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ABSTRACT 

Let E be a finite set. Call a family of mutually noncomparable subsets of E a clutter 
on E. It is shown that for any clutter ~ on E, there exists a unique clutter 6e on E 
such that, for any function f from E to real numbers, 

rain maxf(x) = max minf(x). 
RE~ x~R S ~  x~S 

Specifically, ocv consists of the minimal subsets of E that have non-empty intersection 
with every member of~ The pair (o~, 6e) is called a blocking system on E. An algorithm 
is described and several examples of blockings systems are discussed. 

1. INTRODUCTION 

Gross  [7] has descr ibed an a lgor i thm and  a dual i ty  theorem for the 
bo t t l eneck  ass ignment  p rob lem:  Given  a square a r r ay  o f  numbers ,  
find a circling o f  entries with exactly one circle in each row and  one circle 
in each co lumn so as to maximize the value  of  the smal les t  circled entry.  
( F o r  an in terpre ta t ion ,  th ink  of  rows o f  the a r ray  as co r respond ing  to 
men, co lumns  to jobs ,  on a serial p roduc t i on  line, with the entry in 
row i and  co lumn j being the rate  at  which man i can process  i tems if  he 
is assigned to j o b  j . )  A n  earlier,  less efficient a lgor i thm for this p rob l e m 
was given by Fulkerson ,  Gl icksberg,  and  Gross  [5]. The  dual i ty  theorem 
proved by  Gross  is: Let  I = {1, 2 ..... n}; let  H be the set o f  pe rmuta t ions  
o f / ;  let I C I denote  card ina l i ty  of  C, and  let  a~ (for i, j ~ I )  be real  numbers .  
Then 

max  min  a~,,(~) = min  max a~j. 
~ H  i~l A,BCI i~A 

tAI+IB]=n+I j~a 

Similarly,  the fol lowing bot t leneck pa th  p rob lem has  been considered 
by Pol lack  [12], Hu  [9], and  Fu lke r son  [4]. Let  G be a ne twork  (graph) 
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whose arcs (edges) have numerical "weights." Let a and b be two nodes 
(vertices) in G. Find in G a path  P from a to b such that the minimum 
single arc-weight in P is a maximum. (For an interpretation, think of G as 
a flow-network with source a, sink b, where the weight of  an arc is its 
flow-capacity.) The duality theorem noted in [4] for bottleneck paths is: 
The maximum of  the minimum weight of  an arc in a path f rom a to b is 
equal to the minimum of  the maximum weight of  an arc in a cut 
separating b f rom a. Here a cut separating b f rom a is a minimal set of  
arcs such that deleting them from G leaves a network which contains 
no path f rom a to b; "minimal"  means that no proper subset has the same 
property. (If  arcs in G are directed, "pa th"  is interpreted to mean 
"uniformly directed path.") 

The well-known traveling salesman problem is to find, in a given graph G 
whose arcs (possibly directed) have numerical weights, a minimum 
weight closed path that contains each node of  G just once. A closed path 
that contains each note of  G once is called a Hamil ton tour. The bottleneck 
traveling salesman problem is to find a Hamil ton tour such that the 
largest arc-weight in the tour is minimum. Gilmore and Gomory  [6] have 
solved a special case of  the traveling salesman problem and also a special 
case of  the bottleneck traveling salesman problem. 

The reader should now be able to pose bottleneck problems galore. 
For  the moment ,  we give two more examples. In an undirected graph G 
whose arcs have weights, find a spanning tree T such that the maximum 
weight of  an arc not in T is minimum. In an undirected graph G whose 
nodes have weights, find a set C of nodes such that C meets all of the 
arcs, and such that the maximum node-weight in C is minimum. 

2. THE BOTTLENECK THEOREM AND THRESHOLD METHOD 

Let E be a finite set. A family ~" on E is a family of  subsets of  E. E is 
called the domain of ~ (regardless of whether the union of members 
of  ~,~ is E). We define a clutter ~ on E to be a family ~ on E such that 
no member  of  ~ is contained in another member  of  ~ .  

The interest cited in bottleneck problems prompts the following 
theorem. 

THEOREM: For any clutter ~ on a finite set E, there exists a unique 
clutter 6P = b(~)  on E such that, for  any function f from E to real numbers, 

(1) min  m a x f ( x )  = max m i n f ( x ) .  
R~t x~R SEo~' x ~ S  



BOTTLENECK EXTREMA 301 

Specifically, 6: = b(~)  is the clutter consisting of  the minimal subsets 
o f  E that have non-empty intersection with every member o f  ~ .  

