Note

Solution of a Problem of A. Ehrenfeucht and J. Mycielski

G. O. H. Katona

Mathematical Institute of the Hungarian Academy of Sciences, 1053, Budapest, Hungary
Communicated by the Managing Editors
Received March 19, 1973

A conjecture of A. Ehrenfeucht and J. Mycielski concerning families of, subsets is established.

The aim of this note to prove the conjecture posed in [3] by the method used in [1] and [2].

Theorem. Let $X=\{1,2, \ldots, n\}$ be a finite set and $A_{1}, A_{2}, \ldots, A_{m}$, B_{1}, \ldots, B_{m} be distinct subsets of X such that
$\left|A_{i}\right|=k, \quad\left|B_{i}\right|=l \quad(1 \leqslant i \leqslant m ; \quad k, l$ fixed $, \quad 1 \leqslant k, l ; \quad k+l \leqslant n)$
and

$$
\begin{aligned}
& A_{i} \cap B_{j} \neq \varnothing \quad \text { if } i \neq j, \\
& A_{i} \cap B_{i}=\varnothing .
\end{aligned}
$$

Then

$$
\begin{equation*}
m \leqslant\binom{ k+l}{k} \tag{1}
\end{equation*}
$$

Proof. 1. Define the subsets C_{i}, D_{i} of X in the following way. Let $C_{i} \cup D_{i}$ be an arbitrary $(k+l)$-tuple of $X\left(1 \leqslant i \leqslant\binom{ n}{k+l}\right.$), and let C_{i} consist of the first k elements of this $(k+l)$-tuple, D_{i} the last l. Denote this system by $\mathscr{F}^{i}=\left\{C_{i}, D_{i}\right\}$.
2. Denote the maximal element of C_{i} by e_{i}. If $e_{i} \leqslant e_{j}$, then every element of C_{i} is $\leqslant e_{i}$ and every element of D_{j} is $>e_{j}$. Hence $C_{i} \cap D_{j}=\varnothing$. Similarly, if $e_{i} \geqslant e_{j}$, then $C_{j} \cap D_{i}=\varnothing$. We can conclude that either $C_{i} \cap D_{j}=\varnothing$ or $C_{j} \cap D_{i}=\varnothing$ holds if $i \neq j$.
3. Let $\mathscr{F}_{1}{ }^{i}, \ldots, \mathscr{F}_{n!}^{i}$ be the systems formed from \mathscr{F}^{i} by permuting the elements of X. Their elements are denoted by $\mathscr{F}_{a}{ }^{i}=\left\{C_{i}{ }^{u}, D_{i}{ }^{u}\right\}$. From the result of the previous section it follows that either $C_{i}{ }^{u} \cap D_{j}{ }^{u}=\varnothing$ or $C_{j}{ }^{u} \cap D_{i}{ }^{u}=\varnothing$ holds ($1 \leqslant u \leqslant n!$).
4. Let us count in two different ways the number of pairs $\left(\mathscr{F}_{u}{ }^{i},\left(A_{v}, B_{v}\right)\right)$, where $C_{i}{ }^{u}=A_{v}, D_{i}{ }^{u}=B_{v}$. Fix first u. If $C_{i}{ }^{u}=A_{v}, D_{i}{ }^{u}=B_{v}$, $C_{j}{ }^{u}=A_{w}, D_{j}{ }^{u}=B_{w}$ for some $1 \leqslant v<w \leqslant m$, then $C_{i}{ }^{u} \cap D_{j}{ }^{u} \neq \varnothing$ and $C_{j}{ }^{u} \cap D_{i}{ }^{u} \neq \varnothing$ by the suppositions of the theorem, and it contradicts our result in Section 3. It means, to every u we can have at most one (A_{v}, B_{v}) with the given property. The number of pairs $\left(\mathscr{F}_{u}{ }^{i},\left(A_{v}, B_{v}\right)\right.$) is at most $n!$.

On the other hand, fixing $\left(A_{v}, B_{v}\right)$, we can choose $\binom{n}{k+l}$ sets $\left(C_{i}, D_{i}\right)$ to permute into $\left(A_{v}, B_{v}\right)$. If we fix it, the number of such permutations is $k!l!(n-k-l)!$ This means that the exact number of $\mathscr{F}_{a}{ }^{i}$ s is

$$
\binom{n}{k+l} k!l!(n-k-l)!
$$

(not depending on v) and the number of pairs is

$$
m\binom{n}{k+l} k!l!(n-k-l)!\leqslant n!.
$$

This inequality is equivalent to (1). The proof is completed.
It is easy to see that (1) is the best possible relation, because choosing $|X|=k+l$ and choosing all the k-tuples for $C_{i}\left(D_{i}=X-C_{i}\right)$, the obtained system satisfies the conditions of the theorem, and the equality in (1).

Acknowledgments.

I am indebted to P. Erdös, A. Hajnal, and L. Surányi, for transmitting the problem to me.

Recently I learned, L. Lovász and J. Mycielski also proved this theorem by use of a theorem of Bollobas [4]. They could prove the unicity of the optimal family, too.

References

1. D. Lubell, A short proof of Sperner's Lemma, J. Combinatorial Theory 1 (1966), 299.
2. G. O. H. Katona, A simple proof of the Erdös-Chao Ko-Rado theorem, J. Combinatorial Theory, A 13 (1972), 183-184.
3. A. Ehrenfeucht and J. Mycielski (to appear).
4. B. Bollobás, On generalized graphs, Acta Math. Acad. Sci. Hungar. 16 (1965), 447-452.
