ON GENERALIZED GRAPHS

By
B. BOLLOBÁS (Budapest)
(Presented by P. Erdős)

A generalized graph consists of a set of n vertices and a collection of k-tuples of these vertices (cf. Turán [1]). In what follows we shall refer to such a configuration as an edge-graph if $k=2$ and, usually, simply as a graph if $k>2$. A complete m-graph has m vertices and $\binom{m}{k} k$-tuples. We say that a graph G is m-saturated if it contains no complete m-graph but loses this property when any new k-tuple is added.

Turán [2] proved the following theorem on edge-graphs in 1941: Let $n=$ $=g(m-1)+r$, where g, m, and r are integers such that $g \geqq 1, m \geqq 3,0 \leqq r \leqq m-1$, and $n \geqq m$. Then an m-satùrated edge-graph of n vertices can have at most

$$
E_{m}=\frac{m-2}{2(m-1)}\left(n^{2}-r^{2}\right)+\binom{r}{2}
$$

edges. The dual problem was recently solved by Erdős, Hajnal, and Moon [3] who showed that such an edge-graph must have at least

$$
e_{m}=(m-2)(n-m+2)+\binom{m-2}{2}=\frac{m-2}{2}(2 n-m+1)
$$

edges. These two results can be combined as follows: If G is an m-saturated edgegraph of n vertices and e edges, then

$$
e_{m} \leqq e \leqq E_{m} .
$$

The extremal edge-graphs for which $e=e_{n i}$ or $e=E_{m i}$ are also characterized in these papers.

Corresponding problems can be stated for generalized graphs. Let G be a ($k+l$)-saturated graph with n vertices and $t k$-tuples, where it is understood that $k+l \leqq n$. Let the maximum and minimum values of t over the class of such graphs G be denoted by $T_{k, l}$ and $t_{k, t}$, respectively. The value of $T_{k, l}$ is not known when $k \geqq 3$ and $l \geqq 1$. (Some rather rough estimates are contained in [4].) The object in this paper is to determine $t_{k, l}$ for all k and l.

Let $M(n, k, l)$ be the generalized graph of n vertices defined as follows: If the vertices have been numbered $1,2, \ldots, n$ then the k-tuples are all those which contain
at least one of the first l vertices. $M(n, k, l)$ is obviously $(k+l)$-saturated, and it has

$$
t(n, k, l)=\binom{n}{k}-\binom{n-l}{k}
$$

k-tuples.
We now prove the following theorem.
Theorem 1. $\quad t_{k, l}=t(n, k, l)$,
and $M(n, k, l)$ is the only $(k+l)$-saturated graph with n vertices and $t(n, k, l)$ k-tuples.

Our proof uses the following lemma.
Lemma. Let I denote an index set. For every $i \in I A_{i}$ and B_{i} are subsets of a set P with p elements satisfying the following conditions:

1. $A_{i} \cap B_{i}=\varnothing$.
2. $A_{i} \nsubseteq A_{j} \cup B_{j}$, if $i \neq j$.

If there are a_{i} and b_{i} elements in A_{i} and B_{i}, respectively, then
(*)

$$
\sum_{i \in I} \frac{1}{\binom{p-b_{i}}{a_{i}}} \leqq 1
$$

with equality if and only if $B_{i}=B$ for all $i \in I$ and the sets A_{i} are the q-tuples of the set $P-B$ for some value of q.

Remark. It follows from the second condition that no subset A_{i} can be the null set; B_{i}, however, may be the null set.

Proof of the lemma. We use induction on p. If $p=1$ there can be only one pair of sets A_{i} and B_{i}; for these sets $a_{i}=1$ and $b_{i}=0$, so the inequality holds.

Suppose the inequality holds for all sets P with fewer than p elements and consider a set P with p elements. If there is an index $i_{0} \in I$ such that $a_{i_{0}}+b_{i_{0}}=p$, then $A_{i_{0}} \cup B_{i_{0}}=P$ by condition 1 ; hence $I=\left\{i_{0}\right\}$, by condition 2 , and so

$$
\sum_{i \in I} \frac{1}{\binom{p-b_{i}}{a_{i}}}=\frac{1}{\binom{p-b_{i_{0}}}{a_{i_{0}}}}=1
$$

Therefore, we may suppose that $a_{i}+b_{i}<p$ for all i. Let $P_{1}, P_{2}, \ldots, P_{p}$ denote the ($p-1$)-element subsets of P. For any integer v between 1 and p let

$$
I_{v}=\left\{i: i \in I \text { and } A_{i} \sqsubset P_{v}\right\}
$$

and

$$
B_{i}^{(v)}=B_{i} \cap P_{v}
$$

The number of elements in $B_{i}^{(v)}$ will be denoted by $b_{i}^{(v)}$.

