is to show that the dual
code is not only (n, k)-universal (as we have proved in Sect. ??) but is such in a very strong sense:
for every set of k coordinates, every 0-1 vector of length k is a projection of one and the same
number of code words onto these coordinates.

It is natural to ask if this construction is optimal. It turns out that, indeed, the bound n⌊k/2⌋

cannot be improved, up to a constant factor (depending on k). Say that a random variable is
almost constant if it takes a single value with probability 1. Let m(n, k) denote the following sum
of binomial coefficients:

m(n, k) :=

k/2∑

i=0

(
n

i

)
if k is even,

and

m(n, k) :=

(k−1)/2∑

i=0

(
n

i

)
+

(
n − 1

(k + 1)/2

)
if k is odd.

Observe that for every fixed k, m(n, k) = Ω(n⌊k/2⌋).

Theorem 24.6 (Alon–Babai–Itai 1986). Assume that the random variables X1, . . . , Xn over a
sample space Ω are k-wise independent and none of them is almost constant. Then |Ω| ≥ m(n, k).

Note that we assume neither that the variables Xi are (0, 1)-variables nor that Ω is a symmetric
space.

Proof. We can assume that the expected value of each Xi is 0 (since otherwise we can replace
Xi by Xi − E[Xi]). For a subset S ⊆ {1, . . . , n}, define

αS :=
∏

i∈S

Xi.

Since no Xi is almost constant and since the variables are k-wise independent,

(147) E[αSαS ] =
∏

i∈S

E[X2
i ] > 0

for all S satisfying |S| ≤ k. Similarly (and since E[Xi] = 0), for all S 6= T satisfying |S ∪ T | ≤ k,
we have

(148) E[αS · αT ] =
∏

i∈S∩T

E[X2
i ] ·

∏

i∈(S∪T )\(S∩T )

E[Xi] = 0.

Now let S1, . . . , Sm be all the subsets of {1, . . . , n} such that the union of each two is of size at
most k. Then m = m(n, k). (Take all sets of size at most k/2, and if k is odd add all the subsets
of size (k + 1)/2 containing 1.)

To complete the proof, we show that the functions αS1
, . . . , αSm

(considered as real vectors
of length |Ω|) are linearly independent. Since their number m cannot then exceed the dimension
|Ω|, this will imply the result.

To prove the linear independence, take a linear combination
∑m

i=1 λiαSi
. Then for every j,

multiplying by αSj
and computing expected values we obtain, by (??),

0 =

m∑

i=1

λiE[αSi
· αSj

] = λjE[αSj
· αSj

].

By (??), this implies that λj = 0 for all j, and the required linear independence follows. �

Finally, let us mention one recent result in computational complexity concerning the k-
independence. Let f : {0, 1}n → {0, 1} be boolean function. Let x be a random vector in {0, 1}n

with some probability distribution. Say that x ǫ-fools the function f if |Ex [f(x)]−Ey [f(y)] | < ǫ,
where y is a random vector uniformly distributed in {0, 1}n. That is, the function f cannot distin-
guish x from a uniformly distributed random vector. Let F (n, s) be the set of all boolean functions
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in n variables computable by constant-depth circuits using at most s Not and unbounded fanin
And, Or gates.

Braverman (2009) proved that, if k is poly-logarithmic in s/ǫ, then every function in F (n, s)
is ǫ-fooled by a k-independent random vector x. That is, shallow circuits of constant depth cannot
distinguish k-independent random vectors from truly random ones.

3. Sum-free sets: the algorithmic aspect

In previous sections we considered two general approaches toward derandomizing of proba-
bilistic proofs. In this section we will give one example to demonstrate that sometimes the desired
polynomial-time algorithm is hidden in the existence proof itself.

A subset B of an additive group is called sum-free if x + y 6∈ B for all x, y ∈ B. Erdős (1965a)
and Alon and Kleitman (1990) have proved that every finite set A of integers has a sum-free subset
B, with |B| ≥ |A|/3. The proof is probabilistic (see Theorem ??) and the question was whether
there exists a deterministic algorithm for the selection of such a subset B, which runs in time
polynomial in the (binary) size of the problem, that is in

∑
a∈A log2 |ai|.

Kolountzakis (1994) has shown that, with a slight modification, the proof of Theorem ?? can
be transformed to such an algorithm.

For a prime p let (as before) Zp = {0, 1, . . . , p − 1} be the field of the integers mod p, and let
Z∗

p = {1, 2, . . . , p − 1} be the corresponding multiplicative group in Zp.

Lemma 24.7. Let p be a prime number of the form p = 3k + 2. Then, for every nonnegative
weight function on Z∗

p, there is a sum-free subset E ⊆ Z∗
p whose weight is at least one third of the

total weight.

Proof. Let w(x) be a nonnegative weight function defined on Z∗
p. Write S = {k + 1, k +

2, . . . , k + (k + 1)}, and observe that S is a sum-free subset in Zp and |S| = k + 1 ≥ (p − 1)/3. Let
W =

∑
x∈Z∗

p
w(x) be the total weight of all elements, and let the random variable t be uniformly

distributed in Z∗
p. Write f(t) :=

∑
w(x), where the sum is over all x for which x · t ∈ S, and the

product x · t is computed in Zp. If ξx denotes the indicator random variable for the event x · t ∈ S,
then Pr[ξx = 1] = |S|/(p − 1) and f(t) =

∑
x∈Z∗

p
w(x) · ξx. Hence,

E[f(t)] =
∑

x∈Z∗
p

w(x)E[ξx] = W · (|S|/(p − 1)) ≥ W/3

By the pigeonhole property of the expectation, there is some t ∈ Z∗
p for which f(t) ≥ W/3. Define

E := t−1S. This set is sum-free and, since x · t ∈ S iff x ∈ t−1S, has weight
∑

x∈E

w(x) =
∑

x:x·∈S

w(x) = f(t) ≥ W/3 . �

We now turn this proof into an algorithm. Given a set A of integers of (binary) size ℓ :=∑
a∈A log2 |a|, our goal is to find a sum-free subset B, with |B| ≥ |A|/3, in time polynomial in ℓ.

We assume that ℓ is large.
First, observe that the number of prime factors of an integer x is at most log2 x. This means

that the number of prime factors which appear in the factorization of any element of A is at
most ℓ. The Prime Number Theorem (see, for example Zagier (1997)) says that for every pair
b, c of relatively prime positive integers, the number of primes p ≤ x such that p is of the form
p = bk +c, asymptotically equals to χ(x) = x/(ϕ(b) · ln x), where ϕ(b) is the Euler totient function
(the number of numbers in Zp relatively prime to b). In our case b = 3 and c = 2; hence, ϕ(b) = 2.
Recall that the numbers in A have at most ℓ prime factors in total. So, if we take x = cℓ log2 ℓ for
a large enough constant c (independent on ℓ), then χ(x) is strictly larger than ℓ, implying that
there must be a prime p ≤ cℓ log2 ℓ of the form p = 3k + 2 which does not divide any member
of A.

Define now the weight w(x) of a number x ∈ Z∗
p as the number of elements a ∈ A such that

a mod p = x. Since p does not divide any member of A, all residues x = a mod p of numbers a ∈ A
belong to Z∗

p (none of them is equal to 0), implying that the sets Ax = {a ∈ A : a mod p = x} with
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x ∈ Z∗
p form a partition of A. Thus, W =

∑
x∈Z∗

p
w(x) = |A| and, using Lemma ??, we can find

a sum-free subset E ⊆ Z∗
p for which the set B = {a ∈ A : a mod p ∈ E} has at least W/3 = |A|/3

elements. This set B is sum-free since x + y = z for some x, y, z ∈ B would imply x + y = z mod p
and E would not be sum-free.

In summary, the steps of our algorithm are the following.

1. Compute all primes up to cℓ log2 ℓ.
2. Find a prime p = 3k + 2 which divides no element of A.
3. Compute the values w(x) for all x ∈ Z∗

p.
4. Find by exhaustive search a t ∈ Z∗

p for which f(t) > |A|/3 (Lemma ?? guarantees that such t

exists) and compute the set E = t−1S.
5. Construct the set B = {a ∈ A : a mod p ∈ E}.

It is easy to verify (do this!) that all these steps can be carried out in time polynomial in ℓ.

Exercises

Ex 24.1. Use the method of conditional probabilities to derandomize the proof of Theorem ??
and Theorem ??.

Ex 24.2. Let G = (V, E) be a graph with n = 2m vertices. Improve the lower bound |E|/2 on
the size of a cut in G (proved in Theorem ??) to |E| times m/(2m−1). Hint: Follow the argument of
Theorem ?? with another probability space: choose U ⊆ V uniformly from among all m-element subsets
of V . Observe that then any edge has probability m/(2m − 1) of being crossing.

Ex 24.3. Let r be a random vector uniformly distributed in Fd
2. With each vector a ∈ Fd

2
associate a random variable Xa = 〈a, r〉 whose value is the scalar product over F2 of this vector
with r. Show that these random variables are 2-wise independent. Hint: Exercise ??.

Ex 24.4. Let X1, . . . , Xn be pairwise independent random variables with the identical ex-
pectation, denoted µ, and identical variance, denoted σ2. Let Z = (

∑
Xi)/n. Use Chebyshev’s

inequality to prove that

Pr [|Z − µ| ≥ λ] ≤ σ2

λ2n
.

Hint: Consider the random variables Yi := Xi − E [Xi]. Note that the Yi’s are pairwise independent, and
each has zero expectation. Apply Chebyshev’s inequality to the random variable Z = (

∑
Xi)/n, and use

the linearity of expectation to show that

Pr [|Z − µ| ≥ λ] ≤ E[(
∑

Yi)
2]/(λ2 · n2) .

Then (again using the linearity of expectation) show that E[(
∑

Yi)2] = n · σ2.

Ex 24.5. Let m > 4, and let H be an m × n 0-1 matrix, the average density of (i.e., the
average number of 1s in) each row of which does not exceed p, 0 ≤ p < 1. Show that then, for
every constant δ > 0, there is an m × t submatrix H ′ of H such that t = O(log(m/δ2)) and
each row of H ′ has average density at most p + δ. Hint: Let ξ be a random variable uniformly
distributed in {1, . . . , n} and let ξ1, . . . , ξt be its independent copies, t = ⌈4p log(m/δ2)⌉. First, observe
that with probability strictly larger than 1/2 all the selected columns ξ1, . . . , ξt are distinct. Next, fix
a row x1, . . . , xn of H, and consider the 0-1 random variables Xi = xξi , for i = 1, . . . , t. Observe that
Pr[Xi = 1] ≤ p and apply the Chernoff inequality (Theorem ??) to show that the average density (

∑
Xi)/t

of 1s in the selected columns can exceed p + δ with probability at most 1/m2. Since we have only m rows,
with probability at least 1 − 1/m > 1/2, all the rows of the selected submatrix will have average density
at most p + δ.

