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Definition 27.2. Let r, k, s1, . . . , sr be given positive integers, s1, . . . , sr >

k. Then Rr(k; s1, . . . , sr) denotes the smallest number n with the property
that, if the k-subsets of an n-set are colored with r colors 1, . . . , r, then for
some i ∈ {1, . . . , r}, there is an si-set, all of whose k-subsets have color i. If
s1 = s2 = . . . = sr = s then this number is denoted by Rr(k; s).

Thus, the pigeonhole principle states that Rr(1; 2) = 1 + r and Proposi-
tion 27.1 that Rr(1; s) = 1 + r(s − 1). These are 1-dimensional results since
k = 1.

27.2 Ramsey’s theorem for graphs

The 2-dimensional case (k = 2) corresponds to coloring the edges of a graph.
Moreover, if we consider 2-colorings (r = 2) then the corresponding Ramsey
number is denoted by R(s, t), i.e., R(s, t) ­ R2(2; s, t).

To warm-up let us consider the following simple game. Mark six points on
the paper, no three in line. There are two players; one has a Red pencil the
other Blue. Each player’s turn consists in drawing a line with his/her pencil
between two of the points which haven’t already been joined. (The crossing
of lines is allowed). The player’s goal is to create a triangle in his/her color.
If you try to play it with a friend, you will notice that it always end in a win
for one player: a draw is not possible. Is this really so? In terms of Ramsey
numbers, we ask if R(3, 3) 6 6: we have r = 2 colors, edges are k-sets with
k = 2 and we are looking for a monochromatic 3-set. Prove that indeed,
R(3, 3) = 6. (Hint: see Fig. 27.1.)

e

Fig. 27.1. What is the color of e?

You have just shown that the number R(s, t) exists if s = t = 3. This is a
very special case of the well-known version of Ramsey’s theorem for graphs,
which says that R(s, t) exists for any natural numbers s and t.

Let G = (V,E) be an undirected graph. A subset S ⊆ V is a clique of
G if any two vertices of S are adjacent. Similarly, a subset T ⊆ V is an
independent set of G if no two vertices of T are adjacent in G.

Theorem 27.3. For any natural numbers s and t there exists a natural num-
ber n = R(s, t) such that in any graph on n or more vertices, there exists
either a clique of s vertices or an independent set of t vertices.
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Proof. To prove the existence of the desired number n = R(s, t), it is sufficient
to show, by induction on s+ t, that R(s, t) is bounded. For the base case, it
is easy to verify that R(1, t) = R(s, 1) = 1. For s > 1 and t > 1, let us prove
that

R(s, t) 6 R(s, t− 1) +R(s− 1, t). (27.1)

Let G = (V,E) be a graph on n = R(s, t− 1) +R(s− 1, t) vertices. Take an
arbitrary vertex x ∈ V , and split V − {x} into two subsets S and T , where
each vertex of S is nonadjacent to x and each vertex of T is adjacent to x
(see Fig. 27.2). Since

R(s, t− 1) +R(s− 1, t) = |S|+ |T |+ 1,

we have either |S| > R(s, t− 1) or |T | > R(s− 1, t).
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Fig. 27.2. Splitting the graph into neighbors and non-neighbors of x

Let |S| > R(s, t− 1), and consider the induced subgraph G[S] of G: this
is a graph on vertices S, in which two vertices are adjacent if and only if
they are such in G. Since the graph G[S] has at least R(s, t − 1) vertices,
by the induction hypothesis, it contains either a clique on s vertices or an
independent set of t − 1 vertices. Moreover, we know that x is not adjacent
to any vertex of S in G. By adding this vertex to S, we conclude that the
subgraph G[S ∪ {x}] (and hence, the graph G itself) contains either a clique
of s vertices or an independent set of t vertices.

The case when |T | > R(s− 1, t) is analogous. ut
The recurrence (27.1) implies (see Exercise 27.6)
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)
. (27.2)

The lower bound on R(t, t) of order t2t/2 was proved in Chap. 18 (Theo-
rem 18.1) using the probabilistic method. Thus,
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The gap is still large, and in recent years, relatively little progress has been
made. Tight bounds are known only for s = 3:
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