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LITTLEWOOD-OFFORD INEQUALITIES FOR RANDOM VARIABLES*

I. LEADER" AND A. J. RADCLIFFE

Abstract. The concentration of a real-valued random variable X is

c(X) sup P(t < X < + 1).

Given bounds on the concentrations of n independent random variables, how large can the concentration of
their sum be?

The main aim of this paper is to give a best possible upper bound for the concentration of the sum of n
independent random variables, each of concentration at most 1/k, where k is an integer. Other bounds on the
concentration are also discussed, as well as the case of vector-valued random variables.
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Introduction. In 1943, Littlewood and Offord [8 ], concerned with estimating the
number of real zeros of random polynomials, proved that, given complex numbers
(ai)]’ of modulus at least 1, not too many of the sums sA ZiA ai, A c { 1, 2,..., n }
lie in any open disc of diameter 1. They showed that the maximum number is
o(2nn -1/2 log n).

In 1945, Erd6s [2] noted that, if the ai are real numbers, then Sperner’s theoremm
on the maximum size of an antichain in the poset (n) { 1, 2 n ) )mimplies
a best possible upper bound. Indeed, suppose first that the ai are all positive. Then, given
an open interval I of length 1, the set system ,5I {A c {1, 2,..., n)" SA I) is an
antichain, since, if B A, then s SA S\A > B\A] >-- 1. Thus, for all I, ,5I

(Ln’zj) by Sperner’s theorem [9 ]. The result for positive reals immediately implies that
the same conclusion follows for all reals. Kleitman [5] and Katona [4] independently
showed that the same bound, of (Ln’zj), holds for (ai)’ in C, thus giving a best possible
improvement of the lemma of Littlewood and Offord. In [6 Kleitman proved a consid-
erable extension of this result, namely, to sums of vectors (ai) of norm at least in an
arbitrary normed space, thus setting a conjecture of Erd6s.

Jones 3 suggested a probabilistic framework for these questions, regarding a vector
a 4:0 in a normed space E as being naturally associated with an E-valued random
variable X with P (Xa 0) 1/2 and P (Xa a) 1/2. So, if 6a is the delta measure on E
concentrated at a, then the distribution of Xa is 1/2 (60 + a). Kleitman’s result can then
be stated as follows.

THEOREM A (see [6]). Let (ai)’ be vectors in a normed space E of norm at
least and let (Xi)’ be independent random variables with X having distribution
1/2 (6o + ). Then, for any open set U X ofdiameter at most 1, we have

P Xie <_2
[_n/21

Note that this bound is clearly best possible, equality being attained if, for instance,
all the a are equal.
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The conclusion of Theorem A gives a bound on the extent to which the values of
the random variable Y. Xi are concentrated in one place. This prompts the following
definition.

Let E be a normed space. The concentration of an E-valued random variable X is
c(X) sup P(X U), where the supremum is taken over all open subjects Uc E having
diameter at most 1.

The hypotheses of Theorem A can also be stated in terms of concentration, and in
this form it reads as follows.

THEOREM A’. Let (Xi)’{ be independent E-valued random variables that are essen-
tially two-valued and have concentration at most 1/2. Then

C X <2
Ln/2j

The main result of this paper is a result that extends Theorem A’ in the case when
E R by removing the restriction that each Xi be essentially two-valued.

THEOREM 1. Let Xi 7 be independent real-valued random variables ofconcentration
at most 1/2. Then

Xi <2
[n/2/

Our technique is closely related to that of Kleitman, being based on symmetric
chain decompositions. In we give a proof of Theorem 1, as well as presenting some
background about symmetric chain decompositions.

In {}2 we consider sums of random variables of concentration at most 1/q, where
q is an integer, and we generalise some results of Jones 3 ]. To state our result, we need
some fairly standard notation. We write [q] for the set { 0, 1, q } and also for
the poset with that ground set and the natural ordering. We write [q] for the product
of n copies of[q] with the usual product ordering, i.e., (xi)7 < (Yi)7 if and only if
x; < y; for each i. Finally, we write W for the size of the largest level set in the ranked
poset [q]n as follows:

W= Wu,= I{(x;)7 [q] X =In(q- 1)/21}1.
THEOREM 2. Let (Xi)7 be independent real-valued random variables with c(Xi <

/ q, where q . Then c( Y, 7 Xi < Wqn.
This bound is clearly best possible. Equality is attained when, for instance, each Xi

has distribution 1/q)(6o + + + q ).
Based on Theorem 2, we are perhaps tempted to guess that the sum ofn independent

random variables, each of concentration at most pq (p and q coprime integers), has
concentration bounded by the proportion of[q] occupied by the largest p layers. Un-
fortunately, very simple examples show that this is not the case. Rather surprisingly,
given this, the result does hold when p 2. Both the examples and the proof are given
in 3.

