ON GENERALIZED GRAPHS

Bу

B. BOLLOBÁS (Budapest) (Presented by P. ERDős)

A generalized graph consists of a set of *n* vertices and a collection of *k*-tuples of these vertices (cf. TURÁN [1]). In what follows we shall refer to such a configuration as an *edge-graph* if k = 2 and, usually, simply as a graph if k > 2. A complete *m*-graph has *m* vertices and $\binom{m}{k}$ *k*-tuples. We say that a graph *G* is *m*-saturated if it contains no complete *m*-graph but loses this property when any new *k*-tuple is added.

TURÁN [2] proved the following theorem on edge-graphs in 1941: Let n = g(m-1)+r, where g, m, and r are integers such that $g \ge 1, m \ge 3, 0 \le r \le m-1$, and $n \ge m$. Then an m-saturated edge-graph of n vertices can have at most

$$E_m = \frac{m-2}{2(m-1)} (n^2 - r^2) + \binom{r}{2}$$

edges. The dual problem was recently solved by ERDŐS, HAJNAL, and MOON [3] who showed that such an edge-graph must have at least

$$e_m = (m-2)(n-m+2) + {m-2 \choose 2} = \frac{m-2}{2}(2n-m+1)$$

edges. These two results can be combined as follows: If G is an *m*-saturated edgegraph of *n* vertices and e edges, then

$$e_m \leq e \leq E_m$$
.

The extremal edge-graphs for which $e = e_m$ or $e = E_m$ are also characterized in these papers.

Corresponding problems can be stated for generalized graphs. Let G be a (k+l)-saturated graph with n vertices and t k-tuples, where it is understood that $k+l \leq n$. Let the maximum and minimum values of t over the class of such graphs G be denoted by $T_{k,l}$ and $t_{k,l}$, respectively. The value of $T_{k,l}$ is not known when $k \geq 3$ and $l \geq 1$. (Some rather rough estimates are contained in [4].) The object in this paper is to determine $t_{k,l}$ for all k and l.

Let M(n, k, l) be the generalized graph of *n* vertices defined as follows: If the vertices have been numbered 1, 2, ..., *n* then the *k*-tuples are all those which contain.

at least one of the first l vertices. M(n, k, l) is obviously (k+l)-saturated, and it has

$$t(n, k, l) = \binom{n}{k} - \binom{n-l}{k}$$

k-tuples.

We now prove the following theorem.

THEOREM 1. $t_{k,l} = t(n, k, l),$

and M(n, k, l) is the only (k+l)-saturated graph with n vertices and t(n, k, l) k-tuples.

Our proof uses the following lemma.

LEMMA. Let I denote an index set. For every $i \in I A_i$ and B_i are subsets of a set P with p elements satisfying the following conditions:

1. $A_i \cap B_i = \emptyset$.

2. $A_i \oplus A_j \cup B_j$, if $i \neq j$.

If there are a_i and b_i elements in A_i and B_i , respectively, then

$$(*) \qquad \qquad \sum_{i \in I} \frac{1}{\binom{p-b_i}{a_i}} \leq 1,$$

with equality if and only if $B_i = B$ for all $i \in I$ and the sets A_i are the q-tuples of the set P - B for some value of q.

REMARK. It follows from the second condition that no subset A_i can be the null set; B_i , however, may be the null set.

PROOF OF THE LEMMA. We use induction on p. If p=1 there can be only one pair of sets A_i and B_i ; for these sets $a_i=1$ and $b_i=0$, so the inequality holds.

Suppose the inequality holds for all sets P with fewer than p elements and consider a set P with p elements. If there is an index $i_0 \in I$ such that $a_{i_0} + b_{i_0} = p$, then $A_{i_0} \cup B_{i_0} = P$ by condition 1; hence $I = \{i_0\}$, by condition 2, and so

$$\sum_{i \in I} \frac{1}{\binom{p-b_i}{a_i}} = \frac{1}{\binom{p-b_{i_0}}{a_{i_0}}} = 1.$$

Therefore, we may suppose that $a_i + b_i < p$ for all *i*. Let $P_1, P_2, ..., P_p$ denote the (p-1)-element subsets of *P*. For any integer *v* between 1 and *p* let

 $I_{v} = \{i: i \in I \text{ and } A_{i} \subset P_{v}\}$

and

$$B_i^{(\nu)} = B_i \cap P_{\nu}.$$

The number of elements in $B_i^{(v)}$ will be denoted by $b_i^{(v)}$.