Ex 24.6. Let f(x) be a boolean function on n variables x = (x1, . . . , xn). Let F (x, y) be
a formula with an additional set of boolean variables y = (y1, . . . , ym). The size |F | of the
formula F is the number of leaves in it. Let y be a random vector taking its values in {0, 1}m

independently and with equal probability 2−m. Suppose that F (x, y) computes f with (one-sided)
failure probability p. That is, for every input a ∈ {0, 1}n, Pr[F (a, y) 6= f(a)] is zero if f(a) = 0,
and is at most p if f(a) = 1.
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(a) Use Adleman’s theorem to show that, if p ≤ 1/2, then f can be computed by a usual (deter-
ministic) formula of size O(n · |F |).

(b) The formula F (a, y) can be written in the form

F (a, y) =
∑

F (x, b) · Xb,

where the sum is over all b ∈ {0, 1}m and Xb is the indicator random variable for the event
“y = b.” This formula uses m random bits (to chose a particular formula F (x, b)). Use
Exercise ?? to essentially reduce this number of random bits until O

(
log(m/δ2)

)
at the cost

of a slight increase of failure probability by δ. Namely, prove that there is a subset B =
{b1, . . . , bt} of t = O(m/δ2) vectors such that the formula

F ′(x, z) =

t∑

i=1

F (x, bi) · Yi

computes the same boolean function f with failure probability at most p + 1/4; here z is a
random variable taking its values in {1, . . . , t} independently and with equal probability, and
Yi is the indicator random variable for the event “z = i.”
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Fragments of Ramsey Theory





CHAPTER 25

Ramseyan Theorems for Numbers

In 1930 Frank Plumpton Ramsey wrote a paper On a problem in formal logic which initiated
a part of discrete mathematics nowadays known as Ramsey Theory. At about the same time B.L.
van der Waerden (1927) proved his famous Ramsey-type result on arithmetical progressions. A few
years later Ramsey’s theorem was rediscovered by P. Erdős and G. Szekeres (1935) while working
on a problem in geometry. In 1963 A.W. Hales and R.I. Jewett revealed the combinatorial core of
van der Waerden’s theorem and proved a general result which turned this collection of separate
ingenious results into Ramsey Theory.

In this chapter we discuss several Ramsey-type problems in additive number theory.

1. Arithmetic progressions

Let W (r, k) be the least number n such that any coloring of {1, 2, . . . , n} in r colors gives a
monochromatic arithmetic progression with k terms, i.e., for any such coloring there exist integers
a, b such that all the points

a, a + b, a + 2b, . . . , a + (k − 1)b

get the same color. In other words, a sequence a1, a2, . . . , ak of numbers is an arithmetic progression
if and only if each its element ai (1 < i < k) is the arithmetic mean ai = (ai−1 +ai+1)/2 of its two
neighbors. The existence of W (r, k) for any r and k is the celebrated theorem of van der Waerden
(1927).

Theorem 25.1 (Van der Waerden 1927). For every choice of positive integers r and k, there
exists a positive integer n = W (r, k) such that for every coloring of the set of integers {1, . . . , n}
in r colors at least one arithmetic progression with k terms will be monochromatic.

In Sect. ?? we will show how this theorem can be derived using a very powerful Ramsey-type
result due to Hales and Jewett (1963).

Using much more involved techniques, Szemerédi (1975) obtained the following improvement
of Van der Waerden’s theorem.

Theorem 25.2 (Szemerédi 1975). For any c > 0 and k ≥ 3, there is n0 such that for any
n ≥ n0 and any set S ⊆ [n] of size |S| ≥ cn, S contains an arithmetic progression of length k.

It can be seen that this implies Van der Waerden’s theorem, since we can set c = 1/r and
for any r-coloring of [n], one color class contains at least cn elements. Szemerédi’s theorem is a
“density type” statement: any sufficiently large subset must contain a long arithmetic progression.

Using this fundamental result, Green and Tao (2008) were able to prove that, for every k,
there exists a length-k arithmetic progression consisting entirely of prime numbers.

How fast does the number W (r, k) in Van der Waerden’s theorem grow? Easy probabilistic
argument shows that the growth is exponential, even for r = 2.

Theorem 25.3. W (2, k) > 2k/2. That is, the set {1, . . . , n} may be two-colored so that no
2 log n-term arithmetic progression is monochromatic.

Proof. Color {1, . . . , n} randomly. That is, we flip a coin n times to determine a color
of each point. For each arithmetic progression S with k terms, let AS be the event that S is
monochromatic. Then Pr[AS ] = 2 ·2−|S| = 2−k+1. There are no more than

(
n
2

)
progressions (since

each is uniquely determined by its first and second elements); so if
(

n
2

)
2−k+1 < 1, we have that

Pr [
⋃

AS ] ≤ ∑
Pr [AS ] < 1, and the desired coloring exists. Therefore W (2, k) must be larger

than any n for which
(

n
2

)
2−k+1 < 1, e.g., for which n2 ≤ 2k. �

259
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Using the Lovász Local Lemma this lower bound can be improved to W (2, k) > 2k/(2ek) (see
Exercise ??). However, even this lower bound is very far from the best known upper bound due
to Timothy Growers:

log2 log2 W (r, k) ≤ r22k+9

.

Ron Graham conjectures that W (2, k) ≤ 2k2

.
Let us ask a slightly different question: What is the smallest number r = rk(n) of colors needed

to color 1, 2, . . . , n such that no length-k arithmetic progression is colored monochromatically?
That is, r = rk(n) is the minimal number for which W (r, k) > n.

Determining the true rate of growth of rk(n) is a difficult problem. It is known that rk(n) is
unbounded for fixed k, however, for k ≥ 4 it can only be shown to grow extremely slowly.

We now relate rk(n) to another Ramsey-like function. Let Ak(n) be the size |S| of a largest
subset S ⊆ {1, . . . , n} that contains no arithmetic progression of length k.

Theorem 25.4.

n

Ak(n)
≤ rk(n) ≤ (4n + 2) ln n

Ak(n)
.

Proof. Lower bound. Let r = rk(n). The set {1, . . . , n} can be r-colored in such a way that
there are no length-k monochromatic arithmetic progressions. By the pigeonhole principle, some
color must be used at least n/r times, and hence, some color class S has size |S| ≥ n/r and has
no arithmetic progression of length k. Therefore, Ak(n) ≥ |S| ≥ n/r, implying that r ≥ n/Ak(n).

Upper bound. Assume that S is a subset of [n] = {1, . . . , n} that contains no arithmetic
progressions of length k, and set ℓ := (4n + 2) ln n/|S|. We demonstrate that the upper bound on
rk(n) holds by proving that it is possible to color the set [n] with cn ln n/|S| colors so that none of
length-k monochromatic progressions are left monochromatic. Since the set S has no arithmetic
progression of length k, it is enough to show that we can cover the set {1, . . . , n} by at most ℓ
translates S + t1, . . . , S + tℓ of S; here, as before, S + t = {a + t : a ∈ S}. Having such a covering,
we can define the coloring χ : [n] → [ℓ] by setting χ(x) = min{i : x ∈ S + ti}. So, it is enough to
prove the following

Claim 25.5. Let S ⊆ [n]. No more than O(n log n/|S|) translates of S are needed to cover
[n].

We use a probabilistic argument. Pick the number t in the interval −n to n at random inde-
pendently and uniformly; hence, each number t in this interval is picked with the same probability
p = 1/(2n + 1). Note that a number x ∈ [n] belongs to a translate S + t iff t = x − a for some
a ∈ S. So, Pr [x ∈ S + t] = p|S|.

Now let t1, . . . , tℓ be ℓ independent copies of t. The probability that a fixed number x ∈ [n] is
covered by none of the ℓ translates S + ti, i = 1, . . . , ℓ is (1−p|S|)ℓ. Since we have only n numbers
x in [n], the probability that some of the numbers remains uncovered is at most

n(1 − p|S|)ℓ = n

(
1 − |S|

2n + 1

)ℓ

≤ exp

(
ln n − ℓ|S|

2n + 1

)
=

1

n
< 1 . �

In the case k = 3 we have the following lower bound on Ak(n). Recall that a length-3
arithmetic progression a, a + d, a + 2d is just a set of three distinct numbers x = a, y = a + 2d and
z = a + d such that x + y = 2z.

Theorem 25.6 (Behrend 1949). If n is a large enough, then A3(n) ≥ ne−O(
√

ln n).

Proof. The proof relies on the geometrical observation that a straight line can intersect a
sphere in Zm in at most two points. In other words, the set {x ∈ Zm : ‖x‖ = r} with r > 0 and
m ≥ 1 cannot contain an arithmetic progression of length three, that is, three vectors x, y, z in
Zm such that x + y = 2z. So, we only need to map this example back to [n] = {1, . . . , n}. Let
m, M be large integers which we shall determine later, and consider the spheres

S(r) = {x ∈ [M ]m : x2
1 + · · · + x2

m = r2} .
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Note that as r2 ranges from m to mM2, these sets cover the cube [M ]m, which is of cardinality
Mm. By the pigeonhole principle, there must exist a radius

√
m ≤ r0 ≤ √

mM such that the
sphere S = S(r0) in [M ]m has cardinality

|S| ≥ Mm

mM2 − m
>

Mm−2

m
.

Now we map S to {1, . . . , n} via a mapping

P (x) = P (x1, . . . , xm) :=
1

2M

m∑

i=1

xi(2M)i .

It is then not difficult to check that: (i) P is injective, (ii) x+y = 2z whenever P (x)+P (y) = 2P (z),
and (iii) maxx∈S P (x) ≤ (2M)m. Therefore, if we set M := ⌈n1/m/2⌉, it follows that the set P (S)

lies in {1, . . . , n} and contains no arithmetic progression of length three. Setting m :=
√

log2 n we
see that P (S) has cardinality

|P (S)| = |S| ≥ n1−2/m

m2m
≥ n exp(−c

√
ln n) . �

Theorems ?? and ?? yield the following upper bound on r3(n).

Corollary 25.7. At most eO(
√

ln n) colors are enough to color {1, 2, . . . , n} so that no length-3
arithmetic progression is colored monochromatically.

2. Szemerédi’s cube lemma

A collection C of integers is called an affine d-cube if there exist d + 1 positive integers
x0, x1, . . . , xd so that

C =

{
x0 +

∑

i∈I

xi : I ⊆ {1, 2, . . . , d}
}

.

If an affine cube is generated by x0, x1, . . . , xd then we write

C = C(x0, x1, . . . , xd).