COROLLARY. b(b(~)) = ~ .  

We call 6: the blocking clutter, or simply the blocker, of  ~ .  By a 
blocking system on E we shall mean any two families M and 5:  on E that 
satisfy (1) for every f ,  regardless of whether ~ and 6: are clutters. 

If ~-  is any family on E, in place of ~ and 5:, respectively, in (1), 
denote the left side of (1) as u ( ~ , f )  and the right side of (1) as w(~' , f ) .  
The bottleneck problems, determine u ( ~ , f )  and determine w ( ~ , f ) ,  
where o~" is any family on E, reduce to the case in which ~-  is a clutter 
on E, since clearly: 

(2) Where f is any real-valued function on E, u ( ~ , f )  = u ( ~ , f )  and 
w(o~,f) = w ( ~ , f )  for any families o~ and ~ on E such that every 
member of  ~ has some member of  ~ as a subset and such that ~ C ~ .  

In particular, these equations hold if ~ is arbitrary and ~ consists 
of  those members of o~" that contain no other member of o~-. 

Central to our subject is the following property for a pair (.~, 5:) of 
families on E: 

(3) For any partition of  E into two sets Eo and 171 (Eo n E1 = ~ and 
Eo w E1 = E), either a member of  ~ is contained in Eo or a member 
of  5: is contained in E1, but not both. 

The bottleneck theorem, above, follows immediately from Lemmas A, B, 
and C. 

LEMMA A. Any blocking system satisfies property (3). 

LEMMA B. For any clutter ~ on a set E, the 50 = b(~)  specifed in 
the theorem is the one and only clutter on E such that (3) holds. 

LEMMA C. Any pair (~,  5 a) of  families on E satisfying (3) is a blocking 
system. 

The proof  of  Lemma C will be an algorithm, based on (3), for computing 
u ( ~ , f )  and w(6: , f ) ,  thereby showing them to be equal. This algorithm, 
which we call the threshold method, requires only a small number of 
"steps," where each step consists mainly of  deciding, for a given bipartition 
(E0,/71) of E, which of the two alternatives in (3) holds. Thus the threshold 
method is a good algorithm provided that there is a good algorithm for 
the latter. 
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PROOF OF LEMMA A. That  a blocking system satisfies (3) follows 
f rom equation (1), where f (x )  = 0 for x e E 0 and f (x )  = 1 for x e E l .  
I f  the resulting value of u ( ~ , f )  = w(Sf, f )  is 0, then some member of  
is contained in E 0 and no member  of ~ is contained in/71 �9 I f  the resulting 
value of u ( ~ , f )  :- w(Sf, f )  is 1, then no member  of  ~ is contained in E0 
and some member of  Sf is contained in/71 �9 

PROOF OF LEMMA B. It  is convenient to consider another operator, 
d(~),  defined for every clutter ~ on E: d(~') consists of  the complements 
in E of the members of  ~ .  Clearly d(~)  is a clutter on E, and d(d(~)) = ~ .  
Property (3) seems more transparent in terms of ~ and the family 
p(~)  = d(b(~)), and so it is useful to view b(~)  as d(p(~)). 

For  any clutter ~ on E, define p (~ )  to consist of  the maximal subsets 
of  E that contain no member  of  ~ .  Clearly p(~')  is a clutter on E. Clearly 
d(p(~')) is the 5 e = b(~)  specified in the theorem. 

Property (3) for clutters ~ '  and 5 e = d(p(N)) is equivalent to the 
obvious fact that: 

(4) Every subset Eo of  E either contains a member of ~ or is contained 
in a member of p (~)  = d(SP), but not both. 

The equivalence follows because E0 is contained in a member  of d(6 e) 
if and only if E1 = E - -  E 0 contains a member  of  5 a. 

We must verify that 5 ~ = d(p(~)) is the only clutter on E such that 
(3) holds for (~ ,  5a). This follows because p(~) ,  as defined, is the only 
clutter on E for which (4) holds. To see this, suppose that clutter ~ ,  
in place ofp(~ ' ) ,  satisfies (4). For any P e ~ ,  P cannot contain a member 
of ~ '  since P is contained in a member of  ~ (itself). Because ~ is a clutter, 
any set A C E which properly contains P is not contained in any member 
of  ~ .  Therefore, by (4), any such A contains a member of  ~ .  Thus P is a 
maximal subset of E containing no member  of  ~', and thus we conclude 
that ~ Cp(~) .  On the other hand, for any Q ep(~') ,  Q is not properly 
contained in any member  of  ~ since p ( ~ )  is a clutter and since ~ C p(~) .  
Therefore we have Q E ~ ,  since otherwise E0 = Q would be a set which 
contains no member of  ~ and which is contained in no member of  ~ .  
Thus we conclude that ~ = p(~) .  This completes the proof  of  Lemma B. 