-448

The sets A_i and $B_i^{(v)}$ for $i \in I_v$ satisfy the conditions of the lemma with respect to the set P_v ; from the induction hypothesis it follows, therefore, that

(1)
$$\sum_{i \in I_{\nu}} \frac{1}{\binom{p-1-b_{i}^{(\nu)}}{a_{i}}} \leq 1.$$

Consequently,

(2)

$$\sum_{\nu=1}^{p} \sum_{i \in I_{\nu}} \frac{1}{\binom{p-1-b_{i}^{(\nu)}}{a_{i}}} \leq p.$$

To express the left-hand side in another way we determine the total contribution of terms associated with an arbitrary value of the index i.

There are $p - a_i - b_i$ sets P_v containing $A_i \cup B_i$. For each of these value of v there is a contribution of $\binom{p-1-b_i}{a_i}$ to the above sum. There are b_i sets P_v which contain A_i but not B_i . For each of these values of v there is a contribution of $\binom{p-b_i}{a_i}$. There are a_i sets P_v not containing A_i but these will give no contribution to the sum (2), since i does not belong to the corresponding sets I_v .

Therefore, the contribution of terms associated with the index i is

$$\frac{(p-a_i-b_i)}{\binom{p-1-b_i}{a_i}} + \frac{b_i}{\binom{p-b_i}{a_i}} = \frac{p}{\binom{p-b_i}{a_i}}.$$

Hence, inequality (2) is equivalent to the inequality

$$\sum_{i\in I} \frac{p}{\binom{p-b_i}{a_i}} \leq p.$$

But this implies that (*) holds, as was to be shown.

We now consider the cases for which equality holds in (*). From the preceding argument it follows that this happens if and only if equality holds for each value of v in (1), i. e. if and only if (**) the sets A_i and B_i^v , for $i \in I_v$, have the property stated at the conclusion of the lemma for each value of v.

We shall show that for arbitrary *i* and *j* the sets A_i and A_j have the same number of elements and that $B_i = B_j$.

If $A_i \cup A_j = R \neq P$, then there is a set $P_{v_0} \supset R$. From this it follows, appealing to (* *), that A_i and A_j have the same number of elements and $B_i \cap R = B_j \cap R =$ $= \emptyset$. Now we prove $B_i = B_j$. Suppose this does not hold. Then we may suppose that for an element $x \ x \in B_i, x \notin B_j$. Let y and z be elements of P such that $y \in A_i$, $y \notin A_j; z \notin A_i \cup B_i, z \in A_j$ (such elements exist because $A_i \notin A_j$, and $A_j \notin A_i \cup B_i$). The set $P_{v_1} = P - y$ contains A_j so by (* *) there is an index k such that $A_k =$ $= A_j - z + x$ and so $x \notin B_k$. But then the set $P_{v_2} = P - z$ contains A_i, A_k and B_i , hence by $(* *) B_k \cap P_{v_2} = B_i$, which is impossible, for the left hand side does not contain the element x of B_i . If on the other hand $A_i \cup A_i = P$, we distinguish two possibilities:

1. The sets B_i , B_j are empty. If A_i and A_j have p-1 elements, the statement is true. If not, we may suppose A_i has at most p-2 elements. Let $P_{v_i} \supset A_{v_i}$ and $P_{v_j} \supset A_{v_j}$ be sets of p-1 elements. Then $P_{v_i} \cap P_{v_j}$ has p-2 elements. According to (* *) there is a set $A_k \subset P_{v_i} \cap P_{v_j}$ with the same number of elements as A_i , and applying (* *) for P_{v_j} this implies that A_k and A_j , so A_i , A_k and A_j all have the same number of elements.

2. The set B_i is not empty. Let x, y, z be three elements of P satisfying the following requirements: $x \in A_i, x \notin A_j, y \in B_i, z \in A_j$ and $z \notin A_i \cup B_i$. (Such elements exist by condition 2 of the lemma). The set $P_v = P - y$ contains A_i , so there is an index $k \in I$ such that $A_k = A_i - x + z$, for this set is in P_v and does not meet B_i . It is clear that $y \notin A_k \cup A_i$ and $x \notin A_k \cup A_j$, so neither $A_k \cup A_i$ nor $A_k \cup A_j$ is the set P. Consequently by the preceding argument, A_i, A_j and A_k all have the same number of elements and $B_i = B_j = B_k$.

This shows that if equality holds in (*), then $B_i = B$ for all $i \in I$ and the sets A_i are certain q-element subsets of P-B. Since equality does hold in (*) it must be that the sets A_i are all the q-element subsets of P-B.

This suffices to complete the proof of the lemma, by induction.