For example, C(1, 1, 1) = {1, 2, 3}, C(1, 3, 9) = {1, 4, 10, 13} and C(1, 2, 2, 2) = {1, 3, 5, 7}. In
particular, every arithmetic progression a, a+b, a+2b, . . . , a+db is an affine d-cube C(a, b, b, . . . , b).

The following result is a version of Van der Waerden’s theorem for affine cubes.

Lemma 25.8. For every d, r ≥ 1 there exists an n = S(d, r) with the following property. If we
color the set {1, . . . , n} in r colors then all the elements of at least one affine d-cube lying in this
set will receive the same color.

Proof. We argue by induction on d. The case d = 1 is obvious, so assume that n = S(r, d−1)
exists and take S(r, d) := rn + n.

Suppose N ≥ S(r, d) and {1, . . . , N} is colored in r colors. Consider the colors of the strings
of n consecutive numbers

i, i + 1, . . . , i + n − 1 for 1 ≤ i ≤ rn + 1.

We have rn + 1 such strings of numbers but only rn possible strings of their colors (we have only
r colors in our disposal). By the pigeonhole principle, some two strings

i, i + 1, . . . , i + n − 1;
j, j + 1, . . . , j + n − 1,

with i < j, will receive the same sequence of colors. That is, for each x in {i, i + 1, . . . , i + n − 1},
the numbers x and x + (j − i) receive the same color.

By the choice of n = S(r, d − 1), the set {i, i + 1, . . . , i + n − 1} contains a monochro-
matic affine (d − 1)-cube C(x0, x1, . . . , xd−1). But then all the numbers of the affine d-cube
C(x0, x1, . . . , xd−1, j − i) have the same color. Since j − i ≤ rn, this cube lies in {1, . . . , N}, and
we are done. �
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The following important result of Szemerédi (1960) implies that in every coloring of {1, . . . , n}
by r ≤ (4n)1/2d−1

/4 colors, at least one color class will contain an affine d-cube.

Lemma 25.9 (Szemerédi’s Cube Lemma). Let d ≥ 2 be given. Then, for every sufficiently
large n, every subset A of {1, . . . , n} of size

|A| ≥ (4n)1−1/2d−1

contains an affine d-cube.

Proof. We will iteratively use the following fact: if B ⊆ {1, . . . , n}, |B| ≥ 2, then there is a
i ≥ 1 such that the set Bi := {b ∈ B : b + i ∈ B} has size

(149) |Bi| >
|B|2
4n

.

This immediately follows from the equality (see Exercise ??):

(150)

n−1∑

i=1

|Bi| =

(|B|
2

)
.

Applying this fact to the set A, we will find i1 ≥ 1 such that

|Ai1
| >

|A|2
4n

≥ (4n)2−2/2d−1

4n
= (4n)1−1/2d−2

.

Similarly, applying the fact to the set Ai1
, we will find i2 ≥ 1 such that

|Ai1,i2
| = |(Ai1

)i2
| >

|Ai1
|2

4n
≥ (4n)2−2/2d−2

4n
= (4n)1−1/2d−3

.

Continuing this process, we will find i1, i2, . . . , id−1 such that

|Ai1,i2,...,id−1
| > (4n)1−1/2d−d

= 1.

Since this set still has at least 2 elements, we can apply the fact once more and conclude that the
set Ai1,i2,...,id

contains at least one element b0. Observe that

Ai1
= {b : b ∈ A, b + i1 ∈ A},

Ai1,i2
= {b : b ∈ A, b + i1 ∈ A, b + i2 ∈ A, b + i1 + i2 ∈ A}

determines an affine 2-cube C(b, i1, i1) ⊆ A, and so on. Hence, the last set Ai1,i2,...,id
determines

an affine d-cube C(b0, i1, . . . , id), and this cube lies entirely in A. �

In the proof above no attempt was made to get the best constant. In particular, we were very
generous when deriving (??) from (??). Using more precise estimate at this step, Gunderson and
Rödl (1998) improved the bound to

|A| ≥ 21−1/2d−1

(
√

n + 1)2−1/2d−1

.

3. Sum-free sets

Recall that one of the earliest result in Ramsey theory—the Schur theorem (Theorem ??)—
states that for any r ≥ 2 there is n > 3 such that for any r-coloring of {1, 2, . . . , n}, there are three
integers of the same color and such that x + y = z.

In the wake of Schur’s theorem, many people have studied so-called sum-free sets, i.e., subsets
A of the positive integers such that x, y ∈ A implies x+y 6∈ A. In particular, people have examined
the question of how large a sum-free set can be.

This question has a natural generalization to arbitrary Abelian groups. An Abelian group is
a nonempty set G together with an operation (x, y) 7→ x + y, called addition, which is associative
(x + y) + z = x + (y + z) and commutative x + y = y + x. Moreover, there must be an element
0 ∈ G (called a zero) such that x + 0 = x for all x ∈ G, and every x ∈ G must have an inverse −x
such that (−x) + x = 0. Standard examples of Abelian groups are: the set Z of integers and the
set Zn of residues modulo n.
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For a subset S of an Abelian group G, let α(S) denote the cardinality of the largest sum-free
subset of S. The following upper bound is immediate (see Exercise ??): for any finite Abelian
group G,

α(G) ≤ |G|/2 .

If we take G = Zn for an even n, then the set

A = {1, 3, . . . , n − 1}
is clearly sum-free, and hence, in this case α(G) = |G|/2.

In the case of odd n we may derive a better upper bound using a beautiful theorem of Kneser
about sums of finite subsets of an Abelian group. Here we will prove a special case of this result
which still has many applications in additive number theory and the proof of which is particularly
simple.

3.1. Kneser’s theorem. If A, B ⊆ G are subsets of an Abelian group G, then by A + B we
denote the set of all its elements of the form a + b with a ∈ A and b ∈ B. A subgroup of G is a
subset H ⊆ G which itself forms a group; it is proper if H 6= G.

The following theorem has many applications in additive number theory.

Theorem 25.10 (Kneser 1955). Let G be an Abelian group, G 6= {0}, and let A, B be nonempty
finite subsets of G. If |A| + |B| ≤ |G|, then there exists a proper subgroup H of G such that
|A + B| ≥ |A| + |B| − |H|.

Proof. We proceed by induction on |B|. If |B| = 1, then

|A + B| = |A| = |A| + |B| − 1 ≥ |A| + |B| − |H|
for every subgroup H.

Let |B| > 1, and suppose that the theorem holds for all pairs A′, B′ of finite nonempty subsets
of G such that |B′| < |B|. We distinguish two cases.
Case 1: a + b − c ∈ A for all a ∈ A and b, c ∈ B.

In this case A + b − c = A for all b, c ∈ B. Let H be the subgroup of G generated by all
elements of the form b − c, where b, c ∈ B. Then |B| ≤ |H| and A + H = A 6= G. Therefore, H is
a proper subgroup of G, and

|A + B| ≥ |A| ≥ |A| + |B| − |H|.
Case 2: a + b − c 6∈ A for some a ∈ A and b, c ∈ B.

Let e := a − c and define the subsets

A′ = A ∪ (B + e), B′ = B ∩ (A − e).

Note that b 6∈ B′, and hence, B′ is a proper subset of B, because otherwise b would have a form
x − a + c for some x ∈ A, and hence,

a + b − c = a + (x − a + c) − c = x ∈ A,

a contradiction. Also, c ∈ B′ (because 0 ∈ A − a), and hence, B′ is nonempty. Therefore, we can
apply the induction hypothesis to A′ and B′, and deduce that there exists a proper subgroup H
of G such that

(151) |A′ + B′| ≥ |A′| + |B′| − |H|.
It remains to observe that

A′ + B′ = [A ∪ (B + e)] + [B ∩ (A − e)]

⊆ (A + B) ∪ [(B + e) + (A − e)] = A + B

and

|A′| + |B′| = |A ∪ (B + e)| + |B ∩ (A − e)|
= |A ∪ (B + e)| + |(B + e) ∩ A|
= |A| + |B + e| = |A| + |B|.

�
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The following fact is a special version of Kneser’s theorem (we leave the proof as Exercise ??;
an alternative proof is given in Sect. ??):

Theorem 25.11 (Cauchy–Davenport). If p is a prime, and A, B are two non-empty subsets
of Zp, then |A + B| ≥ min{p, |A| + |B| − 1} .

Kneser’s theorem immediately yields the following upper bound on the size of sum-free subset
in Abelian groups.

Corollary 25.12. Let G be a finite Abelian group and let p be the smallest prime divisor of
|G|. Then α(G) ≤ (p + 1)|G|/(3p).

Proof. If A ⊆ G is a sum-free set, then |A+A| ≤ |G|− |A| because A+A and A are disjoint.
Since |A| ≤ |G|/2 (see Exercise ??), we can apply Theorem ?? and deduce

|G| − |A| ≥ |A + A| ≥ 2|A| − |H|
for some proper subgroup H of G. Since, by Lagrange’s theorem, the order |H| of any subgroup
H of G divides the order |G| of the group G, we have |H| ≤ |G|/p. Therefore,

3|A| ≤ |G| + |H| ≤ (1 + 1/p)|G|,
and the desired result follows. �

What about the lower bounds for α(G)?
We have already seen that for G = Zn with even n, we have an equality α(G) = |G|/2. If

G = Z is the group of integers, then
α(S) > |S|/3

for any finite subset S ⊆ Z \ {0} (we have proved this fact in Sect. ?? using the probabilistic
argument). For other Abelian groups the situation is not so clear.

The following naive argument shows that in this case also

α(G) ≥
√

|G| − 1.

To show this, let A be a maximal sum-free subset. If a 6∈ A, then A ∪ {a} is not sum-free by the
assumption, so we can write a = s1 + s2 for some s1, s2 ∈ A. Therefore |G \ A| ≤ |A|2, from which

the desired inequality |A| ≥
√

|G| − 1 follows.
Better lower bounds can be derived using an improvement of Theorem ??, also due to Kneser,

which states that with the same hypotheses, either |A+B| ≥ |A|+ |B| or |A+B| ≥ |A|+ |B|− |H|
for some proper subgroup H such that H + A + B = A + H (see, for example, Street (1972) for
the proof). Here we only mention that the best know lower bound for an arbitrary finite Abelian
group G is α(G) ≥ 2|G|/7. More information about the properties of sum-free sets can be found,
for example, in Nathanson (1996).

4. Sum-product sets

For every A ⊂ R we let A + A = {a + b : a, b ∈ A} and A · A = {ab : a, b ∈ A}. An old
conjecture of Erdős states that, for every ǫ > 0, every sufficiently large finite set A ⊂ R satisfies

max{|A + A|, |A · A|} ≥ |A|2−ǫ .

