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A conjecture of A. Ehrenfeucht and J. Mycielski concerning families of, 
subsets is established. 

The aim of this note to prove the conjecture posed in [3] by the method 
used in [I] and [2]. 

THEOREM. Let X = {1,2 ,..., n> be a Jinite set and Al , A2 ,..., A, , 
B 1 ,..., B, be distinct subsets of X such that 

[ Ai / = k, ( Bi ( = 1 (1 < i < m; k, l$xed, 1 < k, I; k + I< n) 

and 
A,nBj# m if i # j, 

A,nBi= m. 
Then 

m< k+’ 
( 1 k * (1) 

Proof. 1. Define the subsets Ci , Di of X in the following way. 
Let Ci u Di be an arbitrary (k + l)-tuple of X (1 < i < (&)), and let Ci 
consist of the first k elements of this (k + f)-tuple, Di the last 1. Denote 
this system by Ri = {Ci , Ox>. 

2. Denote the maximal element of Ci by ei . If ei < ej , then every 
element of C, is < ei and every element of Dj is > ej . Hence Ci n Dj = ~zl . 
Similarly, if ei > ej , then Cj n Di = a. We can conclude that either 
C,nD$= o orCjnDi= G holdsififj 
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3. Let sli,..., 9:! be the systems formed from Z@ by permuting the 
elements of X, Their elements are denoted by FUi = {C,“, D(“}. From the 
result of the previous section it follows that either CiU n Diu = o 
or CifL n Diu = o holds (1 < u < n !). 

4. Let us count in two different ways the number of pairs(Ftii, (A,, B,)), 
where 12.” = A Diu = B,. Fix first U. If CiU = A,, Diu = B, , 
C.‘” = A 3 i, Di” “L B, for some 1 < v < w  ,( HZ, then CiG n Dj” # o 
and CjU n Diu # ia by the suppositions of the theorem, and it contradicts 
our result in Section 3. It means, to every u we can have at most one 
(A,, , B,) with the given property. The number of pairs (sUi, (A,, B,)) 
is at most n! . 

On the other hand, fixing (A, , B,), we can choose &) sets (Ci , Di) 
to permute into (A,, B,). If we fix it, the number of such permutations is 
k! I! (n - k - r)! This means that the exact number of FUi’s is 

( > k:[ 
k! I! (n - k - 1)! 

(not depending on v) and the number of pairs is 

m k;l ( 1 
k! I! (n - k - I)! < n!. 

This inequality is equivalent to (1). The proof is completed. 
It is easy to see that (1) is the best possible relation, because choosing 

( X ) = k + I and choosing all the k-tuples for Ci (Di = X - C,), the 
obtained system satisfies the conditions of the theorem, and the equality 
in (1). 
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Recently I learned, L. Lovhz and J. Mycielski also proved this theorem by use of a 
theorem of Bollobas [4]. They could prove the unicity of the optimal family, too. 
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