Finally, in {}4, we turn our attention to the vector-valued case. We consider some
of the problems raised by Jones [3 and answer some of his questions.

1. Sums of random variables of concentration at most 1/2. Before considering the
details of our proof of Theorem 1, some discussion of symmetric chain decompositions
is in order. These will prove to be vital for our results, as they were for Kleitman’s.

A symmetric chain decomposition of the power set (n) { 1, 2,..., n } is a
partition of (n) into chains (totally ordered subsets) in such a way that each chain
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.1 {A, A2, Ar} with AI c A2 c c: Ar satisfies Ak+[ [Ak[ + and
[Al[ + ]At[ n. Thus each a is arrayed symmetrically about the "middle layer" of

(n) and contains one set from each layer between the extremes. In particular, of course,
/must contain one set of size [ n/2 J. de Bruijn, Tengbergen, and Kruyswijk showed
that symmetric chain decompositions do exist, and Kleitman’s beautiful result, Theorem
A, was based on that proof.

Their proofgoes as follows. Suppose that /j) is a symmetric chain decomposition
of 0 n ). We can construct a symmetric chain decomposition of (n) in the following
manner. Take a copy of( Mj) in each layer of (n)" the bottom layer, which is exactly
0 n ), and the top layer of sets containing n). This is very definitely not a symmetric
chain decomposition of (n), but, by transferring the top element of each chain in the
top layer to the corresponding chain downstairs, everything can be fixed. More precisely,
for each chain a {A, A2, Ar } with A A2 c c A set

= {A,,Az,...,Ar, ArU {n}},

’s:= {A U {n},a2u {n}, Ar- U {n}}.
The collection { ., ’} forms a symmetric chain decomposition of (n), after the
removal of those that are empty.

A sequence m) is called a symmetric profile for (n) if, for some (and therefore,
up to rearrangement, eveff) symmetric chain decomposition of (n), say (), we
have mi [i[. Note that s (,2 ,).

As the above proof shows, we get a symmetric profile for (n + by taking
(mg) and replacing each m by the pair m 1, m + and then discarding zeros. At
first, this may seem not to the point, since we can write the symmetric profile for (n)
easily and explicitly: A sequence (m) is a symmetric profile for (n) if s (,7) and
the number ofj with m n + 2i is () () (with the convention that
(Y) 0). However, symmetric chain decompositions will arise in more complicated
situations, in which finding an explicit expression is much harder. Founately, all that
we need for the proofs is the total number of chains in a decomposition and the way in
which the symmetric profile changes as the poset grows. To illustrate this, below is eit-
man’s proof of Theorem A, using symmetric profiles.

Proofof Theorem A. The values ofX Z Xg are exactly those vectors in E of the
form XA gA a, where A is any subset of 1, 2, n }. The distribution of X is
2 EA=, , 6x. To show that c(X) is small, we paition (n) into subsets
(N) with s (2) and

(,) A, B ][XA xs][ 1.

To do this, we in fact do more, namely, prove that the paition can be chosen with
([[) being a symmetric profile for (n). Once this is proved, the theorem follows
easily, since

P(X 6 U) 2-" Z 6xa(U)
Ac 1,2 n}

j= A#S

2-ns

kn/21
The last inequality holds, since, by (,), at most one x with A e belongs to U.
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The proof goes by induction on n. The result is trivial for n 1, so we turn to
the induction step. Take an appropriate partition (n Us’ /j (where s’
(L--2j))- Take a support functional f 6 X* for an, a functional with Ilfll and
f(an) anti >- 1. For any ’j {A, A2, hr }, choose with

f(XA) >-- f(XA), k- I, 2,..., r

and set

d2j-- {A1,A2,... ,Ar, AIIJ {/7} },

1; {A, U {n},A U {n}, A,-1U {/’/}, A/+I U {/7},...,ArU {t/} }.
The partition of (n) that is needed consists of all the nonempty ’j and ’’. Clearly,
each ’ satisfies (.), since /. did originally. In , we need only check that, for each
Ak 6 , the norm of XAU {n} XA is large. This follows by applying fas follows:

x, . x >- f( xa, u XA)

f(an) + f(XA,) f(XA)

>_ f(an)>_ 1.