That is, this conjecture asserts that every set of numbers A must have either a large sum-set
A + A or a large product set A · A. The conjecture is central to our understanding of the interplay
between the additive and multiplicative properties of a set of numbers.

Erdős and Szemerédi (1983) were the first to prove that there exists δ > 0 so that max{|A +
A|, |A · A|} ≥ |A|1+δ for all sufficiently large sets A. This parameter δ has been steadily improved
by a number of authors. One highlight in this sequence is a proof by Elekes (1997) that δ may be
taken arbitrarily close to 1/4. His argument utilizes a clever application of the Szemerédi–Trotter
theorem on point-line incidences (see Theorem ??).

Recall that the Szemerédi–Trotter theorem asserts the following: If 2 ≤ k ≤
√

N and if we
take any set of N points in the plane, then it is not possible to draw more than O(N2/k3) lines
so that each of them contains at least k of the points.
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Theorem 25.13 (Elekes 1997). There is an absolute constant ǫ > 0 such that, for every set
A of non-negative real numbers,

max{|A + A|, |A · A|} ≥ ǫ|A|5/4 .

Proof. Let n = |A|, and consider the following n2 straight lines

fa,b(x) := a(x − b) = ax − ab for a, b ∈ A.

Observe that, for every a, b ∈ A, the function maps at least n elements b + c with c ∈ A to some
elements fa,b(b + c) = a · c of A · A. From a geometric point of view, this means that the graph of
each of these m = n2 lines fa,b(x) contains k = n or more points of P := (A + A) × (A · A). By
applying the Szemerédi–Trotter theorem to P with k = n and N = |P |, we get n2 = O(|P |2/n3),
that is

|A + A| · |A · A| = |P | = Ω(n5/2) . �

In the case of finite fields we have the following result.

Theorem 25.14 (Garaev 2007). Let p be a prime number, and A ⊆ Fp \{0}. Then the number
of elements in at least one of the sets A + A or A · A is at least an absolute constant times

min

{√
p|A|, |A|2√

p

}
.

In particular, if |A| ≈ p2/3 then this minimum is about |A|5/4.

Proof (due to Solymosi 2009). His idea is a very clever application of the expander mixing lemma
(Lemma ??). As in Sect. ??, consider a graph G whose vertices are n = p(p − 1) pairs (a, b) of
elements of a finite field Zp with a 6= 0, and two vertices (a, b) and (c, d) are joined by an edge iff
ac = b + d (all operations modulo p). We already know that this graph is (p − 1)-regular and that
the second largest eigenvalue λ of its incidence matrix is smaller than

√
3p (see Lemma ??). So,

if we define S, T ⊆ V by

S = (A · A) × (−A) and T = (A−1) × (A + A)

then the expander mixing lemma (Lemma ??) tells us that

e(S, T ) ≤ (p − 1)|S||T |
p(p − 1)

+ λ
√

|S||T | =
|S||T |

p
+ λ

√
|S||T |

<
|A · A||A + A||A|2

p
+
√

3p|A · A||A + A||A|2 ,

where the second inequality used λ <
√

3p. But for every a, b, c ∈ A there is an edge between
vertices (ab, −c) ∈ S and (b−1, a+c) ∈ T , so that e(S, T ) ≥ |A|3. Thus, if we set N := |A+A||A·A|,
then rearranging the resulting inequality

|A|3 ≤ e(S, T ) ≤ N |A|2
p

+ |A|
√

3pN

=
√

N

(√
N |A|2

p
+ |A|

√
3p

)

gives

√
N >

(√
N

p|A| +

√
3p

|A|2

)−1

.

Now, since (x + y)−1 ≥ 1
2 min{x−1, y−1} for positive x and y, we find that

√
N ≥ ǫ · min

{
p|A|√

N
,

|A|2
p1/2

}
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with ǫ = 1/2
√

3, which in turn implies

√
N ≥ ǫ · min

{√
p|A|, |A|2√

p

}
.

To finish the proof, we need only use the two-term arithmetic-geometric mean inequality:

max{|A + A|, |A · A|} ≥ |A · A| + |A + A|
2

≥
√

|A · A||A + A| =
√

N .

�

Exercises

Ex 25.1. Prove a lower bound for the general van der Waerden’s function W (r, k). Hint:
Modify the proof of Theorem ?? to the case of more than two colors.

Ex 25.2. Prove the following general version of Schur’s theorem. For every r and l ≥ 2,
there exists a positive integer n such that for every partition A1, . . . , Ar of the set {1, . . . , n}
into r classes one of the classes contains l (not necessarily distinct) numbers x1, . . . , xl such that
x1 + . . . + xl−1 = xl. Hint: Take n = Rr(2; l) and assign every pair {x, y} the color i if |x − y| ∈ Ai.

Ex 25.3. Show that for any finite Abelian group G, α(G) ≤ |G|/2. Hint: If S is a sum-free set
then S + S and S are disjoint.

Ex 25.4. Give a detailed proof of the last two statements in the proof of Kneser’s theorem
that A′ + B′ ⊆ A + B and |A′| + |B′| = |A| + |B|.

Ex 25.5. Let G be a finite Abelian group, and let A and B be subsets of G such that
|A| + |B| > |G|. Show that then A + B = G. Hint: For every x ∈ G, the set A ∩ (x − B) has at least
|A| + |B| − |G| ≥ 1 elements.

Ex 25.6. Let A and B be finite subsets of an Abelian group G. For x ∈ G, let r(x) be the
number of representations of x as the sum of elements from A and B, that is, r(x) is the number
of ordered pairs (a, b) ∈ A × B such that x = a + b. Prove the following: if |A| + |B| ≥ |G| + t
then r(x) ≥ t. Hint: Take an x ∈ G and show that |A ∩ (x − B)| ≥ |A| + |B| − |G| ≥ t.

Ex 25.7. Show that Kneser’s theorem (Theorem ??) implies the Cauchy–Davenport theorem.
Hint: For a prime p, the only proper subgroup of Zp is the trivial group H = {0}.

Ex 25.8. If A be a nonempty subset of an Abelian group G, then its stabilizer is the set
H(A) := {x ∈ G : x + A = A}. Show that A is a subgroup if and only if H(A) = A.

Ex 25.9. Prove (??). Hint: Consider a complete graph whose vertices are elements of B; label the
edge, joining two elements a < b, by their difference b − a, and observe that |Bi| is precisely the number
of edges labeled by i.

Ex 25.10. Let A be a finite set of non-zero numbers. Show that then both |A + A| and
|A · A| are at least 2|A| − 1. Give examples of arbitrary large sets A matching these bounds.
Hint: For the second part, consider arithmetic progressions a, 2a, 3a, . . . , na and geometric progressions
ar, ar2, ar3, . . . , arn.

Ex 25.11. Show that the number of sum-free subsets of {1, . . . , n} is at least c2n/2 for some
constant c > 0. Hint: We can take any set of odd numbers, or any set of numbers greater than n/2.

Ex 25.12. (Cameron–Erdős 1999). A sum-free subset S of X = {1, . . . , n} is maximal if none
of the sets S ∪{x} with x ∈ X \S is sum-free. Show that the number of maximal sum-free subsets
of X is at least 2⌊n/4⌋.

Hint: Let m be either n or n − 1, whichever is even. Let S consist of m together with one of each
pair of numbers x, m − x for odd x < m/2. Show that every such set S is sum-free, and distinct sets S lie
in distinct maximal sum-free sets.



CHAPTER 26

The Hales–Jewett Theorem

In 1963 A. W. Hales and R. I. Jewett proved a very general result from which most of Ramsey-
like theorems may be easily derived. Hales–Jewett theorem is presently one of the most useful
techniques in Ramsey theory. Without this result, Ramsey theory would more properly be called
Ramseyan theorems.

1. The theorem and its consequences

Let [t] = {1, . . . , t}. Points in the cube [t]n are strings x = (x1, . . . , xn) with all xi ∈ [t]. A
subset L ⊆ [t]n is a line (or combinatorial line) if there exists a non-empty subset I = {i1, . . . , ik} ⊂
[n] and numbers ai for i 6∈ I (the fixed positions of L) such that

L = {x ∈ [t]n : xi = ai for i 6∈ I and xi1
= xi2

= . . . = xik
} .

If we introduce a new symbol ∗ to denote the “moving coordinates,” then each line is defined by
its root τ = (τ1, . . . , τn) with τi = ai for i 6∈ I and τi = ∗ for i ∈ I. If we define τ(a) to be the
string τ with all ∗-positions set to a, then

L = {τ(1), τ(2), . . . , τ(t)} .

Here is an example of a line rooted in τ = (1, 3, ∗, 2, ∗, 1) with active set I = {3, 5} in [5]6 with
fixed positions a1 = 1, a2 = 3, a4 = 2 and a6 = 1:

L =





1 3 1 2 1 1 τ(1) first point of L
1 3 2 2 2 1 τ(2)
1 3 3 2 3 1 τ(3)
1 3 4 2 4 1 τ(4)
1 3 5 2 5 1 τ(5) last point of L

Note that every line in [t]n consists of exactly t points, and we have (t+1)n − tn lines in [t]n (every
root defines its own line).

We are using the alphabet [t] = {1, . . . , t} just for definiteness: one may take an arbitrary
alphabet A with |A| = t symbols. Say, if A = {0, 1} then a combinatorial line in An is just a pair
of two binary strings, one of which can be obtained from the other by changing some 0s to 1s.
Viewing binary strings as characteristic vectors of subsets of [n], each combinatorial line in {0, 1}n

corresponds to a pair of subsets S, T such that S ⊂ T .

x1

x3

Figure 1. A line L = {(0, 0, 0), (1, 0, 1), (2, 0, 2)} rooted in τ = (∗, 0, ∗)

267
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To match the classical parametric representation x = a + λb of a line in Rn, observe that it
corresponds to a combinatorial line rooted in τ , where ai = 0, bi = 1 if τi = ∗, and ai = τi, bi = 0
if τi 6= ∗. Figure ?? shows a line x = a + λb with a = (0, 0, 0) and b = (1, 0, 1). Thus, the symbol ∗
indicates the moving coordinate. Note, however, that not every line in Rn is a combinatorial line.

Theorem 26.1 (Hales–Jewett 1963). For every natural numbers t and r there exists a dimen-
sion n = HJ(r, t) such that whenever [t]n is r-colored, there exists a monochromatic line.

In fact, Hales and Jewett have proved this result for more general configurations, known as
combinatorial spaces. Each combinatorial line has only one set of moving coordinates, determined
by the occurrences of the special symbol ∗. A natural generalization is to allow several (disjoint)
sets of moving coordinates.

