We will be interested in the length of the longest increasing and decreasing subsequences of A. It is intuitively plausible that there should be some kind of tradeoff between these lengths. If the longest increasing subsequence is short, say has length s, then any subsequence of A of length $s+1$ must contain a pair of decreasing elements, so there are lots of pairs of decreasing elements. Hence, we would expect the longest decreasing sequence to be large. An extreme case occurs when $s=1$. Then the whole sequence A is decreasing.

How can we quantify the feeling that the length of both, longest increasing and longest decreasing subsequences, cannot be small? A famous result of Erdős and Szekeres (1935) gives an answer to this question and was one of the first results in extremal combinatorics.

Theorem 4.4 (Erdős-Szekeres 1935). Let $A=\left(a_{1}, \ldots, a_{n}\right)$ be a sequence of n different real numbers. If $n \geqslant s r+1$ then either A has an increasing subsequence of $s+1$ terms or a decreasing subsequence of $r+1$ terms (or both).
Proof (due to Seidenberg 1959). Associate to each term a_{i} of A a pair of "scores" $\left(x_{i}, y_{i}\right)$ where x_{i} is the number of terms in the longest increasing subsequence ending at a_{i}, and y_{i} is the number of terms in the longest decreasing subsequence starting at a_{i}. Observe that no two terms have the same score, i.e., that $\left(x_{i}, y_{i}\right) \neq\left(x_{j}, y_{j}\right)$ whenever $i \neq j$. Indeed, if we have $\cdots a_{i} \cdots a_{j} \cdots$, then either $a_{i}<a_{j}$ and the longest increasing subsequence ending at a_{i} can be extended by adding on a_{j} (so that $x_{i}<x_{j}$), or $a_{i}>a_{j}$ and the longest decreasing subsequence starting at a_{j} can be preceded by a_{i} (so that $y_{i}>y_{j}$).

Now make a grid of n^{2} pigeonholes:

Place each term a_{i} in the pigeonhole with coordinates $\left(x_{i}, y_{i}\right)$. Each term of A can be placed in some pigeonhole, since $1 \leqslant x_{i}, y_{i} \leqslant n$ for all $i=1, \ldots, n$. Moreover, no pigeonhole can have more than one term because $\left(x_{i}, y_{i}\right) \neq$ $\left(x_{j}, y_{j}\right)$ whenever $i \neq j$. Since $|A|=n \geqslant s r+1$, we have more items than the pigeonholes shaded in the above picture. So some term a_{i} will lie outside this shaded region. But this means that either $x_{i} \geqslant s+1$ or $y_{i} \geqslant r+1$ (or both), exactly what we need.