The profile of the new partition is a symmetric profile of (n), since each 9 of size m
splits into two, ofsizes m + and m 1. Thus by induction the theorem is proved. U]

In the proof of Theorem 1, we will be dealing with random variables and their
distributions, treating the latter similarly to the finite subsets ofE that arise in the proof
ofTheorem A. Indeed, we often regard a finite subset of as corresponding to a random
variable that assigns equal mass to those points and none to all others. We are interested
in the distribution of the sum of these random variables, that is, in the convolution of
their distributions.

More generally, we will be dealing with finite (positive Borel) measures on mthe
collection of all such we denote by //. However, we wish to stress that we will not really
be using any measure theory. Indeed, a reader who considers only measures of finite
support will not be losing much.

For t ’, the mass of is I1 u(). Just as before, the concentration of is
c(z) sup #(I), where the supremum is over all open intervals of length 1. The con-
volution of u, X //is denoted by ts X, and we write ’(m, c) for the set of all
of mass rn and concentration at most c.

Two elementary facts are summarised in the following lemma.
LEMMA 3. If# has mass rn and has concentration at most c, then . has con-

centration at most mc. Also, if(tai )’{ /[, then c( ’l ti < ’{ c(ti ).
Proof. Given any interval I (t, + ), we have

#. (I) fn fn X,(x + y)d,(x)d#(y)

fn X(I- y) d(y)

< f c du(y)= mc,

proving the first statement. The second is immediate. 7q

A standard approach in the proofs will be to split up a measure t into parts with
almost disjoint support. We need notation for these parts and therefore we define

Left (, m) z[ (-o,t xrt,
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where sup {x" /(-oo, x) _< rn} and x #(-o, t] m. Thus the support of
Left (u, rn) is contained in (-o, t] and [Left (/, rn)[ m. We define Right (u, rn) in
a similar fashion.

The next lemma, which is rather technical, enables us to peel off, from a convolution
of measures of concentration at most 1, a part that also has concentration at most 1.
This process is analogous to the transfer that occurs in the de Bruijn /Tengbergen / Kruys-
wijk proof of the existence of symmetric chain decompositions.

LEMMA 4. If# and X are measures of concentration and mass at least 1, then,
writing IRfor Right (#, and XLfor Left X, ), the measure tR * X +/ XL --/R * XL
belongs to //l rn (#) + rn(X) 1, ).

Proof. Let I (t, + be an interval of length in N. We wish to show that
u(I) _< 1. Set UL U gR and x, inf {t" (t, o) _< 1}. Similarly, let XR X XL
and xx sup {t" X(-o, t) _< 1}. Then we can also write u as UL*XL + UR*XL +
#R* XR. If #L* XL(I) 0, then u(I) #R* X(I) < 1, the last since #R has mass and X
has concentration 1. Similarly, we are finished if UR* XR (I) 0. If neither is zero, then
necessarily _< xx + x, _< + 1. In this case, we split X yet further. Write

XLL XL[ (-,t- x.], XLR kL[ (t- xu,o),

XRL XR (-,t + xA, XRR R It + x,,).

Note that/R * ’RR(I) /L * XL(I) 0, SO

v(I) UR * )XLL -" UL * XLR - UR $ kLR - It/R * kRL) (I)

(#*)kLR)(I) + (#R*()kLL -F )kRL))(I).

Since , has concentration 1, the first term is at most XLR[ XL(t X,, XX]. The measure
UR, on the other hand, has mass 1, so, to prove the lemma, it suffices to show that the
concentration of XLL + XRL is at most XL(t X,, Xx].

By considering the various ways in which an interval of length could overlap with
(t x,, xx], it is easy to see that

C(XLL + XLR) --< max { )’LL l, )kRL ], )XLR }.
Now, the first and last of these terms are ]XLLI [NLR] XL(t X,, XX], while

’R] X(t X,, X, / )XL(t X,, XX]

_< X.(t X,, XX],

since ), has concentration 1. Thus the result is proved. V1

With this lemma, it is simple to deduce the following, more comprehensible version.
LEMMA 5. If# is a measure ofmass m >_ and X is a measure ofmass 2, and each

has concentration at most 1, then the convolution . X can be written as a sum of two
measures of concentration at most 1, t* X v’ + v", with ]v’l m + and Iv"]
m-1.

