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The worst case behaviour of the greedy heuristic for independence systems is analyzed by 
deriving lower bounds for the ratio of the greedy solution value to the optimal value. For two 
special independence systems, this ratio can be bounded by 1/2, for two other independence 
systems, it converges with increasing problem size to zero. The main theorem states that for every 
independence system (E, 9) the ratio is bounded by I l k ,  k such that (E, 9) can be represented as 
the intersection of k matroids. 

1. Introduction 

Since Cook [2] and Karp [8] have shown that many notoriously hard problems in 
combinatorial optimization are equivalent in the  sense that either all or none of 
them can be solved in polynomial time, the study and analysis of fast heuristic 
algorithms has become more interesting again. 

A great number of these heuristics are variants of the well-kn0w.n greedy heuristic 
for the problem of finding an independent set with maximum weight of a given 
independence system. 

Consider an independence system (E ,  9), E being an arbitrary finite set and 9 a 
system of subsets of E with the  property: 

F c G E 9  = + F E Y .  

The elements of 9 are called 9-independent sets or simply independent sets. 
Moreover, consider a weight function c : E + R' and the optimization problem 

where c ( F )  = C e E F c ( e ) .  Let {el ,  e 2 , .  . ., en} be a numbering of E with 

i S j  += c ( e , ) > c ( e , ) .  

Let E, = { e l , .  . ., e,} for 1 S i S n. A subset F c E is called greedy solution of (1) 
if, for 1 C i C n, F n E, is a maximal independent subset of E,. It is easy to see by 
induction that a greedy solution is just the set F yielded by the following greedy 
heuristic : 
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begin F = 8; 
for i = 1 to n do 
begin 

end; 
if F U { e , } E  9 then F = F U { e , } ;  

end. 
Recall that an independence system ( E ,  9) is called a matroid iff, for any subset 

S C E, all maximal independent subsets of S have the  same cardinality. It is well 
known that, for a matroid ( E ,  S), every greedy solution F is an optimal solution of 
(1). In this paper, we consider arbitrary independence systems (E,  9) which are not 
necessarily matroids. We want to characterize the quality of greedy solutions by 
deriving lower bounds for the ratio c(F,) /c(Fo)  where F, is a greedy solution and F,, 
an optimal solution. A first step towards such a characterization is the following 
basic theorem. 

Several researchers have worked on this theorem. It was conveyed to us by 
Edmonds [ 5 ] .  To our knowledge it  was first conjectured by Nemhauser; Jenkyns 
attacked the theorem in his Ph.D. thesis [6]. Independently Baumgarten [ l ]  found 
some other proof. 

Because of the great interest the theorem has received we will below give a very 
short new proof of i t .  

Let (E ,  9) be an independence system and S C E an arbitrary subset; we define: 
lower rank of S = Ir ( S )  = min { I FJ  : F a maximal independent subset of S }  
upper rank of S = ur ( S )  = max { 1 FI : F a maximal independent subset of S } .  
Obviously, (E ,  9) is a matroid iff Ir ( S )  = ur(S) for any S C E. Hence, the 

so-called rank quotient 

Ir ( S )  
min 
S C E  ur(S) 

can be interpreted as a measure of how much (E ,  9) differs from being a matroid. 

Theorem 1.1. 
an optimum solution of (1). Then for any weight function c 

Let ( E ,  9) be an independence system, F, a greedy solution and 

Proof. Setting c (en+ , ) :  = 0 one obtains through a suitable summation that 

c (F , )=  2 IF, n E , I ( c ( e , ) - c ( e , + , ) )  

c(Fd = 2 IF,, n EL I ( c ( e , )  - c ( e , + J ) .  

, = I  

, = I  

As Fo n E, c Fo E 9 we have IF,, n E, 1 s ur (E , ) .  

E, 
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By the definition of a greedy solution, F, n E, is a maximal independent subset 
of E,, hence 1 F, fl E, 1 2 lr (E,) and thus: 

From (2), (3), and (4) it follows that c (F , )  3 minsGElr(S)/ur(S). c(Fo) .  

Corollary. The bound in Theorem 1.1 is sharp in the following sense: For every 
independence system ( E ,  9), there exists a weight function c : E + R' and a greedy 
solution F, with 

Proof. Let 

= Ir(S) 
ur(So) S C E  ur(S) 

1, e E So 
0,  e @  So. 

c ( e ) :  = 

Let ( e l ,  e 2 , .  . ., e , )  be a numbering of E such that 

e, E F,, ej E So - F,, ek E E - So i < j < k. 

