On Sperner's Theorem

Let \mathcal{F} be a family of subsets of $[n]$ with no chain longer than k. Then

$$
|\mathcal{F}| \leq \text { Sum of the largest } k \text { binomial coefficients in } n \text {. }
$$

Proof. The claim is trivial for $n=1$ and all k. Assume the claim is true for ground sets of sizes at most n and take a family \mathcal{F} of subsets of $[n+1]$ having no chain longer than k. We can write \mathcal{F} as a disjoint union $\mathcal{F}=\mathcal{G} \cup \mathcal{H}$, where $\mathcal{G}=\{$ sets in \mathcal{F} containing $n+1\}$ and $\mathcal{H}=\{$ sets in \mathcal{F} not containing $n+1\}$. Consider a subfamily $\mathcal{M} \subset \mathcal{H}$ which consists of sets which are the top sets of some some chain of length k in \mathcal{H} and add \mathcal{M} to \mathcal{G}. Write $\mathcal{G}^{\prime}=\mathcal{G} \cup \mathcal{M}$ and $\mathcal{H}^{\prime}=\mathcal{H} / \mathcal{M}$. Then \mathcal{F} is a disjoint union of \mathcal{G}^{\prime} and \mathcal{H}^{\prime}. We have that \mathcal{H}^{\prime} has no chain longer than $k-1$ as we shortened the maximum length chains. Also, no element in \mathcal{M} is contained in an element of \mathcal{G} as in this way we would have a chain longer than $k+1$ in \mathcal{F}. Thus \mathcal{G}^{\prime} corresponds to a set system on the ground set $[n]$ by removing the element $n+1$ from elements of \mathcal{G}. This system has no chain longer than $k+1$ as elements from \mathcal{M} can extend a chain in \mathcal{G} by at most one. Thus, by induction, the size of \mathcal{G}^{\prime} is no more than the $k+1$ largest binomial coefficients in n and \mathcal{H}^{\prime} has no more elements than the sum of $k-1$ largest binomial coefficients in n. By Pascal's identity this gives in total the sum of k largest binomial coefficients in $n+1$.