A combinatorial m-space Sτ ⊆ An is given by a word (a generalized root) τ ∈ (A∪{∗1, . . . , ∗m})n,
where ∗1, . . . , ∗m are distinct symbols not in the alphabet A. These symbols represent m mutually
disjoint sets of moving coordinates. We require that each of these symbols occurs at least once in
τ . Then Sτ is the set of all tm words in An which can be obtained by simultaneously replacing
each occurrence of these new symbols by symbols from A. Thus, combinatorial line is a just a
combinatorial 1-space.

In the case of two-letter alphabet A = {0, 1} there is a 1-1 correspondence between combi-
natorial spaces and subcubes of {0, 1}n. For example, if Sτ ⊆ {0, 1}6 is a combinatorial 3-space
given by τ = (1, ∗1, 0, ∗2, ∗3, 1), then Sτ is exactly the set of all vectors in {0, 1}6 on which the
monomial x1x3x6 takes value 1.

Theorem 26.2. Let A be a finite alphabet of t symbols and let m, r be positive integers. Then
there exists an integer n = HJ(m, r, t) such that for every coloring of the cube An in r colors there
exists a combinatorial m-space, which is monochromatic.

This result can be derived from Theorem ?? (see Exercise ??). We will prove Theorem ??
itself in Sect. ??. Let us first show how Hales–Jewett theorem implies some classical results of
Ramsey Theory.

1.1. Van der Waerden’s theorem. Recall that an arithmetic progression of length t is a
sequence of t natural numbers a, a+d, a+2d, . . . , a+(t−1)d, each at the same distance d ≥ 1 from
the previous one. Thus, each arithmetic progression is a very regular configuration of numbers,
just like cliques are in graphs.

In 1927 B.L. van der Waerden published a proof of the following Ramsey-type result for
arithmetic progressions.

Theorem 26.3 (Van der Waerden 1927). For every choice of positive integers r and t, there
exists a positive integer N = W (r, t) such that for every coloring of the set of integers {1, . . . , N}
in r colors at least one arithmetic progression with t terms will be monochromatic.

Proof. Take N := n(t−1)+1 where n = HJ(r, t) is from the Hales–Jewett theorem. Define a
mapping f : [t]n → {1, . . . , N} which takes a word x = (x1, . . . , xn) to the sum f(x) = x1 +. . .+xn

of its letters. The mapping f induces a coloring of [t]n in a natural manner: the color of a point
x ∈ [t]n is the color of the number f(x). It is not difficult to see that every combinatorial line
Lτ = {τ(1), τ(2), . . . , τ(t)} is mapped by f to an arithmetic progression of length t: the difference
between the integers corresponding to strings τ(i + 1) and τ(i) is the same (and is equal to the
number of ∗’s in τ). By the Hales–Jewett theorem, there is a monochromatic line that, in turn,
translates back to a monochromatic arithmetical progression of length t, as desired. �

1.2. Gallai–Witt’s Theorem. A multidimensional version of van der Waerden’s theorem
was proved independently by Gallai (= Grünwald), cf. Rado (1943), and Witt (1951).

A subset of vectors U ⊆ Zm is a homothetic copy of a subset V ⊆ Zm if there exists a vector
u ∈ Zm and a constant λ ∈ Z, λ > 0 such that

U = u + λV := {u + λv : v ∈ V } .

Note that an arithmetic progression a, a + b, a + 2b, . . . , a + kb in Z is a homothetic copy of
V = {0, 1, . . . , k} with u = a and λ = b.
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Theorem 26.4 (Gallai–Witt). Let the vectors of Zm be finitely colored. Then every finite
subset of Zm has a homothetic copy which is monochromatic.

Proof. Fix the number of colors r and a finite set of vectors V = {v1, . . . , vt} in Zm. We will
consider these vectors as symbols of our alphabet A = V . Set n = HJ(r, t) and consider the cube
An; its elements are vectors x = (x1, . . . , xn), each of whose coordinates xi is one of the vectors
v1, . . . , vt. As in the previous theorem, define a map f : An → Zm by f(x) = x1 + . . .+xn. By the
Hales–Jewett theorem, there is a monochromatic combinatorial line L = {τ(v1), τ(v2), . . . , τ(vt)} ⊆
An. Let I = {i : τi = ∗} be the set of moving coordinates of L. Then f(L) is the set of t vectors

of the form λvj + u, j = 1, . . . , t, where λ = |I| > 0 and u =
∑t

i=1 aivi with ai ∈ N is the sum of
fixed coordinates of the line L (the same vector vi may appear several times in such coordinates).
Hence, f(L) is a homothetic copy of V = {v1, . . . , vt}, as desired. �

2. Shelah’s proof of HJT

Various proofs of Theorem ?? are known. The original proof of Hales and Jewett is relatively
short but provides an upper bound for the function HJ(r, t) which grows extremely fast. Shelah
(1988) found a fundamentally new proof which yields a much smaller (in particular, a primitive
recursive) upper bound for HJ(r, t). Here we will follow the compact version of Shelah’s proof
from A. Nilli (1990) (c/o Noga Alon).

For each fixed number of colors r, we apply an induction on the number of symbols t in our
alphabet A. For t = 1 the theorem is trivial. Assuming it holds for t − 1 (and r) prove it for t.
Set

n := HJ(r, t − 1),

and define the following increasing sequence of dimensions N1, . . . , Nn by

N1 := rtn
and Ni := rt

n+
∑i−1

j=1
Nj

.

Put N := N1 + · · · + Nn. We will prove that the dimension N has the desired property, i.e., that
HJ(r, t) ≤ N . (This particular choice of the dimensions Ni will be important only in the proof of
Claim ?? below).

To show this, let A = {0, 1, . . . , t−1} be an alphabet of t symbols, and let χ : AN → {1, . . . , r}
be a coloring of the N -cube AN in r colors. Our goal is to prove that at least one combinatorial
line will be monochromatic. The key to the whole proof is the following technical claim about
the colors of neighboring words. We say that two words a, b ∈ An are neighbors if they differ in
exactly one coordinate, say, the i-th in which ai = 0 and bi = 1 :

a = a1 . . . ai−1 0 ai+1 . . . an

b = a1 . . . ai−1 1 ai+1 . . . an

For a word a = a1a2 . . . an over A of length n and a sequence of n roots

τ = τ1τ2 . . . τn,

the i-th of which has length Ni, let τ(a) denote the corresponding word of length N :

τ(a) = τ1(a1)τ2(a2) . . . τn(an).

That is, we replace each occurrence of ∗ in τ1 by a1, each occurrence of ∗ in τ2 by a2, and so on.

Claim 26.5. There exists a sequence of n roots τ = τ1τ2 . . . τn as above, such that χ
(
τ(a)

)
=

χ
(
τ(b)

)
for any two neighbors a, b ∈ An.

Before proving the claim, let us look at how it implies the theorem. Using the coloring χ of
the N -cube AN , we define a coloring χ′ of the n-cube (A \ {0})

n
by:

χ′(a) := χ
(
τ(a)

)
,

where τ is from the claim. Since the alphabet A\{0} has only t−1 symbols and n = HJ(r, t−1),
we can apply the induction to this coloring χ′. By the induction hypothesis there exists a root

ν = ν1ν2 . . . νn ∈
(
(A \ {0}) ∪ {∗}

)n
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such that the combinatorial line

Lν = {ν(1), ν(2), . . . , ν(t − 1)}
is monochromatic (with respect to χ′). Consider the string

τ(ν) = τ1(ν1)τ2(ν2) . . . τn(νn).

This string has length N and is a root since ν is a root (and hence, has at least one ∗). We claim
that the corresponding line

Lτ(ν) =
{

τ
(
ν(0)

)
, τ
(
ν(1)

)
, . . . , τ

(
ν(t − 1)

)}

is monochromatic with respect to the original coloring χ. Indeed, the coloring χ′ assigns the same
color to all the words ν(1), . . . , ν(t − 1). Hence, by the definition of χ′, the coloring χ assigns
the same color to all the words τ

(
ν(1)

)
, . . . , τ

(
ν(t − 1)

)
. If ν contains only one ∗, then τ

(
ν(0)

)

is a neighbor of τ
(
ν(1)

)
and, by the claim, receives the same color (under χ). If ν has more ∗’s,

then we can still reach the word τ
(
ν(0)

)
from the word τ

(
ν(1)

)
by passing through a sequence of

neighbors
τ
(
ν(1)

)
= . . . 1 . . . 1 . . . 1 . . .

. . . 0 . . . 1 . . . 1 . . .

. . . 0 . . . 0 . . . 1 . . .
τ
(
ν(0)

)
= . . . 0 . . . 0 . . . 0 . . .

and, by the claim, the word τ
(
ν(0)

)
will receive the color of τ

(
ν(1)

)
. So, the whole line Lτ(ν) is

monochromatic, as desired.
It remains to prove Claim ??.
Recall that we want to find a sequence of n roots τ = τ1τ2 . . . τn, the i-th of which has length

Ni, and such that χ(τ(a)) = χ(τ(b)) for any two neighbors a, b ∈ An.
We prove the existence of required roots τi by backward induction on i. Suppose we have

already defined the roots τi+1, . . . , τn. Our goal is to define the root τi.

Let Li−1 :=
∑i−1

j=1 Nj be the length of the initial segment τ1τ2 . . . τi−1 of the sequence of roots
we are looking for. The length of the i-th segment τi is Ni. For k = 0, 1, . . . , Ni, let Wk denote
the following word of length Ni:

Wk = 0 . . . 0︸ ︷︷ ︸
k

1 . . . 1︸ ︷︷ ︸
Ni−k

.

For each k = 0, 1, . . . , Ni, define the r-coloring χk of all words in ALi−1+n−i as follows: let
χk

(
x1 x2 . . . xLi−1

yi+1 . . . yn

)
be equal to

χ
(
x1 x2 . . . xLi−1

Wk τi+1(yi+1) . . . τn(yn)
)

.

We have Ni + 1 colorings χ0, χ1, . . . , χNi
, each being chosen from the set of at most

r#{of words} = rtLi−1+n−i
≤ rtLi−1+n

= Ni

such colorings. By the pigeonhole principle, at least two of these colorings must coincide, i.e.,
χs = χk for some s < k. Now define the desired root τi by

τi := 0 . . . 0︸ ︷︷ ︸
s

∗ . . . ∗︸ ︷︷ ︸
k−s

1 . . . 1︸ ︷︷ ︸
Ni−k

.