Obviously such a numbering satisfies ( i  S j + c ( e i )  3 c ( e , ) )  and Fl is a greedy 
solution of (1). Hence 

Applying Theorem 1 . I ,  the corollary follows. 
Having Theorem 1.1 and its corollary, it is enough to inspect the rank quotient 

because every sharp bound for the rank quotient is a sharp bound for c (Fg) / c (Fo)  
also. In Section 2, we calculate the  rank quotient for four special independence 
systems, the independence systems of the matching problem, the symmetrical 
travelling salesman problem, the stable set problem, and the acyclic subgraph 
problem. In Section 3, we show that every independence system can be represented 
as the intersection of some matroids. The following main theorem states that, for an 
intersection of k matroids, the  rank quotient and hence the quotient c(Fg) /c (Fl , ) ,  
too, is bounded below by I l k .  We conclude the paper with some remarks about the 
sharpness of this bound. 
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2. The rank quotient for some special independence systems 

Let G = (V, E) be a finite undirected graph without loops or multiple edges. A 
subset F C E is called a matching of G, iff no two edges in F are adjacent, i.e. have 
a vertex in common. Let 9 be the set of all matchings of G. Obviously, (E, 9) is an 
independence system. For the so defined 9, (1) is called the matching problem. 

Theorem 2.1. Let (E ,  9) be the independence system of the matching problem for 
the graph G. In rhe trivial case where every connected component of G is a triangle 
K, ,  a path P2, a single edge KZ, or a single vertex K,, we have 

min Ire= 1. 
SSE ur(S) 

Otherwise 

Proof. We show first that 

min u 2 1  
SSE ur(S) 2 

Let S E be any subset and Fl, Fz maximal independent subsets of S. It is enough 
to show that IF,l/lF2/31/2. 

Let e EFz \ F , .  Since F ,  U { e } c  S and F, is maximal, the  set F,  U { e }  is not 
independent, i.e. is not a matching of G. Hence there exists an edge 4 ( e )  E F ,  that 
is adjacent to e. Since F, is a matching, @ ( e ) E  FI\F2. Thus we have defined a 
mapping @ : F2\Fl + F1\F2. Obviously, for any edge in FI\F2, there are at most 
two edges in Fz\FI adjacent to it. Hence, 4 maps at most two edges of F2\Fl onto 
one edge of FI \ F,. It follows: 

I Fi \ Fz I 3 1 +(F2 \ FI) I 3 f I Fz\ Fi 1, 

1 F, I = I Fi\ Fz I + I Fi n F z I  3 4 I F2\ Fi 1 + I I Fi n Fz1 = f 1 Fz 1 ,  
hence 

whence /Fl / / /F2/21/2.  
If every connected component of G is isomorphic to K,, Pzr Kz, or K,, obviously 
lr(S)/ur(S) = 1 for any S C E. Otherwise G contains a subgraph (V',S) isomor- 
phic to P,. Since clearly l r (S)=  1, u r (S)=  2, we have the upper bound 

min Ires 1/2 
SSE ur(S) 

which together with the lower bound (5) proves the theorem. 
Now let (V, E) be a complete undirected graph. Let 9 be the  set of all subsets of 

Hamiltonian cycles in (V,E). Since the Hamiltonian cycles are the feasible 
solutions of the symmetrical travelling salesman problem (TSP), (E, 9) is called the 
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independence system of the symmetrical TSP. Obviously, a subset F C E belongs 
to 9 iff: 

(i) every vertex u E V is incident to at most two edges of F and 
(ii) the partial graph (V, F )  contains no non-Hamiltonian cycle. 

Theorem 2.2. 
the complete graph (V,  E ) .  Then 

Let (E, 9) be the independence system of the symmetrical TSP for 

Proof. The proof of the lower bound is analogous to that in the proof of Theorem 
2.1. Again we construct a mapping 4 : F2\ FI + FI \ Fz which maps as few as possible 
elements of F2\FI onto the same element of FI\F2. Since the complete proof does 
not contain new ideas but a rather complicated construction, we omit the details. 

For the upper bound, we assume V = { v l ,  uzr . . ., u,}  and define the following 
three sets 

Fz = { U , U , + ~  : 1 6  i s n - I} U{u,uI}, 

S = FI U Fz. 