Proof. With the same notation as in Lemma 4, set v’ v and v" #. X v. Then,
by that lemma, we have v’ e (m + 1, ), and certainly t* X v’ + v". Also, v" L* XR
and, since UL has concentration at most while )kR has mass 1, Lemma 3 shows that
v"e//(m- 1, 1). U]

These tools suffice for the proof of Theorem 1.
Proof of Theorem 1. Let ux, be the distribution of X and set m 2x,. The

theorem states that, whenever U is an open subset of N with diameter at most 1, then
((R)7 u,.)(U) _< (,}2). More is true; in fact, (R)7 can be written as a sum Y v, of
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measures of concentration at most 1, where uj[ ) is a symmetric profile for (n).
Again, the proof goes by induction on n. If (R)’- 12i Pj, where each uj has concen-
tration and (I 1 )g is a symmetric profile of (n ), then Lemma 5 gives

+

Since each uj splits into two new measures, of masses IjI + and [ujl 1, the masses
of the new decomposition form a symmetric profile of ’(n). So

c Xi 2-nC ldi

2-nc

_< 2 c(,)
j=l

< 2-ns

(n){n/2J

Thus the result is proved.

2. Concentration at most ! !q. In this section, we extend Theorem to measures
ofconcentration at most / q for some fixed integer q. The techniques used are a straight-
forward extension of those in the proof of Theorem 1.

The first step is to note that the poset [q]n has a symmetric chain decomposi-
tion. This poset is ranked by weight" w(x)

_< xr) is symmetric if w(xk+ 1)) w(xk)) + and w(x1)) + w(x(r)) n(q ).
It was proved by de Bruijn, Kruyswijk, and Tengbergen [1] that [q]n has a symmetric
chain decomposition. Again, we say that a sequence (mj.) is a symmetric profile for q]n
if, for some (and hence, up to rearrangement, for any) symmetric chain decomposition
(oq), we have [b[ m. The required information about how symmetric profiles
change is here stated as a lemma.

LEMMA 6. Let (m;) be a symmetric profile for [q]n-, and, for each j 1, 2,
s, set r min { q, mj). Then the sequence obtained by replacing m by the r

values m + q + 2kfor k 1, 2, rj is a symmetric profilefor [q]
Proof. Consider a chain 0 (x)) belonging to a symmetric chain decompo-

sition of[q] n-1. For x 6 [q]n- and h 6 [q], denote by x + hen the element of[q]
formed by appending h to x. For 0 _< _< min (q, r) 1, let 5) {x) + hen
min (r k, h) }. Then each 5’t) is a symmetric chain in [q]n, and the union of all
the chains arising in this way forms a symmetric chain decomposition of[q] n. See Fig.
and for more details.
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O
X(1)/(q=l

x(2)+(q-l)cn

x(1)+C X(2)+Cn S(1)

1) x(2) x(k-D x(k)
s(O)

FIG. 1. The construction ofsymmetric chains.

The next lemma extends Lemma 5 to cover the present case. It states, in essence,
that we can treat a measure of mass rn and concentration much like the poset rn ]. In
particular, the convolution of an element of //(m, and one of /g (l, behaves
similarly to the poset[ m] l] and can be "peeled apart" in the same fashion. This
peeling process will allow us to write a convolution (R)]’ ti (where/zi (q, )) as a
sum of measures whose mass profile mimics that of a symmetric chain decomposition
of the poset q] n.

LEMMA 7. Given m, , set r min { m, }. If# l m, and 3‘ ft l, ),
then t*3‘ can be written as a sum Zk= u(k) in which u (k) //(m + + 2k, 1).

Proof. The case 2 of this lemma is precisely Lemma 5, and the case where
l is trivial: the splitting () u. 3‘ will do. The general case is proved by induction
on I. Using the result and notation of Lemma 4, set (1)

R* 3‘ / * 3‘L uR* 3‘L,
with (1)[ rn + and c(P ()) < 1. After some judicious relabelling, the induc-
tion hypothesis states that u. 3, P() tzL. 3‘g can be written as [,=2 u (), with u()
l(m+l+ 2k, 1).