PROOF OF THE THEOREM. Let G be a (k+l)-saturated generalized graph of n vertices. We denote by S_{α} ($\alpha \in A$) the various k-tuples belonging to G and by N_{β} ($\beta \in B$) the remaining k-tuples of vertices. The vertices not belonging to the k-tuple S_{α} will be denoted by \overline{S}_{α} . Since G is saturated we can certainly choose, for each set N_{β} , at least one set K_{β} of k+l vertices all k-tuples of which belong to the graph G except the k-tuple N_{β} . Suppose, therefore, that N_{β} , S_{α_1} , ..., S_{α_s} are the k-tuples of K_{β} . If S_{α_i} has m vertices in common with N_{β} , then we say that N_{β} assigns a weight 1

$$\frac{1}{\binom{n-l-m}{k-m}} \text{ to } S_{\alpha_i}, \text{ for } \alpha_i \in \mathcal{A} \text{ and } \beta \in B.$$

(a) Let us denote by W_0 the weight assigned by N_β to the set of k-tuples of K_β . It is clear that W_0 is independent of β and G, and that each N_β assignes a weight of at least W_0 to the set of k-tuples of G.

(b) We shall show that the k-tuples N_{β} altogether assign a weight of at most 1 to an arbitrary S_{α} . Suppose S_{α} has a weight assigned to it by $N_{\beta_1}, \ldots, N_{\beta_r}$ and let $A_i = \bar{S}_{\alpha} \cap N_{\beta}$ for $i = 1, 2, \ldots, r$. Then A_i is the set of vertices of N_{β_i} which are not in S_{α} .

(c) Let B_i denote the set of vertices of K_{β_i} which are neither in N_{β_i} nor in S_{α} . Then $A_i \cap B_i = \emptyset$, and there are *l* vertices in $A_i \cup B_i$. $A_j \oplus A_i \cup B_i$ if $i \neq j$, for N_{β_i} is the only k-tuple of K_{β_i} not belonging to G, and $A_j \subseteq A_i \cup B_i$ would imply $N_{\beta_i} \subseteq K_{\beta_i}$.

If we let m_i denote the number of elements of A_i , then to prove statement. (b) we need only show that

(3)
$$\sum_{i \in I} \frac{1}{\binom{(n-l)-(k-m_i)}{k-(k-m_i)}} \leq 1, \text{ where } I = (1, 2, ..., r).$$

But statement (c) means that the sets A_i and B_i , for $i \in I$, satisfy the conditions of our lemma with $P = \overline{S}_{\alpha}$, p = n - k, $a_i = m_i$, and $b_i = l - m_i$. Hence,

$$\sum_{i \in I} \frac{1}{\binom{(n-k)-(l-m_i)}{m_i}} = \sum_{i \in I} \frac{1}{\binom{(n-k)-(k-m_i)}{k-(k-m_i)}} \le 1.$$

This proves statement (b).

Let there be t k-tuples S_{α} in G. Then there are $\binom{n}{k} - t$ k-tuples N_{β} . It follows from (a) that the k-tuples N_{β} altogether assign a weight of at least $\binom{n}{k} - t W_0$ to all the k-tuples S_{α} . From (b) it follows that the total weight assigned to the k-tuples S_{α} is at most t. Hence,

$$t \ge \left(\binom{n}{k} - t \right) W_0$$

or

$$t \ge \frac{W_0\binom{n}{k}}{1+W_0}.$$

Equality holds here if and only if each N_{β} assignes a weight exactly W_0 and if each S_{α} is assigned the weight 1. It is easy to check that this is true for the graph M(n, k, l). Therefore, t is at least as large as the number of k-tuples in M(n, k, l), i. e. $t \ge t(n, k, l)$.

If t = t(n, k, l) for a graph G, then each N_{β} must assign a weight exactly W_0 and equality must hold in (3) for all $\alpha \in A$. Referring to the lemma this implies that the following two statements hold:

(4) For each k-tuple N_{β} not belonging to G there is exactly one set K_{β} of k+l vertices such that N_{β} is the only k-tuple of K_{β} , since otherwise N_{β} would assign a weight more than W_0 to the set of S_{α} 's.

(5) If $S_{\alpha} = (x_1, ..., x_k)$ is an arbitrary k-tuple of G, there is a set of j vertices $(0 \leq j \leq l-1)$: $T = (x_{k+1}, ..., x_{k+j})$ such that if $y_{k+j+1}, y_{k+j+2}, ..., y_{k+l}$ are arbitrary vertices of G $(x_{\mu} \neq y_{\nu})$, then the set $(x_1, ..., x_{k+j}, y_{k+j+1}, ..., y_{k+l})$ contains only one k-tuple N_{β} not belonging to G. Fort his k-tuple N_{β} : $N_{\beta} \cap T = \emptyset$ and $S_{\alpha} \cap N_{\beta}$ has k+j-l elements.