The sets A_{i} and $B_{i}^{(v)}$ for $i \in I_{v}$ satisfy the conditions of the lemma with respect to the set P_{v}; from the induction hypothesis it follows, therefore, that

$$
\begin{equation*}
\sum_{i \in I_{v}} \frac{1}{\binom{p-1-b_{i}^{(v)}}{a_{i}}} \leqq 1 \tag{1}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\sum_{v=1}^{p} \sum_{i \in I_{v}} \frac{1}{\binom{p-1-b_{i}^{(v)}}{a_{i}}} \leqq p \tag{2}
\end{equation*}
$$

To express the left-hand side in another way we determine the total contribution of terms associated with an arbitrary value of the index i.

There are $p-a_{i}-b_{i}$ sets P_{v} containing $A_{i} \cup B_{i}$. For each of these value of v there is a contribution of $\binom{p-1-b_{i}}{a_{i}}$ to the above sum. There are b_{i} sets P_{y} which contain A_{i} but not B_{i}. For each of these values of v there is a contribution of $\binom{p-b_{i}}{a_{i}}$. There are a_{i} sets P_{v} not containing A_{i} but these will give no contribution to the sum (2), since i does not belong to the corresponding sets I_{v}.

Therefore, the contribution of terms associated with the index i is

$$
\frac{\left(p-a_{i}-b_{i}\right)}{\binom{p-1-b_{i}}{a_{i}}}+\frac{b_{i}}{\binom{p-b_{i}}{a_{i}}}=\frac{p}{\binom{p-b_{i}}{a_{i}}}
$$

Hence, inequality (2) is equivalent to the inequality

$$
\sum_{i \in I} \frac{p}{\binom{p-b_{i}}{a_{i}}} \leqq p .
$$

But this implies that ($*$) holds, as was to be shown.
We now' consider the cases for which equality holds in (*). From the preceding argument it follows that this happens if and only if equality holds for each value of v in (1), i. e. if and only if ($* *$) the sets A_{i} and B_{i}^{v}, for $i \in I_{v}$, have the property stated at the conclusion of the lemma for each value of v.

We shall show that for arbitrary i and j the sets A_{i} and A_{j} have the same number of elements and that $B_{i}=B_{j}$.

If $A_{i} \cup A_{j}=R \neq P$, then there is a set $P_{v_{0}} \supset R$. From this it follows, appealing to ($* *$), that A_{i} and A_{j} have the same number of elements and $B_{i} \cap R=B_{j} \cap R=$ $=\varnothing$. Now we prove $B_{i}=B_{j}$. Suppose this does not hold. Then we may suppose that for an element $x \quad x \in B_{i}, x \notin B_{j}$. Let y and z be elements of P such that $y \in A_{i}$, $y \notin A_{j} ; z \notin A_{i} \cup B_{i}, z \in A_{j}$ (such elements exist because $A_{i} \nsubseteq A_{j}$, and $A_{j} \nsubseteq A_{i} \cup B_{i}$). The set $P_{v_{1}}=P-y$ contains A_{j} so by ($* *$) there is an index k such that $A_{k}=$ $=A_{j}-z+x$ and so $x \notin B_{k}$. But then the set $P_{y_{2}}=P-z$ contains A_{i}, A_{k} and B_{i}, hence by (* *) $B_{k} \cap P_{v_{2}}=B_{i}$, which is impossible, for the left hand side does not contain the element x of B_{i}.