One can easily check that the roots τ1, . . . , τn defined by this procedure satisfy the assertion of
the claim. Indeed, observe that τi(0) = Wk and τi(1) = Ws. Hence, if we take any two neighbors
in the i-th coordinate

a = a1 . . . ai−1 0 ai+1 . . . an

b = a1 . . . ai−1 1 ai+1 . . . an

then

τ(a) = τ1(a1) . . . τi−1(ai−1) τi(0) τi+1(ai+1) . . . τn(an),

τ(b) = τ1(a1) . . . τi−1(ai−1) τi(1) τi+1(ai+1) . . . τn(an),
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and since χs = χk,

χ
(
τ(a)

)
= χ

(
τ1(a1) . . . τi−1(ai−1) Wk τi+1(ai+1) . . . τn(an)

)

= χk

(
τ1(a1) . . . τi−1(ai−1) ai+1 . . . an

)

= χs

(
τ1(a1) . . . τi−1(ai−1) ai+1 . . . an

)

= χ
(
τ1(a1) . . . τi−1(ai−1) Ws τi+1(ai+1) . . . τn(an)

)
= χ

(
τ(b)

)
.

This completes the proof of the claim, and thus, the proof of the Hales–Jewett theorem.

Exercises

Ex 26.1. Show that HJ(r, 2) ≤ r. That is, for every coloring of the cube {0, 1}r in r colors
at least one combinatorial line is monochromatic. Hint: Consider the words 0i1r−i for i = 0, 1, . . . , r.

Ex 26.2. Let N = W (2, t2 + 1), where W (r, t) is the van der Waerden’s function, and let χ
be a coloring of {1, . . . , N} in two colors. Show that there exists a t-term arithmetic progression
{a + i · d : i = 0, 1, . . . , t − 1} which together with its difference d is monochromatic, i.e., χ(d) =
χ(a + i · d) for every i < t. Hint: Van der Waerden’s theorem gives a monochromatic arithmetical
progression {a + j · d : j ≤ t2} with t2 terms. Then either some j · d, with 1 ≤ j ≤ t, gets the same color
or all the numbers d, 2d, . . . , td get the opposite color.

Ex 26.3. Say that a family A ⊆ 2X of subsets of a finite set X is r-regular in X if for every
coloring χ : X → [r] = {1, . . . , r} of underlying elements in r colors, at least one member A ∈ A
must be monochromatic, that is, χ(x) = c for some color c ∈ [r] and all elements x ∈ A. For two
families A ⊆ 2X and B ⊆ 2Y , let A ⊗ B be the collection of all sets A × B, where A ∈ A and
B ∈ B. Prove the following:

If A is r-regular in X, and B is r|X|-regular in Y , then A ⊗ B is r-regular in X × Y .

Ex 26.4. Use Theorem ?? to derive the Hales–Jewett theorem for combinatorial m-spaces
(Theorem ??). Hint: Consider a new alphabet B of size |B| = tm whose symbols are all possible strings
in Am. If n := HJ(r, tm) then every r-coloring of Bn gives a combinatorial line L over the alphabet B.
Argue that this line in Bn is a combinatorial m-space in Amn.





CHAPTER 27

Applications in Communication Complexity

Communication complexity is a basic part of the theory of computational complexity. We have
k players who wish to collaboratively evaluate a given function f(x1, . . . , xn). The players have
unlimited computational power but none of them has access to all inputs x1, . . . , xn: each player
can only see a part of them. The function f itself is known to all players. The players communicate
by sending some bits of information about the inputs they can see. The communication complexity
of f is then the minimal number of bits communicated on the worst-case input.

The case of two players (k = 2) is relatively well understood. In this case two players, Alice
and Bob, wish to compute f(x1, x2). Alice can only see x1, and Bob only x2. There is a rich
literature concerning this two-party communication model—see the book by Kushilevitz and Nisan
(1997) for an excellent survey. The case of three and more players is much less understood. The
twist is that in this case the players share some inputs, and (at least potentially) can use this
overlap to encode the information in some clever and non-trivial way. In this chapter we are
mainly interested in this case of more than two players.

1. Multi-party communication

A general framework for multi-party communication complexity is as follows. Let X = X1 ×
X2 ×· · ·×Xk be a Cartesian product of k n-element sets. There are k players P1, . . . , Pk who wish
to collaboratively evaluate a given function f : X → R on every input x ∈ X. Each player has
unlimited computational power and full knowledge of the function. However, each player has only
partial information about the input x = (x1, . . . , xk): the i-th player Pi has access to all the xj ’s
except xi. We can imagine the situation as k poker players sitting around the table, and each one
is holding a number to his/her forehead for the others to see. Thus, all players know the function
f but their access to the input vector is restricted: the first player sees the string (∗, x2, . . . , xk),
the second sees (x1, ∗, x3, . . . , xk), . . ., the k-th player sees (x1, . . . , xk−1, ∗).

Players can communicate by writing bits 0 and 1 on a blackboard. The blackboard is seen
by all players. The game starts with the blackboard empty. For each string on the blackboard,
the protocol either gives the value of the output (in that case the protocol is over), or specifies
which player writes the next bit and what that bit should be as a function of the inputs this
player knows (and the string on the board). During the computation on one input the blackboard
is never erased, players simply append their messages. The objective is to compute the function
with as small an amount of communication as possible.

The communication complexity of a k-party game for f is the minimal number Ck(f) such
that on every input x ∈ X the players can decide whether f(x) = 1 or not, by writing at most
Ck(f) bits on the blackboard. Put otherwise, Ck(f) is the minimal number of bits written on the
blackboard on the worst-case input.

It is clear that Ck(f) ≤ log2 n + 1 for any f : X → {0, 1}: the first player writes the binary
code of x2, and the second player announces the result. But what about the lower bounds? The
twist is that (for k ≥ 3) the players share some inputs, and (at least potentially) can use this
overlap to encode the information in some clever and non-trivial way (see Exercises ??, ??).

Still, we know that the access of each player is restricted: the i-th player cannot distinguish
inputs differing only in the i-th coordinate. This leads to the following concept.

A star around a vector x ∈ X is a set S = {x1, . . . , xk} of k vectors in X, where xi differs
from x in exactly the i-th component. The vector x is a center of this star, and is not a part of
the star!

273
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Proposition 27.1. If a k-party communication protocol gives the same answer on all k points
of some star, then the protocol must give that same answer on its center.

Proof. Take an arbitrary k-party communication protocol, and let S = {x1, . . . , xk} be a
star around some vector x. Assume that the protocol gives the same answer on all points of S.
An important fact is that given the first l bits communicated by the players, the (l + 1)-th bit
communicated (transmitted, say, by the i-th player) must be defined by a function which does not
depend on the i-th coordinate of the input: the i-th player cannot see it. Therefore, for every l,
there is an i (1 ≤ i ≤ k) such that the (l + 1)-th communicated bit is the same for both inputs
x and xi. Since on all inputs x1, . . . , xk the players behave in the same way (i.e., write the same
string on the blackboard), it follows that they will also behave in the same way on the input x. �

Using Proposition ?? we can express the communication complexity in purely combinatorial
terms.

A coloring c : X → {1, . . . , r} of X is legal if it does not separate a star from its center: For
every star S around some vector x, if all k points of S receive the same color, then x must also
receive that color. In particular, a coloring is legal if it leaves no star monochromatic. A coloring
respects a given function f : X → R, if f(x) 6= f(y) implies c(x) 6= c(y), that is, the function f
must be constant in each color-class.

Define the chromatic number χk(f) of f : X → R to be the minimum number of colors in a
legal coloring of X respecting f .

Example 27.2. If we have only k = 2 players, then a function f : X1 × X2 → {0, 1} can be
viewed as a 0-1 matrix, and χ2(f) in this case is exactly the smallest number of mutually disjoint
monochromatic submatrices covering the whole matrix.

Proposition 27.3. Ck(f) ≥ log2 χk(f).

Proof. Take an optimal protocol for the communication game for f . Color each vector x ∈ X
by the string which is written on the blackboard at the end of communication between the players
on the input x. Since the protocol computes f , the coloring must respect f . We have 2Ck(f) colors
and, by Proposition ??, the coloring is legal. �

2. The hyperplane problem

To illustrate how the connection between communication complexity and colorings works in
concrete situations, let us consider the k-dimensional hyperplane problem. Inputs to this problem
are vectors x = (x1, . . . , xn) of integers xi ∈ [n]. Given such an input, the players must decide
whether x1 + · · · + xn = n. That is, they must compute the function h : [n]k → {0, 1} such that
h(x) = 1 if and only if x belongs to the hyperplane

H = {x ∈ [n]k : x1 + · · · + xk = n} .

For this special function h the lower bound given by Proposition ?? is almost optimal (see Exer-
cise ?? for a more general result).

Let rH be the minimal number of colors needed to color the hyperplane H so that no star in
H remains monochromatic.

Proposition 27.4. Ck(h) ≤ k + log2 rH .

Proof. Assume that all k players agree in advance on a coloring of H with r colors such that
no star S ⊆ H remains monochromatic. Given an input vector x = (x1, . . . , xk), xi is the only
component that the i-th player does not know. Let xi denote the only vector in H that is consistent
with the information available to the player i, that is, xi = (x1, . . . , xi−1, x∗

i , xi+1, . . . , xk) where
x∗

i := n −∑j 6=i xj . (If x∗
i < 1, then xi is undefined.)

The protocol now works as follows. If, for some i, the i-th coordinate x∗
i does not belong

to [n], the i-th player immediately announces the result: h(x) = 0. Otherwise they proceed as
follows.
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Using log2 r bits, the first player broadcasts the color of x1. Then the i-th player (i = 2, . . . , k)
transmits a 1 if and only if the color of xi matches the color of x1. The process halts and accepts
the input x if and only if all players agree, that is, broadcast 1s in the last phase.

If the actual input x is in H, then xi = x for all i, and all players will agree. Otherwise,
the vectors x1, . . . , xk form a star (around x 6∈ H) lying entirely in the hyperplane H, and hence,
cannot receive the same color. Thus, in this case the players correctly reject that input. �

We can upper bound rH by a Ramsey-type function we have already considered in Sect. ??.
Recall that rk(N) is the minimum number of colors needed to color 1, 2, . . . , N so that no length-k
arithmetic progression is colored monochromatically.

Proposition 27.5. For N = k2n, we have rH ≤ rk(N).

Proof. Define a mapping f from the hyperplane H to {1, . . . , N} by

f(x1, x2, . . . , xk) := x1 + 2x2 + · · · + kxk.

Color 1, . . . , N with r = rk(N) colors, avoiding monochromatic length-k arithmetic progressions.
Color each point x ∈ H with the color of f(x). We prove by contradiction that this coloring leaves
no star in H monochromatic, implying that rH ≤ r, as desired.

