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A generalized graph consists of a set of 1 vertices and a collection of k-tuples.
of these vertices (cf. TURAN [1]). In what follows we shall refer to such a confi-
guration as an edge-graph if k =2 and, usually, simply as a graph if k=2. A complete
n
k
if it contains no complete nr-graph but loses this property when any new k-tuple
is added.

TURAN [2] proved the following theorem on edge-graphs in 1941: Let n =
= g{m—1)+r, where g, m, and r are integers such that g=1,m=3, 0=r=m—1,
and n=m. Then an m-saturated edge-graph of n vertices can have at most

m-graph has m vertices and k-tuples. We say that a graph G 'is m-sarurated

o m=2 (’)
En= 31y ™7,
edges. The dual problem was recently solved by ERDGs, HAINAL, and MooN [3]
who showed that such an edge-graph must have at least
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em:(m—2)(n—m+2)+(m2 z]zmT(Zn—nhL 1)
edges. These two results can be combined as follows: If G is an m-saturated edge--
graph of n vertices and ¢ edges, then
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The extremal edge-graphs for which e=e¢,, or e=E,, are also characterized in these:
papers.

Corresponding problems can be stated for generalized graphs. Let G be a
(k +{)-saturated graph with n vertices and ¢ k-tuples, where it is understood that
k+1=n. Let the maximum and minimum values of 7 over the class of such graphs.
G be denoted by T, and #,;, respectively. The value of T, ; is not known when
k=3 and /=1. (Some rather rough estimates are contained in [4].) The object in
this paper is to determine 7, ; for all k and 1.

Let M(n, k, 1) be the generalized graph of n vertices defined as follows: If the
vertices have been numbered 1, 2, ..., n then the k-tuples are all those which contain.
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at least one of the first / vertices. M(n, k, [) is obviously (k4 /)-saturated, and it

has
n n—1I
wen-(3)-(5)
Je-tuples.

We now prove the following theorem.
THEOREM 1. tey=tm k, 1),

and M(n, k, 1} is the only (k-+D-saturated graph with n vertices and t(n, k, 1)
k-tuples.

Our proof uses the following lemma.

LeMMA. Let I denote an index set. For every i€1 A; and B; are subsets of a set
P with p elements satisfying the following conditions:

1. A,NB;=9.

2. A;dcA;UB;, if i#).
If there are a; and b; elements in A; and B,, respectively, then

(%) > L

it (p—b;
a;

with equality if and only if B;=B for all i€1 and the sets A; are the g-tuples of the
set P-—B for some value of q.

I\

-1,

|

RemARrK. It follows from the second condition that no subset 4; can be the
null set; B;, however, may be the null set.

PrROOF OF THE LEMMA. We use induction on p. If p=1 there can be only one
pair of sets A; and B;; for these sets ¢;=1 and b;=0, so the inequality holds.

Suppose the inequality holds for ali sets P with fewer than p elements and
consider a set P with p elements. If there is an index i, €7 such that a;,+b;, = p.
then 4; UB;, = P by condition 1; hence /= {i,}, by condition 2, and so

1 i

> = =1.
ict (p—b; P“bio
a; i,

‘Therefore, we may suppose that a;+b;<p for all i: Let £, P,, ..., P, denote the
(p — )-element subsets of P. For any integer v between | and p let '

I, = {izi€l and 4;C P}
and
B =B:NP,.

‘The number of elements in B will be denoted by 5.
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The sets 4; and B for i€, satisfy the conditions of the lemma with respect
to the set P,; from the induction hypothesis it follows, therefore, that

o) 2 =l

Consequently,

p 1
2 2D 2 =P

To express the left-hand side in another way we determine the total contribution
of terms associated with an arbitrary value of the index 1.
There are p —a; —b; sets P, containing 4, B;. For each of these value of v

there is a contribution of (p B zl—b") to the above sum. There are b; sets P, which
contain 4; but not B;. For ealch of these values of v there is a contribution of
(p;bi) . There are a; sets P, not containing A; but these will give no contribution
to t}ile sum- (2), since / does not belong to the corresponding sets 1.

Therefore, the contribution of terms associated with the index i is

(p—a;—b) b; R 4
p—1-b P—bi]— p—by
a; a; | a;

Hence, inequality (2) is equivalent to the inequality

S =

PeT P-bi]
af g

But this implies that (%) holds. as was to be shown.

We now consider the cases for which equality holds in (). From the preceding
argument it follows that this happens if and only if equality holds for each value
of v in (1), i. e. if and only if (% %) the sets 4; and B, for i€ I,, have the property
stated at the conclusion of the lemma for each value of v.