If on the other hand $A_{i} \cup A_{j}=P$, we distinguish two possibilities:

1. The sets B_{i}, B_{j} are empty. If A_{i} and A_{j} have $p-1$ elements, the statement is true. If not, we may suppose A_{i} has at most $p-2$ elements. Let $P_{v_{i}} \supset A_{v_{i}}$ and $P_{v_{j}} \supset A_{v_{j}}$ be sets of $p-1$ elements. Then $P_{v_{i}} \cap P_{v_{j}}$ has $p-2$ elements. According to ($* *$) there is a set $A_{k} \subset P_{v_{i}} \cap P_{v_{j}}$ with the same number of elements as A_{i}, and applying ($*$) for $P_{v_{j}}$ this implies that A_{k} and A_{j}, so A_{i}, A_{k} and A_{j} all have the same number of elements.
2. The set B_{i} is not empty. Let x, y, z be three elements of P satisfying the following requirements: $x \in A_{i}, x \notin A_{j}, y \in B_{i}, z \in A_{j}$ and $z \notin A_{i} \cup B_{i}$. (Such elements exist by condition 2 of the lemma). The set $P_{v}=P-y$ contains A_{i}, so there is an index $k \in I$ such that $A_{k}=A_{i}-x+z$, for this set is in P_{v} and does not meet B_{i}. It is clear that $y \notin A_{k} \cup A_{i}$ and $x \notin A_{k} \cup A_{j}$, so neither $A_{k} \cup A_{i}$ nor $A_{k} \cup A_{j}$ is the set P. Consequently by the preceding argument, A_{i}, A_{j} and A_{k} all have the same number of elements and $B_{i}=B_{j}=B_{k}$.

This shows that if equality holds in $(*)$, then $B_{i}=B$ for all $i \in I$ and the sets A_{i} are certain q-element subsets of $P-B$. Since equality does hold in (*) it must be that the sets A_{i} are all the q-element subsets of $P-B$.

This suffices to complete the proof of the lemma, by induction.
Proof of the theorem. Let G be a $(k+l)$-saturated generalized graph of n vertices. We denote by $S_{\alpha}(\alpha \in A)$ the various k-tuples belonging to G and by N_{β} ($\beta \in B$) the remaining k-tuples of vertices. The vertices not belonging to the k-tuple S_{α} will be denoted by \bar{S}_{α}. Since G is saturated we can certainly choose, for each set N_{β}, at least one set K_{β} of $k+l$ vertices all k-tuples of which belong to the graph G except the k-tuple N_{β}. Suppose, therefore, that $N_{\beta}, S_{\alpha_{1}}, \ldots, S_{\alpha_{s}}$ are the k-tuples of K_{β}. If $S_{\alpha_{i}}$ has m vertices in common with N_{β}, then we say that N_{β} assigns a weight $\frac{1}{\binom{n-l-m}{k-m}}$ to $S_{\alpha_{i}}$, for $\alpha_{i} \in A$ and $\beta \in B$.
(a) Let us denote by W_{0} the weight assigned by N_{β} to the set of k-tuples of K_{β}. It is clear that W_{0} is independent of β and G, and that each N_{β} assignes a weight of at least W_{0} to the set of k-tuples of G.
(b) We shall show that the k-tuples N_{β} altogether assign a weight of at most 1 to an arbitrary S_{α}. Suppose S_{α} has a weight assigned to it by $N_{\beta_{1}}, \ldots, N_{\beta_{r}}$ and let $A_{i}=\bar{S}_{\alpha} \cap N_{\beta}$ for $i=1,2, \ldots, r$. Then A_{i} is the set of vertices of $N_{\beta_{i}}$ which are not in S_{α}.
(c) Let B_{i} denote the set of vertices of $K_{\beta_{i}}$ which are neither in $N_{\beta_{i}}$ nor in S_{α}. Then $A_{i} \cap B_{i}=\varnothing$, and there are l vertices in $A_{i} \cup B_{i} . A_{j} \not \subset A_{i} \cup B_{i}$ if $i \neq j$, for $N_{\beta_{i}}$ is the only k-tuple of $K_{\beta_{i}}$ not belonging to G, and $A_{j} \subset A_{i} \cup B_{i}$ would imply $N_{\beta_{j}} \subset K_{\beta_{i}}$.