PROOF OF LEMMA C. Suppose that (~ ,  6 p) is any pair of  families on E 
that satisfies property (3), and let f be any real-valued function on E. 
We shall show that equation (1) holds, i.e., that (~ ,  6 p) is a blocking 
system. 

To compute u(~ , f ) ,  we use the following "threshold method."  I t  is 
different from previously proposed algorithms for special bottleneck 
problems. 
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Choose elements x s E one after another in order of  non-decreasing 
magnitude off(x)  until the set of chosen elements first contains an R e ~ .  
When this happens, stop. Denote the final set of chosen elements by B,,, 
denote the last chosen element by x~, and denote any one of  the members 
of N contained in B~ by R,  (there may be several). We have x~ e Ru since 
B ~ -  x~ contains no R ~ ~ .  Element x~ maximizes f over B,, and thus 
over R~. Therefore u(~, f)  <~f(x,). Since Bu -- x~ contains every x such 
thatf(x) < f ( x , ) ,  if there were an R e ~ such that 

maxJ(x) < J(x.) ,  
x ~ R  

we would have R C B, --  x , .  Therefore u ( ~ , f )  = f ( x , ) .  
By property (3), B~o ---- E -- (B~ -- x~) contains a member S,o of 5 p. 

By property (3), B~ -- x,, = E -- B~ contains no member of 5 a, and so 
we have x~ 6 Sw. Element x~ minimizes f over Bw and thus over Sw. 
Therefore f (x , , )~  w(SP, f) .  Since B w -  xu contains every x such that 
f(x,,) <f (x ) ,  if there were an S ~ 5 ~ such that 

f(x~) < minf(x),  
x ~ S  

we would have S C Bw -- xu. Thereforef(xu) ---- w(SP, f ) .  This completes 
the proof of  Lemma C and the bottleneck theorem. 

One can of course use the "dual threshold method" instead. That is, 
choose elements x ~ E  one after another in order of non-increasing 
magnitude off(x)  until the set of chosen elements first contains an S ~ 5~. 

The concept of a blocking system of clutters ~ and 5 e or of  the blocking 
system of families R + and S +, where ~+  and J +  consist of all supersets of 
members of ~ and Y, respectively, arises in other contexts besides 
bottleneck extrema (see [8], [10], [11], [13], for example). In particular, 
the families ~+  and 5 ~+ are Boolean duals of each other (the Boolean 
dual o~* of a family o~ on E consists of those subsets H C E such that 
E -- H is not a member of  ~ ) .  

3. SOME EXAMPLES OF BLOCKING SYSTEMS 

A transversal of an n by n array M is a subset of the positions in M such 
that there is exactly one member of the subset in each line of M. (A line 
of an array is either a row or a column of  the array.) If  clutter 5P consists 
of the transversals of M, its blocker ~ consists of the h by k subarrays 
of  M with h + k ---- n + 1. This is the blocking system for the bottleneck 
assignment problem. 
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As stated earlier, if S: consists of  the arc-sets of  paths f rom node a to 
node b in a graph G (perhaps directed), then the members of  its blocker 
are called the cuts separating b f rom a. 

I f  clutter ~ consists of  the arc-sets that are complementary to spanning 
trees in a graph G, then S: consists of  the arc-sets of  circuits (polygons) 
in G. 

I f  ~ consists of  the minimal sets of  nodes that meet all arcs in a graph G, 
then 6:  consists of  the pairs of  adjacent nodes in G. 

In each of these examples, there is a good algorithm for recognizing 
whether a given subset E 0 of  the domain E contains a member of the 
clutter ~ or whether its complement /71 = E -  E0 contains a member 
of  clutter 6:. 