We shall show that for arbitrary / and j the sets 4; and A4; have the same number
of elements and that B;=B;.

If A, JA; = R#P, then there is a set P, D R. From this it follows, appealing
to (% x) that A;and 4; have the same number of elements and B,(1R = B;\R =
= . Now we prove B =B;. Suppose this does not. hold. Then we may suppose
that for an element x xEBL, x¢B;. Let y and z be elements of P such that y€4,,
y&d;; 24 A, JB,,AEA (such elements exist because 4;dA4;, and 4;d¢ 4;UBy).
The set P, = P—y contains 4; so by (% %) there is an index k such that 4, =
=d;—z LA and so x4 B,. But then the set P,, = P—z contains 4;, 4, and B,
hence by (x %) B,NP,, = B;, which is impossible, for the left hand side does
not contain the element x of B,.
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If on the other hand 4;UA; = P, we distinguish two possibilities:

1. The sets B;, B; arc empty. If 4; and A4; have p—1 elements, the statement
is true. If not, we may suppose 4; has at most p—2 elements. Let P, D4, and
P, D4, be sets of p—1 elements Then P,,N P,, has p—2 elements. Accordmg
to (% eie) there is a set A, P, NP, with the same number of elements as A;,
and applying (% %) for P,, this 1mphes that 4, and 4;, so A;, A, and 4; all have
the same number of e]ements _

2. The set B; is not empty. Let x, y, z be three elements of P satisfying the
following requirements: x€A;, x¢A4;, yEB;, z€ A; and z¢ 4, UB,. (Such elements
exist by condition 2 of the lemma). The set P, = P—y contains 4;, so thereis
an index k€7 such that A, = A;—x+z, for this set is in P, and does not meet B;.
It is clear that y¢ 4, UA; and x¢ 4, UA4;, so neither 4,UA,; nor 4, A4; is the set
P. Consequently by the prec°dmg argument, A4;, A; and A, all have the same
number of elements and B;=B;=B,. '

- This shows that if equality holds in (%), then B; =B for all i¢7 and the sets
A; are certain g-clement subsets of P— B. Since equahty does hold in () it must
be that the sets A; are all the g-element subsets of P—B.

This suffices to complete the proof of the lemma, by induction.

PROOF OF THE THEOREM. Let G be a (k-/)-saturated generalized graph of n
vertices. We denote by S, (o€ 4) the various k-tuples belonging to G and by Ny
(B € B) the remaining k-tuples of vertices. The vertices not belonging to the k-tuple
S, will be denoted by S,. Since G is saturated we can certainly. choose, for each
set Ny, at least one set Ky of k +/ vertices all k-tuples of which belong to the graph
G except the k-tuple N;. Suppose, therefore, that Ny, S,,, ...; S,, are the k-tuples
of K. If S,, has m vertices in common with Ny, then we say that N, assigns a weight

e to S, for ¢;€A4 and fEB.
(n—l—m] '
k—m

(a) Let us denote by W, the Welght assigned by Nj to the set of A-tuples of
Kp. It is clear that W, is mdependent of f and G, and that each N, assignes a weight
of at least W, to the set of k-tuples of G.

(b) We shall show that the k-tuples N; altogether assign a weight of at most
1 to an arbitrary S,. Suppose S, has a Welght assigned to it by Ny, ..., Ny and let
A= 8,NNy fori=1,2,...,5 Then A; is the set of vertices of Ny, whlch are not
in S

(¢) Let B; denote the set of vertices of Kj, which are neither in Ny, nor in S,.
Then A4;NB; = &, and there are [ vertices in 4;UB;,. A, A, UB,; if i#}, for
Ny, is the only k-tuple of K, not belonging to G, and A; CA U B, \Vould imply
Ny CKy,.

If we let m1; denote the number of elements of A;, then to prove statement
(b) we need only show that

1
® 2 D=y = Vhere T=(52,0)
( k—(k—m;) )
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But statement (c) means that the sets 4; and By, for i€/, satisfy the conditions of
our lemma with P=S,,p = n—k, a;=m;, and b; = [—m,;. Hence,

= ﬁ;’_—_"éa—‘mﬁ =2 ((n;fc_)(}i— Skn;)m,-)J =1

This proves statement (b).