Suppose t = t(n, k, l) for a graph G, we shall prove G = M(n, k, l). In the following S_{α} and N_{β} will mean k-tuples belonging and not belonging to G respectively, S_{α_i} and N_{β_i} will denote special k-tuples of the corresponding type. (6) If l=1, (4) and (5) imply that for any set of k+1 vertices of G either all

(6) If l=1, (4) and (5) imply that for any set of k+1 vertices of G either all the k-tuples of this set are N_{β}^{2} s or only one of them; moreover for any k-tuple N_{β} there is only one set of k+1 vertices containing N_{β} , all the other k-tuples of which are S_{α}^{2} s; consequently for other sets of k+1 vertices containing N_{β} all the k-tuples of these sets are N_{β}^{2} s.

Let $K = (x_1, x_2, ..., x_{k+1})$ be a set containing both S_{α} and N_{β} k-tuples: $(x_1, x_2, ..., x_k) = S_{\alpha_1}$ and $(x_2, x_3, ..., x_{k+1}) = N_{\beta_1}$. Let y be an arbitrary vertex $(y \neq x_i)$. By (6) all the k-tuples of the set $Y = (y, x_2, ..., x_{k+1})$ are N_{β}^* s. This implies that if S_{α_2} is an arbitrary k-tuple of K belonging to G, then all the k-tuples of $S_{\alpha_2} + y$ are S_{α}^* s, except the k-tuple in Y. From this it follows that if a k-tuple of $Y + x_1$ contains x_1 , it is a k-tuple S_{α} , otherwise it is a k-tuple N_{β} . By using this method repeatedly we get that in G all the k-tuples containing x_1 are S_{α}^* s, and all the others N_{β}^* s, i. e. G = M(n, k, 1).

If $l \ge 2$, let $S_{\alpha_1} = (x_2, x_3, ..., x_{k+1})$ be an arbitrary k-tuple in $K_{\beta_1} = (x_1, x_2, ..., x_{k+l})$, having k-1 common vertices with $N_{\beta_1} = (x_1, x_2, ..., x_k)$. To prove G = M(n, k, l) we must show that no N_{β} meets $K_{\beta_1} - N_{\beta_1} = (x_{k+1}, ..., x_{k+l})$. In order to verify this it is sufficient to show, that for an arbitrary vertex x_0 $(x_0 \neq x_1, ..., x_{k+l})$ $(x_0, x_2, ..., x_k)$ is the k-tuple of $(x_0, x_2, x_3, ..., x_{k+l}) = K_{\beta_2}$ not belonging to G.

Suppose that for a vertex x_0 this is not true. Appealing to (5) K_{β_2} contains a k-tuple, not belonging to G, and this k-tuple does not meet the set $(x_{k+2}, ..., x_{k+1})$. By a simple change of notation we can obtain that $(x_0, x_3, x_4, ..., x_{k+1}) = N_{\beta_2}$ is this k-tuple. Then $(x_3, x_4, ..., x_{k+2}) = S_{\alpha_2} \subset K_{\beta_1}$ is a k-tuple of G, $S_{\alpha_2} \subset K_{\beta_2}$, and so by (5) it has the same number of common vertices with N_{β_1} as with N_{β_2} . This is a contradiction since S_{α_2} has k-2 and k-1 common vertices with the sets N_{β_1} and N_{β_2} respectively. This suffices to complete the proof of theorem 1.

A generalized graph G is said to be *p*-critical if the smallest number of vertices that can represent all the k-tuples of G is p, but upon omitting any k-tuple the remaining k-tuples can be represented by p-1 vertices. The following is an immediate consequence of theorem 1.

THEOREM 2. A p-critical generalized graph can have at most $\binom{p+k-1}{k}$ k-tuples and the only p-critical graphs with this many k-tuples consist of a complete (p+k-1)-graph and isolated vertices.

PROOF. If G has n vertices and is p-critical, then it is easily seen that the complementary graph of G is (n-p+1)-saturated. The result now follows from theorem 1.

REMARK. In proving theorem 1 we actually proved the following result: If G has n vertices and the addition of any new k-tuple increases the number of complete (k+l)-graphs in G, then G has at least t(n, k, l) k-tuples with equality holding only if G = M(n, k, l).

(Received 13 April 1965)

References

[1] P. TURÁN, Research Problems, Publ. Math. Inst. Hung. Acad. Sci., 6 (1961), pp. 417-423.

- [2] P. TURÁN, On an extremal problem in graph theory, Mat. Fiz. Lapok, 48 (1941), pp. 436-452.
 [3] P. ERDŐS, A. HAJNAL and J. W. MOON, A problem in graph theory, Amer. Math. Monthly,
- 71 (1964), pp. 1107–1110. [4] GY. KATONA, T. NEMETZ and M. SIMONOVITS, On a graph-problem of Turán, *Mat. Lapok.* 15 (1964), pp. 228–238.