Very often it is difficult to find a useful description of the blocking 
clutter of  a simply described clutter, and very often it is difficult to evaluate 
a bottleneck extremum. In view of the threshold method for bottleneck 
extrema, it is clear that having a good algorithm for a bottleneck problem, 
defined by any clutter ~ of  some class of  clutters and by any function f 
on the domain E of ~ ,  is equivalent to having a good algorithm for 
determining, for any ~ of the class and any subset E 0 C E, whether or 
not E0 contains a member  of  ~ ,  i.e., for determining whether E0 contains 
a member  of :~ or whether E --  E 0 contains a member of  b(~).  A necessary, 
though not sufficient, condition for the latter is having a good algorithm 
for recognizing whether any given subset of  E is itself a member of  
or a member of  b(:~). For  any clutter :~ of  direct interest, it is likely that 
its members are easily recognizable. Unfortunately, this does not imply 
that the same is true for b(:~). 

The theorems below may be interpreted as describing good algorithms 
for recognizing members of  the blocking clutters of  certain clutters ~ .  
Good  algorithms are known also (though we will not describe them here) 
for determining, for any one of these particular clutters and any subset of  
its domain, whether or not the subset contains a member  of  the clutter. 

The description of  the blocking clutter of  the clutter of  transversals 
in a square array is, in spite of its simple appearance, a quite substantial 
theorem. In view of property (3), it is clearly equivalent to the following: 
For any n by n array M and any subset E0 of positions in M, E 0 contains 
no transversal of  M if and only if there are 2n --  (n Jr 1) = n --  1 lines 
of  the array that together contain all of  E 0 . This is a special case of  the 
well-known K~Snig theorem: For any rectangular array M and any 
subset E 0 of  its positions, the maximum cardinality of  a matching contained 
in Eo equals the minimum number of  lines that together contain all of  Eo. 
(A matching is a set of  positions, no two of which lie in the same line.) 
The KSnig theorem is equivalent to the following description of a more 
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general class of blocking systems: If clutter ~ consists of the matchings 
of  cardinality t in an m by n array, then b(~') consists of all h by k sub- 
arrays such that h q - k =  m q - n - -  t §  1. A good algorithm for 
determining whether a given subset of  the positions in an m by n array 
contains a matching of  size t is described in [3]. 

Another blocking.system based on m by n arrays can be obtained 
from the linear programming transportation problem: Let X---- (xi~) be 
an extreme solution (basic feasible solution) of  the constraints 

~ x ~ j ~ r i , i =  1 ..... m, ~ x , ~ = s j , j =  1 ..... n, x ~ O ,  
j = l  i=1  

where r~ and st are given non-negative numbers satisfying 

i=1 j = l  

The support of X is the subset of positions (i, j )  such that x~ > 0. Then 
the family of all supports of extreme solutions X is a clutter ~ on the 
domain E of positions (i, j), and b(~)  consists of  all minimal subarrays 
I • J (where I C  {1, 2 ..... m), J C {1, 2,..., n}) such that 

i~l jeJ  i=1 

This description of  b(~)  can be deduced from the max-flow min-cut 
theorem of Ford and Fulkerson [3]. Here the bottleneck problem, 
evaluate u(~ , f )  for any given real-valued function f on the set E of  
positions (i, j), has the interpretation: Satisfy all the "demands" st from 
the "supplies" r~ in the least time, f~  being the transportation time from 
supply point i to demand point j. There are good network-flow algorithms 
for determining whether a given subset of positions contains the support 
of  a solution X. 

Let E consist of  all the unordered pairs of  objects in a finite set V. 
A perfect matching of  V is a subset of E whose members are disjoint and 
together contain all of  V. Let clutter ~ consist of all the perfect matchings 
of  V. Then Se _-- b(~) consists of  the subsets S(~)  of  E obtained as 
follows: ~ is any family of mutually disjoint, odd-cardinality subsets 
of  V such that I V I -- J u(~) l  = I ~ J -- 2; x ~  E is a member of  S(~)  
if and only if the two members of  x are members of  different members of ~ .  
This result is equivalent to Tutte's theorem characterizing those subsets 
E 0 of E that contain a perfect matching [14]. (See [1].) Edmonds [2] has 
given a good algorithm for determining whether a subset E 0 of E contains 
a perfect matching. 
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One of the many  classes of clutters ~ for which b (~)  is generally a 
mystery is where ~ '  consists of the arc-sets o f  Hami l ton  tours in a graph. 
The bot t leneck traveling salesman problem, like the traveling salesman 
problem, is also a mystery. There is no know n  good algori thm for 
determining whether a given subset of the arcs of a graph contains a 
member  of ~' .  
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