Obviously, FI and FZ are maximal independent subsets of S,  and 

ur(S) = IFz/ = n, 

hence 

The next two theorems show that for some independence systems (E,  9) the rank 
quotient converges to 0 as the "problem size" I E 1 tends to infinity. Consequently, 
for these independence systems, the greedy heuristic for large problems can be 
'arbitrarily bad. 
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Let G = (V, E )  be agraph. A subset F c V is called a stable set (or independent 
set, vertex packing) if no two distinct vertices in F are adjacent. Let 9 be the 
system of all stable sets of G. Since then ( 1 )  is the vertex packing problem, (V, 9)  is 
called the independence system of the vertex packing problem in G. 

Theorem 2.3. Let G = (V,  E )  be a graph containing an induced subgraph isomor- 
phic to the star K , , k .  Let (V ,  9) be the independence system of the vertex packing 
problem in G. Then 

Fm min Iro(JO. -- scv ur(S) 

Proof. 
isomorphic to Kl.k and let 

Let S : = {u,  u , , .  . ., vk} be the set of vertices that induces the  subgraph 

W E E ,  l s i s k ,  but u , u , e E ,  l s i , j s k .  

FI = { u }  and F2 = { v , ,  . . ., u k }  are maximal independent subsets of S and 

Theorem 2.4. 
be the system of (the edge sets o f )  all its acyclic subgraphs, i.e. 

Let G = (V, E )  be a complete directed graph, i.e. E = V x V. Let 9 

9 = { F  c E : F contains no directed cycle}. 

For the independence system (E ,  9), we have 

Proof. Let n : = I V (  = dm, V = { v ] , .  . ., v , }  and 

F ,  = {u,u,+, :  1 s i s n - l}, 

Fz = {au,  : 1 S j < i s n} ,  

S = F ,  U Fa. 

Clearly, F,  and F2 are maximal independent subsets of S and 

3. The rank quotient for an arbitrary independence system 

Having inspected the rank quotient for some special independence systems, we 
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now turn to an arbitrary independence system. We start with the following easy 
lemma: 

Lemma 3.1. 
1 s i s k ,  with 

For any independence system ( E ,  S), there exist k matroids ( E ,  9‘), 

k 

9= n 9 1 .  

, = I  

Proof. 
{ F  C E : Fff 9}, the so-called circuits of (E ,  9). It is easy to see that 

Let (E ,  9) be an independence system and cl,. . ., ck the minimal sets in 

k 

9= 0 9‘ where 9‘: = { F C E : C , E F } .  
, = I  

Clearly, any (E ,  9’) is an independence system. Let S C E. If C,P S, S itself is 
the only maximal independent subset of S .  Otherwise, if C, G S, every maximal 
independent subset of S consists of all elements of S except one element of C,. 
Hence all maximal independent subsets of S have the same cardinality, whence 
( E ,  9‘) is a matroid. 

By the proof of Lemma 3.1, the minimum number k = k ( E ,  9), for which an 
independence system (E ,  9) can be represented as the intersection of k matroids, is 
bounded by the number of its circuits. Of course this bound is far from being sharp; 
it is easy to see (cf. Edmonds [3]) that e.g. the independence system of “bipartite 
matchings” is an intersection of two matroids and the  independence system of the 
“asymmetric TSP” is an intersection of three matroids. The importance of this 
minimum number k (E,  9) lies in  the  following main theorem: 

Theorem 3.2. 
independence system ( E , 9 )  we have 

Let ( E ,  S‘), 1 s i s k ,  be matroids and 9 : = n:=, 9’. For the 

min Ir(Sr*I 
SCE ur(S) k ’ 

Proof. Let S C E be any subset and F , ,  F2 maximal independent subsets of S .  It is 
enough to show IFII/IFzJ 3 l/k. 

For i = 1,. . ., k and j = 1,2, let Ff be a maximal $‘-independent subset of 
FI U F2 containing 6. If there were an element e E F2\Fl  with e E n:=, F;\FI,  
then F ,  U {e} C n:=, FI € 9, a contradiction to the maximality of F , .  Hence each 
e E F2\FI can be an element of F’,\F, for at most k - 1 indices i. It follows 

By the definition of a matroid, we have 

I F ; / =  IF;\ for any i, 1 s  i S k .  
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Hence the above inequality implies 

I F 2 ) C ( i  I F ; J k l F , I ) + l F ~ (  
\ i=l 

k = c  IF; 
i = l  

s k I F , )  

The theorem follows. 

As for the  question of sharpness of the bound in Theorem 3.2, we can state the 
following easy theorem. 

Theorem 3.3. For every integer k > 1, there exists an  independence system (E ,  9)  
which is an  intersection of k matroids but not an  intersection of less than k matroids 
and which has the property 

Proof. Let G = (V, E )  be a graph isomorphic to Kl.k, say 

v = {U, U I ,  . . ., U k } ,  E = {UU, : 1 i C k}. 