Proofof Theorem 2. We prove by induction that the convolution (R)]’ qux can be
decomposed as a sum of measures of concentration at most whose mass profile is a
symmetric profile for q] n. Indeed, this is trivially possible if n 1. For the induction
step, let (uj) be a decomposition for (R)]’- qitx. Then

, *(q.x)

, uj*(qtx,).
j=l

rj (k)Now, by Lemma 7, each convolution uj*(q#x.)can be written as a sum = Pj where

r. min q, Pjl } andv.k)V) e ///(I 1 + q + 2k, for k 1, 2,..., ry. The collec-
tion of all is a decomposition of into measures of concentration 1, andnonzero
by Lemma 6 their masses form a symmetric profile for q].
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Remark. The proof of Theorem 2 can easily be extended to prove rather more.
Indeed, if (Xi)’ are independent real-valued random variables with c(Xi < /qi for all
(where ql, qn are integers), we can show that the concentration of Xi is at most

the proportion of I ]’ qi occupied by the largest layer. In fact, by using slightly more
information about the symmetric profile of I-[ ]’ [qi ], we can show that, given r open
intervals (Ik), each oflength at most 1, the probability that ]’ Xi lies in tA Ik is bounded
by the proportion of I-[ 7 qi occupied by the r largest layers.

3. Other values of the concentration. What can be said about the sum ofindependent
random variables of concentration at most c for values of c not of the form / q? Might
it be that the sum of n independent random variables, each of concentration pq (p, q
coprime integers) has concentration at most the proportion of[q] n occupied by the p
largest layers? It is easy to see that this cannot be the case, since we may have quite
complicated fractions pq that closely approximate some simple number such as 1/2. For
instance, let X1, X2 be independent and identically distributed random variables with
distribution (60 + 1 )/2. The X; certainly have concentration at most -47 However, their
sum has concentration 1/2 which is greater than 24, the proportion of 7 ]2 occupied by
the four largest layers.

On the other hand, somewhat surprisingly given this simple example, the question
above does have a positive answer when p 2, in other words, for concentrations of the
form 2/q with q odd. The proof proceeds by showing how to "peel apart" convolutions
of measures of concentration 2.

One preliminary lemma is necessary.
LEMMA 8. If q and l q, 2), then there exist measures #0, #, both of

concentration 1, with # #o + #1 and I/ol q/2 and 111 q2 ].

Proof. Split/ into parts of mass and (almost) disjoint support going from left to
fight. In other words, define u Left (#, and forj 2, 3, q set

,=Left - ,,
Now collect all the for j even together and similarly for all the odd , as follows:

/h j, h=0, 1.
j h(mod 2)

Then it is clear that 0, 1 have the correct masses. Now let I (t, + be an arbitrary
interval. Since has concentration 2, at most three of the can have (I) > 0. This is
because, if four ofthem could detect I, of necessity four consecutive ones, u, uk + , u + 2,

and Pk+ 3, say, then we would have Uk +l Uk + 2 and #(I) > 0 Uk+l)(I)
(ttk + -]" bk + 2 )(I) 2. This contradicts the fact that u has concentration 2.

If exactly three of the u give positive measure to I, then similarly they are u,
and uk + 2 with u +1(1) 1. Thus

u(I) + u+(I) #(I) u+l(I) < 2 1.

So, in the case when the support of three uk intersect I, we have 0(I), #(I) < 1. In the
case when at most two supports are involved, it is clear that both u0 and zl are at most
on I, and the proof is complete.
We are very fortunate to have the following lemma.
LEMMA 9. If# m, 2) and l, 2), with m and odd, then z. can be

written as a sum ofmeasures ofconcentration at most 2 whose massesform a symmetric
profilefor m] l]
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Proof. Write m 2a + and 2b + 1. By Lemma 8, we can write g g0 +
and X X0 + ,1, measures of concentration at most and masses a, a + and b,
b + 1, respectively. Without loss of generality, b < a, but there are two cases, when
b < a and when b a.

Case l. b < a.
By Lemma 7, go* X0 splits into b measures of concentration at most and masses

a + b 1, a + b 3, a b + 1. The convolution g, ,o can be decomposed into
b measures of concentration at most of masses a + b, a + b 2, a b + 2.
Summing in pairs, we can write g, X0 as the sum of b measures of concentration at most
2ofmasses2a+2b- 1,2a+2b-5 ,2a-2b+3.

In a similar fashion, both g0* and g, X split into b + pieces of concentration
at most 1. When paired up, these give measure of concentration at most 2 and masses
2a + 2b + 1, 2a + 2b 1, 2a 2b 3. The two collections together provide an
appropriate splitting for g, X.

