On Sperner's Theorem

Let \mathcal{F} be a family of subsets of [n] with no chain longer than k. Then

 $|\mathcal{F}| \leq \text{Sum of the largest } k \text{ binomial coefficients in } n.$

Proof. The claim is trivial for n = 1 and all k. Assume the claim is true for ground sets of sizes at most n and take a family \mathcal{F} of subsets of [n+1] having no chain longer than k. We can write \mathcal{F} as a disjoint union $\mathcal{F} = \mathcal{G} \cup \mathcal{H}$, where $\mathcal{G} = \{\text{sets in } \mathcal{F} \text{ containing } n+1\}$ and $\mathcal{H} = \{\text{sets in } \mathcal{F} \text{ not containing } n+1\}$. Consider a subfamily $\mathcal{M} \subset \mathcal{H}$ which consists of sets which are the top sets of some some chain of length k in \mathcal{H} and add \mathcal{M} to \mathcal{G} . Write $\mathcal{G}' = \mathcal{G} \cup \mathcal{M}$ and $\mathcal{H}' = \mathcal{H}/\mathcal{M}$. Then \mathcal{F} is a disjoint union of \mathcal{G}' and \mathcal{H}' . We have that \mathcal{H}' has no chain longer than k-1 as we shortened the maximum length chains. Also, no element in \mathcal{M} is contained in an element of \mathcal{G} as in this way we would have a chain longer than k+1 in \mathcal{F} . Thus \mathcal{G}' corresponds to a set system on the ground set [n] by removing the element n+1 from elements of \mathcal{G} . This system has no chain longer than k+1 as elements from \mathcal{M} can extend a chain in \mathcal{G} by at most one. Thus, by induction, the size of \mathcal{G}' is no more than the k+1 largest binomial coefficients in n. By Pascal's identity this gives in total the sum of k largest binomial coefficients in n+1.