If we let m_{i} denote the number of elements of A_{i}, then to prove statement (b) we need only show that

$$
\begin{equation*}
\sum_{i \in I} \frac{1}{\binom{n-l)-\left(k-m_{i}\right)}{k-\left(k-m_{i}\right)}} \leqq 1, \quad \text { where } \quad I=(1,2, \ldots, r) . \tag{3}
\end{equation*}
$$

But statement (c) means that the sets A_{i} and B_{i}, for $i \in I$, satisfy the conditions of our lemma with $P=\bar{S}_{\alpha}, p=n-k, a_{i}=m_{i}$, and $b_{i}=l-m_{i}$. Hence,

$$
\sum_{i \in I} \frac{1}{\binom{(n-k)-\left(l-m_{i}\right)}{m_{i}}}=\sum_{i \in I} \frac{1}{\left(\begin{array}{c}
(n-k)-\left(k-m_{i}\right) \\
k-\left(k-m_{i}\right)
\end{array} \leqq\right.} \leqq 1 .
$$

This proves statement (b).
Let there be $t k$-tuples S_{α} in G. Then there are $\binom{n}{k}-t k$-tuples N_{β}. It follows from (a) that the k-tuples N_{β} altogether assign a weight of at least $\left(\binom{n}{k}-t\right) W_{0}$ to all the k-tuples S_{α}. From (b) it follows that the total weight assigned to the k-tuples S_{α} is at most t. Hence,

$$
t \geqq\left(\binom{n}{k}-t\right) W_{0}
$$

or

$$
t \geqq \frac{W_{0}\binom{n}{k}}{1+W_{0}} .
$$

Equality holds here if and only if each N_{β} assignes a weight exactly W_{0} and if each S_{α} is assigned the weight 1 . It is easy to check that this is true for the graph $M(n, k, l)$. Therefore, t is at least as large as the number of k-tuples in $M(n, k, l)$, i. e. $t \geqq t(n, k, l)$.

If $t=t(n, k, l)$ for a graph G, then each N_{β} must assign a weight exactly W_{0} and equality must hold in (3) for all $\alpha \in A$. Referring to the lemma this implies that the following two statements hold:
(4) For each k-tuple N_{ρ} not belonging to G there is exactly one set K_{β} of $k+1$ vertices such that N_{β} is the only k-tuple of K_{β}, since otherwise N_{β} would assign a weight more than W_{0} to the set of S_{α} 's.
(5) If $S_{\alpha}=\left(x_{1}, \ldots, x_{k}\right)$ is an arbitrary k-tuple of G, there is a set of j vertices $(0 \leqq j \leqq l-1): T=\left(x_{k+1}, \ldots, x_{k+j}\right)$ such that if $y_{k+j+1}, y_{k+j+2}, \ldots, y_{k+l}$ are arbitrary vertices of $G\left(x_{\mu} \neq y_{v}\right)$, then the set $\left(x_{1}, \ldots, x_{k+j}, y_{k+j+1}, \ldots, y_{k+l}\right)$ contains only one k-tuple N_{β} not belonging to G. Fort his k-tuple $N_{\beta}: N_{\beta} \cap T=\varnothing$ and $S_{\alpha} \cap N_{\beta}$ has $k+j-l$ elements.

Suppose $t=t(n, k, l)$ for a graph G, we shall prove $G=M(n, k, l)$. In the following S_{α} and N_{β} will mean k-tuples belonging and not belonging to G respectively, $S_{\alpha_{i}}$ and $N_{\beta_{i}}$ will denote special k-tuples of the corresponding type.
(6) If $l=1$, (4) and (5) imply that for any set of $k+1$ vertices of G either all the k-tuples of this set are $N_{\beta}^{\prime} s$ or only one of them; moreover for any k-tuple N_{β} there is only one set of $k+1$ vertices containing N_{β}, all the other k-tuples of which are $S_{\alpha} \mathrm{s}$; consequently for other sets of $k+1$ vertices containing N_{g} all the k-tuples of these sets are N_{β}^{\prime} s.