Let there be ¢ k-tﬁples S, in G. Then there are (n] — 1 k-tuples Ny. It follows from

k

n
k] — l) W, to all the

k-tuples S,. From (b) it follows that the total weight assigned to the k-tuples S,

is at most 7. Hence,
fz[(Z)——t)WO,

(i)

1+wW,

(a) that the k-tuples N, altogether assign a weight of at least ((

Qr

t

I

Equality holds here if and only if each N, assignes a weight exactly W, and if
each S, is assigned the weight 1. It is easy to check that this is true for the graph
M (n, k, ). Therefore, 7 is at least as large as the number of k-tuples in M(n, k, ),
ie t=r(n, k1)

If t=t(n, k, /) for a graph G, then each N, must assign a weight exactly W,

and equality must hold in (3) for all « € 4. Referring to the lemma this implies that
the following two statements hold: ‘
(4) For each k-tuple N, not belonging to G there is exactly one set K; of k+/
vertices such that Ny is the only A-tuple of K, since otherwise Ng would assign a’
weight more than W to the set of S.’s.
(5) If S,=(x;,....,x) is an arbitrary k-tuple of G, there is a set of j vertices
O=j=l-1):T= (xgs1, -, Xy such that if y o), Ykt j+2s -+-» Yis are arbitrary
vertices of G (x,=,), then the set (xy, ... X34, Vesj+1, .- Vess) contains only
one k-tuple N, not belonging to G. Fort his k-tuple N;: N, T = & and S, (N,
has k+j—1! elements.

Suppose t=1#(n, k,[) for a graph G, we shall prove G=M(n, k, /). In the

following S, and N, will mean k-tuples belonging and not belonging to G respectively,
Sy, and Ny, will denocte special k-tuples of the corresponding type.
(6) If I=1, (4) and (5) imply that for any set of k+1 vertices of G either all
the k-tuples of this set are Nys or only one of them; moreover for any k-tuple N,
there is only one set of k +1 vertices containing N, all the other k-tuples of which
are S;s; consequently for other sets of &+ 1 vertices containing N, all the k-tuples
of these sets are Ngs.

Let K=(x(,x;, ..., X341) be a set containing both S, and Ny k-tuples:
(x{, %3, o, X )=38,, and (x;, x3, s X)) =N;,. Let y be an arbitrary vertex
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(y #x,). By (6) all the k-tuples of the set Y=(p, x;, ..., Xx+) are Nps. This implies
that if S,, is an arbitrary k-tuple of K belonging to G, then all the k-tuples of S,, +»
are S,s, except the k-tuple in Y. From this it follows that if a k-tuple of Y+ Xy
contains x,, it is a k-tuple S,, otherwise it is a k-tuple N,. By using this method
repeatedly we get that in G all the k-tuples containing x; are S5, and all the others
Ngs, i.e. G=M(n, k 1.

If /=2, let S, =(x,X3,...,%+;) be an arbitrary k-tuple in K =
=(x{, Xy, .» Xg+1), having k—1 common vertices with Ny, =(x;, x5, ..., x). To
prove G = M(_n k, 1) we must show that no N; meets Ky — Ny = (Xpy1, -o0s Xpiy)-
In order to verify this it is sufficient to show, that for an arbitrary vertex x,
(xg # Xy, ooy Xpsp) (Xo, X, ., ) 15 the k~tuple of (xg, X3, X3, ..., X4 = Ky, not
belonging to G.

Suppose that for a vertex x, this is not true. Appealing to (5) Kj, contains a
k-tuple, niot belonging to G, and this k-tuple does not meet the set (X;45, ... Xpsp)-
By a simple change of notation we can obtain that (x,, X3, X4, ..., X4 1) =N, 1S
this k-tuple. Then (x5, X4, ..., Xy12) = S,, &K, is a k-tuple of G, S,, —K,,, and
so by (5) it has the same number of common vertices with N, as with N,,. This
is a contradiction since S,, has k—2 and k—1 common vertices with the sets Ny,
and Ny, respectively. This suffices to complete the proof of theorem 1.

A generalized graph G is said to be p-crmcal if the smallest number of vertices
that can represent all the k-tuples of G is p, but upon omitting any k- -tuple the
remaining k-tuples can be represented by p — 1 vertices. The following is an imme-
diate consequence of theorem 1.

. - 7 -k —
THEOREM 2. A p-critical generalized graph can have at most [p s : ] k-tuples

and the only p-critical graphs with this many k-tuples consist of a complete (p 4k —1)-
graph and isolated vertices.

ProoF. If G has n vertices‘and is p-critical, then it is easily seen that the comple-
mentary graph of G is (n —p - 1)-saturated. The result now follows from theorem 1.

ReMARK. In proving theorem 1 we actually proved the following result: If G
has 7 vertices and the addition of any new k-tuple increases the number of complete
(k +D)-graphs in G, then G has at least ¢(n, k, [) A-tuples with equality holding
only if G=M(n, k,1).

(Received 13 April 1965)
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