By the proof of Theorem 2.3, the independence system (V, 9) of the stable sets 
of G has the property 

min IrO& 
S G V  ur(S) k '  

Obviously, the k edges {u, u , } ,  1 S i C k, are the  circuits of ( V , 9 ) .  Setting 
9' : = {F C V : {u, u , }  g F}, it follows from the proof of Lemma 3.1 that (V, 9) 
is t h e  intersection of the k matroids 9', 1 s i c k.  Hence, by Theorem 3.2 and (6), 

min Wl=L 
S G V  ur(S) k ' 

and (V, 9) cannot be represented as the intersection of less than k matroids. 

Theorem 3.3 says that, for every integer k, there exists an independence system 
for which the bound in Theorem 3.2 is sharp. More interesting is the question if the 
bound is sharp for every independence system. The next theorem gives a (negative) 
answer to this question. 

Theorem 3.4. 
complete graph (V, E )  with 1 V I z= 4. 

k matroids and that 

Let (E ,  9)  be the independence system of the symmetrical TSP  for a 

Then there is  no integer k such that (E ,  9) can be represented as the intersection of 
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Proof. Assume there is such an integer k .  Then, by Theorem 2.2, k = 2 and (E,  9) 
can be represented as the intersection of two matroids M i  = (E,  Si),  i = 1,2. 

Let V = {ul ,  u 2 , .  . ., un}, n 2 4 .  Then F :  = { u I u 2 ,  u 2 2 ) 3 , .  . ., unul}E 9, but 
F U { u l u 3 }  9. Obviously, every "circuit" of ( E ,  9), (i.e. every minimal dependent 
subset of E )  contained in F U { u l u 3 }  is also a circuit of MI or of M 2 .  Now it is well 
known (cf. e.g. [lo]) that, for a matroid, the union of an independent set and a 
singleton contains at most one circuit. Hence F U { u l u , }  contains at most two 
circuits of (E,  9). But in fact, F U { u l u 3 }  contains even four circuits, namely: 

c1 = {UIUZ, UIU3, UlU"), 

c3 = ( U I U 2 ,  UZV3, U 3 U I } ,  

c2 = {U3UI, u 3 u 2 ,  u3u41, 

c. = ( U I U 3 ,  u3u4, u4us,. . .) unu,}.  

We conclude the paper with some final remarks. 

Remark 3.5. Theorem 3.3 and its proof say that there are families of indepen- 
dence systems (En, 9"), n = 1,2,. . ., with IE. I = II and the property that the 
minimum number k (En, 9") for which (En, 9") can be represented as the inters%- 
tion of k matroids is at least a linear function of n. In  particular, there is no  general 
constant k' with k ( E ,  9) S k' for all independence systems. We conjecture that 
there are even families (E", 9") where k (En, 9,,) is a super-linear - perhaps even 
exponential - function of n. This conjecture cannot be proven by means of 
Theorem 3.2 because for every independence system ( E ,  9) 

1 = max - , / E l  
Ir(S) SCE Ir(S) 

min 
S C E  ur(S) 

Remark 3.6. Up to now, we inspected the greedy heuristic for the maximum 
problem (1) only. What about a greedy heuristic for a minimum problem? Let us 
consider the problem 

c(F)=Min! 
F maximal in 9 (7) 

where (E ,  9) is an independence system and c : E + R' is a weight function. The 
greedy heuristic for (7) starts with the independent set F = 0 and, in every step of 
the algorithm, adds a new element e E E \F to the current independent set F such 
that the new set F U { e }  is again independent and that, subject to this condition, e 
has minimum weight c,. 

For the maximum problem (l), it follows from Lemma 3.1, Theorem 3.3, and 
Theorem 1.1, that for any independence system ( E , 9 )  there exists a bound Ilk 
such that 
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for any greedy solution F, and optima1 solution F, and for all weight functions c. 
This is not true for the minimum problem (7). E.g. consider the independence 
system (V, 9) of the vertex packing problem in the graph K , ,  - 

7 5 5  
and the weight function 

v = v ,  

c ( v )  = 

M > 2 ,  v = ~ 3 .  

The optimal solution of the corresponding minimum problem (7) is Fo = { v z }  and 
the greedy solution is F, = { v , ,  v3} .  The quotient c(Fo) /c  (FB) = 2/M converges to 0 
as M tends to  infinity. 
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