Let $K=\left(x_{1}, x_{2}, \ldots, x_{k+1}\right)$ be a set containing both S_{α} and $N_{\beta} k$-tuples: $\left(x_{1}, x_{2}, \ldots, x_{k}\right)=S_{\alpha_{1}}$ and $\left(x_{2}, x_{3}, \ldots, x_{k+1}\right)=N_{\dot{p}_{1}}$. Let y be an arbitrary vertex
$\left(y \neq x_{i}\right)$. By (6) all the k-tuples of the set $Y=\left(y, x_{2}, \ldots, x_{k+1}\right)$ are N_{β}^{\prime} s. This implies that if $S_{\alpha_{2}}$ is an arbitrary k-tuple of K belonging to G, then all the k-tuples of $S_{\alpha_{2}}+y$ are S_{α} s, except the k-tuple in Y. From this it follows that if a k-tuple of $Y+x_{1}$ contains x_{1}, it is a k-tuple S_{α}, otherwise it is a k-tuple N_{β}. By using this method repeatedly we get that in G all the k-tuples containing x_{1} are S_{α}^{s}, and all the others N_{β}^{3} s, i. e. $G=M(n, k, 1)$.

If $l \geqq 2$, let $S_{\alpha_{1}}=\left(x_{2}, x_{3}, \ldots, x_{k+1}\right)$ be an arbitrary k-tuple in $K_{\beta_{1}}=$ $=\left(x_{1}, x_{2}, \ldots, x_{k+l}\right)$, having $k-1$ common vertices with $N_{\beta_{1}}=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$. To prove $G=M(n, k, l)$ we must show that no N_{β} meets $K_{\beta_{1}}-N_{\beta_{1}}=\left(x_{k+1}, \ldots, x_{k+l}\right)$. In order to verify this it is sufficient to show, that for an arbitrary vertex x_{0} $\left(x_{0} \neq x_{1}, \ldots, x_{k+7}\right)\left(x_{0}, x_{2}, \ldots, x_{k}\right)$ is the k-tuple of $\left(x_{0}, x_{2}, x_{3}, \ldots, x_{k+i}\right)=K_{\beta_{2}}$ not belonging to G.

Suppose that for a vertex x_{0} this is not true. Appealing to (5) $K_{\beta_{2}}$ contains a k-tuple, not belonging to G, and this k-tuple does not meet the set $\left(x_{k+2}, \ldots, x_{k+l}\right)$. By a simple change of notation we can obtain that $\left(x_{0}, x_{3}, x_{4}, \ldots, x_{k+1}\right)=N_{\beta_{2}}$ is this k-tuple. Then $\left(x_{3}, x_{4}, \ldots, x_{k+2}\right)=S_{\alpha_{2}} \subset K_{\beta_{1}}$ is a k-tuple of $G, S_{\alpha_{2}} \simeq K_{\beta_{2}}$, and so by (5) it has the same number of common vertices with $N_{\beta_{1}}$ as with $N_{\beta_{2}}$. This is a contradiction since $S_{\alpha_{2}}$ has $k-2$ and $k-1$ common vertices with the sets $N_{\beta_{1}}$ and $N_{\beta_{2}}$ respectively. This suffices to complete the proof of theorem 1.

A generalized graph G is said to be p-critical if the smallest number of vertices that can represent all the k-tuples of G is p, but upon omitting any k-tuple the remaining k-tuples can be represented by $p-1$ vertices. The following is an immediate consequence of theorem 1.

Theorem 2. A p-critical generalized graph can have at most $\binom{p+k-1}{k} k$-tuples and the only p-critical graphs with this many k-tuples consist of a complete $(p+k-1)$ graph and isolated vertices.

Proof. If G has n vertices and is p-critical, then it is easily seen that the complementary graph of G is $(n-p+1)$-saturated. The result now follows from theorem 1.

Remark. In proving theorem 1 we actually proved the following result: If G has n vertices and the addition of any new k-tuple increases the number of complete $(k+l)$-graphs in G, then G has at least $t(n, k, l) k$-tuples with equality holding only if $G=M(n, k, l)$.
(Received 13 April 1965)

References

[1] P. Turán, Research Problems, Publ. Math. Inst. Hung. Acad. Sci., 6 (1961), pp. 417-423.
[2] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok, 48 (1941), pp. 436-452.
[3] P. Erdós, A. Hajnal and J. W. Moon, A problem in graph theory, Amer. Math. Monthly, 71 (1964), pp. 1107-1110.
[4] Gy. Katona, T. Nemetz and M. Simonovits, On a graph-problem of Turán, Mat. Lapok. 15 (1964), pp. 228-238.