Case 2. b a.
Partition g, X0 as before. Now, however, g0* ) splits into only a parts, of masses

a + b, a + b 2, 2, whereas gl*) splits as before into b + parts: masses a +
b + 1, a + b 1. Pair these measures, leaving the final measures of mass un-
paired. This produces b measures of concentration at most 2, of masses 2a + 2b + 1,
2a + 2b 3 5. Together with the remaining measure of mass (and therefore
certainly of concentration at most 2), this gives us exactly the desired splitting.

We are ready to study the case of concentration 2/q.
THWOREM 10. Let q be odd and let (Xi)’ be independent real-valued random

variables with c(Xi <_ 2/q. Let W and W2 be the sizes ofthe two largest layers in [q]n.
Then

c , x <_ ( + w/q.

Proof. Following the proof of Theorem 1, using Lemma 9 rather than Lemma 5,
we can write g (R) (qgx,) as a sum v, where each v- has concentration at most 2
and (I vl) is a symmetric profile for [q]n. What does this profile look like? If W < WI,
then there must be exactly WI W l’s in it. If W W, then the corresponding chain
decomposition can have no chains of length 1. In summary, exactly W W of the ,
have mass (and therefore concentration at most and the other W have concentration
at most 2. Thus

c(u) -< Z c(.)

_< 2W2 + (W W2)

ml-Av m2,

and so c(X) c(g)/q <_ (W + Wz)/qn. []

We note that Theorem 10 is best possible, as may be seen by taking each X to have
distribution 1/q)(60 + 61 + + 6o- ).

The question remains as to what can be said for other values of the concentration.
If (X,.)7 are independent real-valued random variables each of concentration at most c,
can we give good upper bounds for the concentration of X?

4. The veetor-valuefl ease. In the first three sections, we have concentrated on the
behavior of real-valued random variables. We turn now to the situation that was Jones’s
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[3] primary concern, the vector-valued case. Refer to [7 for general background and
notation about normed spaces.

Jones studied the following question. A subset M of a normed space E is said to
be 1-separated if, for any distinct x, y e M, we have x y >- 1. Given sets Mi
Xi,1, Xi,2, Xi,q for 1, 2, n such that each is 1-separated, form the corre-

sponding random variables (Xi) with Xi having distribution /q) Z= 6xi.j. Is it true
that the concentration ofX Xi is always bounded as we would wish, by the proportion
of[q] occupied by the largest layer? This question remains unanswered.

In his study of the problem, Jones introduced some useful definitions (given here
in slightly less generality than in 3 ]). Let M and M2 be 1-separated finite subsets of a
normed space E with Mil m. We say that the pair M1, M2 has the B.T.K. chain
property if their sum M + M2, counted with multiplicities, can be partitioned into a
family of 1-separated subsets whose size profile is a symmetric profile for [m] [m2].
We say that E has the B.T.K. chain property if every pair of finite 1-separated subsets of
E has the B.T.K. chain property. If E has the B.T.K. chain property, then the above
question has an affirmative answer (as may be seen by mimicking symmetric chain
decompositions of q n).

A partial ordering < on a normed space E is said to be compatible if it is translation
invariant (i.e., satisfies x < y if and only ifx + a < y + a for all x, y, a E) and has the
property that distinct x, y E are comparable if and only if x y >- 1. Thus, for
example, certainly has a compatible ordering: we let x precede y if x + < y in the
usual order.

Jones showed that, ifX has a compatible order, then Xhas the B.T.K. chain property.
He proved that two-dimensional Hilbert space, and hence each higher-dimensional Hilbert
space, fails to have the B.T.K. chain property and (afortiori) has no compatible order.
He asked whether lv has a compatible order, or at least satisfies the B.T.K. chain property.

In some sense, Jones answered this question himself, since we can find two-dimen-
sional subspaces of lv isometric to Hilbert space, and so lv cannot have the B.T.K. chain
property. In fact, compatible orders are rather hard to find: no normed space ofdimension
greater than has a compatible ordering. Moreover, the condition that < be translation
invariant is not the reason.

PROPOSITION 11. Let E be a normed space ofdimension greater than 1. Then there
is no partial ordering < on E such that distinct x, y E are comparable if and only if
Ilx- yll > 1.