Assume x1, . . . , xk is a monochromatic star in H around some vector y. By the definition,
xi = y + λiei for some λi 6= 0 (i = 1, . . . , k). Since each xi is in the hyperplane H, it follows that
λ1 = λ2 = . . . = λk = λ. Consider the points f(x1), f(x2), . . . , f(xk). The map f is linear, so
f(xi) = f(y)+λf(ei). By the definition of f , f(ei) = i; hence, the numbers f(xi) = f(y)+λ·i (i =
1, . . . , k) form a monochromatic arithmetic progression of length k, which is a contradiction. �

It is not difficult to show that the two-dimensional hyperplane problem cannot be solved by
communicating fewer than Ω(log n) bits (see Exercise ??). Interestingly, already three players can
do the job much better!

We already know (see Corollary ??) that r3(N) ≤ 2O(
√

ln N). Together with Propositions ??
and ??, this gives the following surprising upper bound on the communication complexity of the
three-dimensional hyperplane problem.

Theorem 27.6. For any triple of numbers in [n], three players can decide whether these
numbers sum up to n by communicating only O(

√
log n) bits.

We now will use Ramsey-type arguments to show that the communication complexity of the
k-dimensional hyperplane problem is non-constant, for any k ≥ 2.

Theorem 27.7 (Chandra–Furst–Lipton 1983). For any fixed k ≥ 2, the communication com-
plexity of the k-dimensional hyperplane problem goes to infinity as n goes to infinity.

Proof. To get a contradiction, suppose there exists a constant r such that, for any n, there
is a legal coloring c : [n]k → [r] of the grid [n]k with r colors that respects the function h. Define
the projection p from H to [n]k−1 by

p(x1, . . . , xk) = (x1, . . . , xk−1) .

The mapping p is an injection. So c and p induce, in a natural way, an r-coloring of the points in
p(H). Let m = ⌊n/k⌋, and consider the grid [m]k−1. Since (k − 1)m ≤ n, this grid is a subset of
p(H) and so is also r-colored via p.

Take the set of k vectors V = {0, e1, . . . , ek−1}, where ei is the unit vector ei = (0, . . . , 1, 0, . . . , 0)
with 1 in the i-th coordinate. If n (and hence, also m) is large enough, the Gallai–Witt theorem
(Theorem ??) implies the existence of a homothetic copy u + λV = {u, u + λe1, . . . , x + λek−1} in
[m]k with λ > 0, which is monochromatic. Consider the vector

y := (u1, . . . , uk−1, n − s − λ),
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where s = u1 + u2 + · · · + uk−1. Since 0 < s ≤ (k − 1)m and 0 < λ ≤ m, the vector y belongs to
[n]k. We now have a contradiction since the vectors

p−1(u) = (u1, u2, . . . , uk−1, n − s)

p−1(u + λe1) = (u1 + λ, u2, . . . , uk−1, n − s − λ)

...

p−1(u + λek−1) = (u1, u2, . . . , uk−1 + λ, n − s − λ)

belong to the hyperplane H and form a monochromatic (under the original coloring c) star around
the vector y. Since the coloring is legal, the center y of this star must also receive the same color.
But the vector y does not belong to H because the sum of its components is n − λ < n. Thus, the
coloring c does not respect the function h, a contradiction. �

3. The partition problem

The partition function is a boolean function Partn,k in nk variables arranged into an n × k
matrix, and Partn,k(A) = 1 iff each row of A contains exactly one 1. That is, if we think of the
j-th column of A as representing a subset Sj of [n], then Partn,k accepts a sequence (S1, . . . , Sk)
of subsets of [n] iff these subsets form a partition of [n].

We are interested in the k-party communication complexity of this function in the case when
the j-th player can see the entire matrix A, except for its j-th column.

The case of two players (k = 2) is easy to analyze: in this case Ω(log n) bits of communication
are necessary (see Exercise ??).

Theorem 27.8 (Tesson 2003). For every k ≥ 2, the communication complexity of any k-party
game for Partn,k is greater than any constant.

Proof. Consider the input as a collection (S1, . . . , Sk) of subsets of [n]. Every such input that
is accepted by a communication protocol for Partn,k is such that, for every i ∈ [n], the element i
lies in exactly one of the Si. We can therefore put these inputs into a one-to-one correspondence
with n-tuples in [k]n by:

(S1, . . . , Sk) 7→ (x1, . . . , xn) with xi = j iff i ∈ Sj .

As an example for k = 3 and n = 4, an accepted input ({4}, {1, 3}, {2}) corresponds to the n-tuple
(2, 3, 2, 1).

Suppose that the k-party communication complexity of Partn,k is bounded by some constant c.
To every input accepted by a protocol we assign one of 2c colors corresponding to the commu-
nication history on this input. If n is large enough (it suffices to take n = HJ(2c, k)), then the
Hales–Jewett theorem (Theorem ??) implies that there must be a monochromatic combinatorial
line L = {a1, . . . , ak} rooted in some string τ ∈ [k] ∪ {∗}.

Let T := {i : τi = ∗}; hence, T 6= ∅. Let Sj be the set of positions on which all points of L
have value j. For example, if L ⊆ [5]6 is a line rooted in τ = (1, 3, ∗, 2, ∗, 1),

L =





1 3 1 2 1 1
1 3 2 2 2 1
1 3 3 2 3 1
1 3 4 2 4 1
1 3 5 2 5 1





,

then T = {3, 5}, S1 = {1, 6}, S2 = {4}, S3 = {2} and S4 = S5 = ∅.
By definition of the above one-to-one correspondence, we have that the sets T, S1, . . . , Sk form

a partition of [n], and all the inputs

(S1 ∪ T, S2, . . . , Sk), (S1, S2 ∪ T, . . . , Sk), . . . , (S1, S2, . . . , Sk ∪ T )

induce the same communication history. But these k inputs form a (combinatorial) star around
(S1, S2, . . . , Sk) and, by Proposition ??, must also be accepted by the protocol. However, S1 ∪S2 ∪
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· · · ∪ Sk = [n] \ T 6= [n] does not cover the whole set [n], so we get a contradiction: the protocol
(wrongly) accepts an input which should be rejected. �

4. Lower bounds via discrepancy

As we have seen, Ramsey-type results can yield unexpectedly efficient communication proto-
cols. However, the lower bounds on communication complexity obtained via these arguments, are
rather weak. The highest known lower bounds were obtained using probabilistic arguments.

Recall that a coloring c : X → {1, . . . , r} is legal if for every star S with center x either: (i)
S is not monochromatic or (ii) all points of S receive the same color, but then the center x also
receives that color.

The next proposition describes a combinatorial structure of color classes. Namely, each color
class of a legal coloring must be a “cylinder intersection,” a notion we already considered in
Sect. ??. This notion generalizes that of a “submatrix” (see Example ??).

Recall that a subset Ti ⊆ X is called a cylinder in the i-th dimension if membership in Ti

does not depend on the i-th coordinate:

(x1, . . . , xi, . . . , xk) ∈ Ti implies that (x1, . . . , x′
i, . . . , xk) ∈ Ti for all x′

i ∈ Xi.

A subset T ⊆ X is a cylinder intersection if it is an intersection T =
⋂k

i=1 Ti, where Ti is a cylinder
in the i-th dimension.

Proposition 27.9. A set T ⊆ X is a cylinder intersection if and only if, for every star S ⊆ X
around a vector x ∈ X, S ⊆ T implies x ∈ T .

Proof. The “only if” direction (⇒) is simple. Let T =
⋂k

i=1 Ti where Ti is a cylinder in
the i-th dimension. If S = {x1, . . . , xk} is a star around some vector x ∈ X, and if S ⊆ T , then
xi ∈ T ⊆ Ti and hence x ∈ Ti for all i = 1, . . . , k, implying that x ∈ T , as desired.

For the “if” direction (⇐), take an arbitrary subset T ⊆ X and assume that T contains the
center of every star it contains. For every i = 1, . . . , k, let Ti be the set of all strings x ∈ X such
that x coincides with at least one string xi ∈ T in all but perhaps the i-th coordinate. By its

definition, the set Ti is a cylinder in the i-th dimension. Hence, the set T ′ =
⋂k

i=1 Ti is a cylinder
intersection. If a vector x belongs to T , then it also belongs to all the Ti, by their definition.
This shows T ⊆ T ′. To show that T ′ ⊆ T , take a vector x ∈ T ′, and assume that x 6∈ T . But
then x ∈ Ti implies that there must be a vector xi ∈ T from which x differs in exactly the i-th
coordinate. The vectors x1, . . . , xk form a star around x and are contained in T . Hence, vector x
must belong to T as well. �

By Proposition ??, in every legal coloring of X, each color class must be a cylinder intersection.
Together with Proposition ??, this implies that every c-bit communication protocol for f gives us
a partition of X into at most 2c f -monochromatic cylinder intersections. The next question is:
how can one show that any such partition must contain many cylinder intersections?

Recall (from Sect. ??) that the (normalized) discrepancy of a function f : X → {−1, 1} on a
set T is defined by:

discT (f) =
1

|X|
∣∣∣
∑

x∈T

f(x)
∣∣∣ .

The discrepancy of f is the maximum disc(f) = maxT discT (f) over all cylinder intersections T .
The following lemma allows one to prove lower bounds on multiparty communication com-

plexity by proving upper bounds on the discrepancy.

Lemma 27.10. For every f : X → {−1, 1}, we have

Ck(f) ≥ log2
1

disc(f)
.

Proof. By Proposition ??, it is enough to show that, if a coloring c : X → {1, . . . , r} is legal
and respects the function f , then it must use r ≥ 1/disc(f) colors. By Proposition ??, each color
class T = c−1(i) must be a cylinder intersection. Since the coloring respects f , the function f
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must take the same value on all vectors in T , implying that discT (f) = |T |/|X|. Thus, no color
class T can have more than |X| · discT (f) ≤ |X| · disc(f) vectors. Since all |X| vectors must be
colored, at least 1/disc(f) colors are necessary. The logarithm of this number gives the desired
lower bound on Ck(f). �

In general, disc(f) is very hard to estimate. Fortunately, using probabilistic arguments, we
have already proved in Sect. ?? that the discrepancy can be bounded from above using the following
more tractable measure.

A k-dimensional cube is defined to be a multi-set D = {a1, b1}×· · ·×{ak, bk}, where ai, bi ∈ Xi

(not necessarily distinct) for all i. Being a multi-set means that one element can occur several
times. Thus, for example, the cube D = {a1, a1} × · · · × {ak, ak} has 2k elements.

Given a function f : X → {−1, 1} and a cube D ⊆ X, define the sign of f on D to be the
value

f(D) =
∏

x∈D

f(x) .

Hence, f(D) = 1 if and only if f(x) = −1 for an even number of vectors x ∈ D. We choose a cube
D at random according to the uniform distribution. This can be done by choosing ai, bi ∈ Xi for
each i according to the uniform distribution. Let

E(f) = E [f(D)] = E

[ ∏

x∈D

f(x)

]

be the expected value of the sign of a random cube D. We have already proved (see Theorem ??)
that, for every function f : X → {−1, 1},

disc(f) ≤ E(f)1/2k

.

Together with Proposition ??, this gives the following general lower bound on the communication
complexity.

Theorem 27.11. For every f : X → {−1, 1},

Ck(f) ≥ 1

2k
log2

1

E(f)
.

This is a very powerful result which allows us to show that, for any constant number k of
players, some explicit functions require an almost maximal number of communicated bits. We
demonstrate this by one function.

Say that a (0, 1) matrix is odd if the number of its all-1 rows is odd. Note that, if the matrix has
only two columns, then it is odd iff the scalar (or inner) product of these columns over GF (2) is 1.
By this reason, a boolean function, detecting whether a given matrix is odd, is called “generalized
inner product” function. We will assume that input matrices have n rows and k columns.

That is, the generalized inner product function gip(x) is a boolean function in kn variables,
arranged in an n × k matrix x = (xij), and is defined by:

gip(x) =

n⊕

i=1

k∧

j=1

xij .

We consider k-party communication gates for gip(x), where the j-th player can see all but the j-th
column of the input matrix x. Hence, the value of our function is determined by rows, whereas
the players only have access to columns.

It is clear that n + 1 bits of communication is enough to determine the value of gip(x): the
first player announces the entire second column, and the second player announces the answer. In
fact, O(kn/2k) bits of communication are already enough (see Exercise ??). We are now going to
show that this last upper bound is almost optimal: Ω(n/4k) bits are also necessary.

We have already shown in Sect. ?? (see Theorem ??) that the ±1 version f(x) = (−1)gip(x)

has

E(f) =

(
1 − 1

2k

)n

≤ e−n/2k

.
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Together with Theorem ?? this impies that the generalized inner product function has high mul-
tiparty communication complexity.

Theorem 27.12. If the i-th player can see all but the i-th columns of a given n × k matrix,
then k players cannot detect whether the matrix is odd by communicating fewer than Ω(n/4k) bits.

5. Making non-disjoint coverings disjoint

We have applied combinatorics (Ramsey theory and bounds on the discrepancy) to prove
lower and upper bounds in communication complexity. In this section we give an example in
the opposite direction: We show that communication games can be used to prove some purely
combinatorial results.

Let X and Y be two finite sets. A rectangle is a subset R ⊆ X × Y of the form R = R0 × R1

with R0 ⊆ X and R1 ⊆ Y . That is, a subset R is a rectangle iff for every two points (x, y) and
(x′, y′) of R, the combined points (x, y′) and (x′, y) belong to R as well. Note that R is a rectangle
if and only if it is a cylinder intersection R = T0 ∩ T1 with T0 = R0 × Y and T1 = X × R1.

Let f : X × Y → {0, 1} be a function. A rectangle R ⊆ X × Y is f -monochromatic if f takes
the same value on all points of R.

Theorem 27.13. If a rectangle can be covered by t not necessarily disjoint f-monochromatic
rectangles, then it can be decomposed into at most tO(log t) pairwise disjoint f-monochromatic
rectangles.

Proof. The function f : X ×Y → {0, 1} can be viewed as a 0-1 matrix, and χ2(f) in this case
is exactly the smallest number of mutually disjoint monochromatic matrices covering the whole
matrix. Hence, our goal is to show that χ2(f) ≤ tlog2 t. Since χ2(f) ≤ 2C2(f) (see Proposition ??),
it is enough to design a 2-party communication protocol for f that uses

C2(f) ≤ (log2 t)2

bits of communication. To design such a protocol, we first make one simple observation. Say that
a rectangle S = S0 × S1 intersects a rectangle R = R0 × R1 in rows, if S0 ∩ R0 6= ∅, and intersects
R in columns, if S1 ∩ R1 6= ∅.

Note that, S ∩ R 6= ∅ if and only if S intersects R in rows and in columns. This immediately
leads to the following observation about disjoint rectangles.

(∗) Let S be a rectangle and R a set of rectangles. If S ∩ R = ∅ for all R ∈ R, then either
S intersects at most half of rectangles R ∈ R in rows or S intersects at most half of these
rectangles in columns.

Now let R be a covering of X × Y by |R| = t f -monochromatic rectangles, and set r := ⌈log2 t⌉.
On all points in each rectangle R ∈ R the function f takes one and the same value 0 or 1; we call
this value the label of the rectangle R. Say that two rectangles in R are consistent if they have
the same label, and inconsistent otherwise. Note that rectangles with different labels must be
disjoint. A rectangle R = R0 × R1 contains a row x if x ∈ R0, and contains a column y if y ∈ R1.

The protocol consists of at most r rounds and in each round at most r bits are communicated.
After each round the current set of rectangles is updated. Given an input (x, y), the goal is to
decrease the number of rectangles in each round by at least one half. Let us call the two players
Alice and Bob.

(1) Alice checks whether all rectangles in R containing her row x are consistent. If yes, then
the (unique) label i of all these rectangles is a correct answer, and she announces it.

(2) Otherwise, Alice tries to find a rectangle R ∈ R containing x such that R intersects in
rows at most half of the rectangles that are inconsistent with R. If such a rectangle R
exists, then Alice sends its name (using r bits) to Bob and they both update R so that
it only contains the rectangles that intersect with R in rows (the other rectangles cannot
contain (x, y)).

(3) If Alice is unable to find such a rectangle then she communicates this to Bob (using one
bit).
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(4) Now is Bob’s turn. Since Alice failed, our observation (∗) ensures that there must be a
rectangle R ∈ R that contains y and intersects in columns at most half of the rectangles
that are inconsistent with R. Bob takes any such rectangle R and sends its name (using r
bits) to Alice and they both update R so that it only contains the rectangles that intersect
with R in columns (the other rectangles cannot contain (x, y)). At this point the round
is definitely over since they successfully eliminated at least half of the rectangles in R,
and we can proceed by induction.

In each round, the number of rectangles is decreased by at least one half. Hence, after at most
r = log2 t rounds the players will agree on a rectangle containing (x, y), and the label of this
rectangle is the correct answer f(x, y). �

Exercises

Ex 27.1. For a fixed vector x ∈ X, there are many (how many?) stars around it. How many
colors do we need to leave none of them monochromatic?

Ex 27.2. Consider the following equality function f : X1×X2 → {0, 1} defined by: f(x1, x2) =
1 if and only if x1 = x2. Show that χ2(f) = n. Hint: If χ2(f) < n then some color class contains two
distinct vectors (x1, x1) and (x2, x2). What about the color of (x1, x2)?

Ex 27.3. Show that the two-dimensional hyperplane problem cannot be solved by communi-
cating fewer than Ω(log n) bits. Hint: Exercise ??.

Ex 27.4. Show that two players cannot solve the partition problem Partn,2 by communicating
fewer than Ω(log n) bits. Hint: Exercise ??.

Ex 27.5. Three players want to compute the following boolean function f(x, y, z) in 3n vari-
ables. Inputs x, y, z are vectors in {0, 1}n, and the function is defined by:

f(x, y, z) =
n⊕

i=1

Maj(xi, yi, zi) ,

where Maj(xi, yi, zi) = 1 iff xi + yi + zi ≥ 2. Prove that C3(f) ≤ 3.

Ex 27.6. Prove the following extension of Proposition ?? to an arbitrary function f : X →
{0, 1}. For a vector x ∈ X, its i-th neighbor is a vector xi = (x1, . . . , x′

i, . . . , xk), with x′
i ∈ Xi,

such that f(xi) = 1; if f(x) = 1, then x is a neighbor of itself. Let c : X → {1, . . . , r} be a
legal coloring (with respect to f). Let also N(c) = max {N(c, x) : x ∈ X}, where N(c, x) is the
minimum, over all coordinates i, of the number of colors used by c to color the i-th neighbors of x.
Then Ck(f) ≤ log2 r + k + N(c) log2 N(c). Hint: Given an input vector x, the i-th player can privately
compute the set Ri of colors used by c to color the i-th neighbors of x. Show that f(x) = 1 if and only if
R1 ∩ R2 ∩ · · · ∩ Rk 6= ∅.

Ex 27.7. Show that three players can compute the partition function Partn,3 (introduced in
Sect. ??) using O(

√
log n) bits of communication. Hint: Theorem ??.

Ex 27.8. (Grolmusz 1994). Consider the following k-party communication game. Input is an
m × k 0-1 matrix A, and the i-th player can see all A except its i-th column. Suppose that the
players a priori know that some string v = (0, . . . , 0, 1, . . . , 1) with the first 1 in position t + 1,
does not appear among the rows of A. Show that then the players can decide if the number of
all-1 rows is even or odd by communicating only t bits. Hint: Let yi denote the number of rows of A

of the form (0, . . . , 0, 1, . . . , 1), where the first 1 occurs in position i. For every i = 1, . . . , t, the i-th player
announces the parity of the number of rows of the form (0, . . . , 0, ∗, 1, . . . , 1), where the ∗ is at place i.
Observe that this number is yi + yi+1. Subsequently, each player privately computes the mod 2 sum of all
numbers announced. The result is y1 + yt+1 mod 2, where yt+1 = 0.

Ex 27.9. Use the previous protocol to show that (without any assumption) the players can
decide if the number of all-1 rows is even or odd by communicating only O(km/2k) bits. Hint:
Divide the matrix A into blocks with at most 2k−1 − 1 rows in each. For each block there will be a string
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v′ of length k − 1 such that neither (0, v′) nor (1, v′) occurs among the rows in that block. Using k bits
the first player can make the string (0, v′) known to all players, and we are in the situation of the previous
exercise.

Ex 27.10. (Due to Babai and Kimmel). Consider the following multiparty game with the
referee. As before, we have an m × k 0-1 matrix A, and the i-th player can see all A except
its i-th column. The restriction is that now the players do not communicate with each other
but simultaneously write their messages on the blackboard. Using only this information (and
without seeing the matrix A), an additional player (the referee) must compute the string P (A) =
(x1, . . . , xm), where xi is the sum modulo 2 of the number of 1′s in the i-th row of A. Let N be
the maximal number of bits which any player is allowed to write on any input matrix. Prove that
N ≥ m/k. Hint: For a matrix A, let f(A) be the string (p1, . . . , pk), where pi ∈ {0, 1}N is the string
written by the i-th player on input A. For each possible answer x = (x1, . . . , xm) of the referee, fix a matrix
Ax for which P (Ax) = x. The correctness of the communication protocol ensures that f(Ax) 6= f(Ay) for
all x 6= y; hence, 2Nk ≥ 2m.
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