Proof. It clearly suffices to show that no two-dimensional example exists, so let us
suppose that E is a two-dimensional space with such an ordering <. Let {x, x },
{x*, x ) be an Auerbach system for X. Thus x and x2 have norm 1", x and
x, belonging to E* have dual norm 1; and x (xj) 6ij (such a system can easily be
foundmsee, e.g., [7]). Consider first the set M { 0, x, xe }. Since IIx, x211 >-
x (x x2) 1, the set M is 1-separated and hence totally ordered by <.

CLAIM. Either x < 0 < x or x2 < 0 < x.
Otherwise, we may suppose, without loss of generality, that 0 _< x < x2. Consider

then y x2/2. We have that IIx yll > x*(x-y)= 1, soeitherx>yorx<y. In
the first case, we have x2 > x > y, despite the fact that x2 y 1/2. In the second
case, y > x > 0, which again contradicts the condition on < since y . So the claim
is proved.

Exactly the same reasoning, applied to M’ { 0, x, x + x2 }, shows that x must
be <-between 0 and x + x2. Similarly, we must have x + x2 between x and x2 and
also x2 between 0 and x + x2. However, these four conditions are incompatiblemthe
<-maximum of the four vectors { 0, x, x2, x + x } does not lie between two others.
This contradiction establishes the nonexistence of (E, <).
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Jones’s main positive result was that, if M1 and M_ are both 1-separated subsets of
Hilbert space, with M2 having size at most 3, then the pair M1, M2 has the B.T.K. chain
property. (We should note that Kleitman based his proof of Theorem A exactly on the
fact that in any normed space, any pair M1, M2 of 1-separated subsets has the B.T.K.
chain property if M2 has size at most 2.)

This pleasant fact about Hilbert space does not, unfortunately, generalise to arbitrary
normed spaces. We present here an example of a normed space E and two 1-separated
subsets, each of size 3, not having the B.T.K. chain property. In fact, we find 1-separated
sets M1, M2 of size 3 such that the sum Ml + M2, far from having a partition into
1-separated subsets of size 5, 3, and 1, does not even contain a 1-separated subset of
size 5.

PROPOSITION 12. There exists a normed space E and 1-separated subsets M1,
M2 c E such that MI M21 3 but MI + M2 contains no 1-separated subset of
size 5.

Proof. We define a norm on 4 in such a way that the sets M { 0, e, e2 } and
M2 { 0, e3, e4 } satisfy the conclusion of the proposition. More exactly, we ensure that
each distance marked on Fig. 2 is strictly less than 1, while both Ml and M2 are
1-separated. To ensure that the requisite vectors are short, we define our norm II"
by taking for its unit ball the absolute convex hull of these vectors. In other words, we
take as the unit ball the set

BII.II abs-co { e + e3, (e2- e) + e4, e2- e4, e2- e3,

el + (e4 + e3), e2 + (e3- e4), (e e2) + (e4- e3)}.

By definition, all these vectors have norm at most 1. Now we show that the vectors
e2, e3, e e2, e3 e4 have norm strictly greater than by exhibiting functionals of
(dual) norm at most taking large values at those vectors. For instance, for e > 0 suf-
ficiently small, the functional f + e, 0, -e, -2e) has dual norm at most 1, because
it takes values at most in absolute value at the extreme points of the I1" unit ball.
However, f( el + e > 1, and therefore el > 1. In similar fashion, we can exhibit

el+e4 e2+e4

e2+e3

0
el e2

FIG. 2. The pattern ofsmall distances in Proposition 12.
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functionals to show that all the vectors we desire to be long are indeed long. For some
small e > 0, the following suffice:

e: (1 + e, O,-e,-2e),

e:: (3e, + e, e, 2e),

e3: (-e, e, + e, 3e),

e4: (2e, e, 3e, + e),

e: e" 1/2(1 + e, -1, 2e, e),

e3 e4" 1/2(-e, e,-1 e, 1).

The norm [l" does not behave exactly as we would likemthe norms from Fig. 2
are at most 1, rather than strictly less than 1--but for some 0 < < 1, the norm 11.
will do. It is easy to check, from Fig. 2, that M + M2 contains no 1-separated subset of
size 5. 7q

There are still many unanswered questions concerning the vector-valued case. The
most striking and interesting one, it seems to us, is whether the following conjecture
is true.

CONJECTURE 13. Let E be a normed space and let (Xi) be independent E-valued
random variables of concentrations at most 1/2. Then the concentration of X is at
most (Lnzj) 2
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