Definition 27.2. Let $r, k, s_{1}, \ldots, s_{r}$ be given positive integers, $s_{1}, \ldots, s_{r} \geqslant$ k. Then $R_{r}\left(k ; s_{1}, \ldots, s_{r}\right)$ denotes the smallest number n with the property that, if the k-subsets of an n-set are colored with r colors $1, \ldots, r$, then for some $i \in\{1, \ldots, r\}$, there is an s_{i}-set, all of whose k-subsets have color i. If $s_{1}=s_{2}=\ldots=s_{r}=s$ then this number is denoted by $R_{r}(k ; s)$.

Thus, the pigeonhole principle states that $R_{r}(1 ; 2)=1+r$ and Proposition 27.1 that $R_{r}(1 ; s)=1+r(s-1)$. These are 1-dimensional results since $k=1$.

27.2 Ramsey's theorem for graphs

The 2-dimensional case ($k=2$) corresponds to coloring the edges of a graph. Moreover, if we consider 2-colorings $(r=2)$ then the corresponding Ramsey number is denoted by $R(s, t)$, i.e., $R(s, t) \rightleftharpoons R_{2}(2 ; s, t)$.

To warm-up let us consider the following simple game. Mark six points on the paper, no three in line. There are two players; one has a Red pencil the other Blue. Each player's turn consists in drawing a line with his/her pencil between two of the points which haven't already been joined. (The crossing of lines is allowed). The player's goal is to create a triangle in his/her color. If you try to play it with a friend, you will notice that it always end in a win for one player: a draw is not possible. Is this really so? In terms of Ramsey numbers, we ask if $R(3,3) \leqslant 6$: we have $r=2$ colors, edges are k-sets with $k=2$ and we are looking for a monochromatic 3 -set. Prove that indeed, $R(3,3)=6$. (Hint: see Fig. 27.1.)

Fig. 27.1. What is the color of e ?

You have just shown that the number $R(s, t)$ exists if $s=t=3$. This is a very special case of the well-known version of Ramsey's theorem for graphs, which says that $R(s, t)$ exists for any natural numbers s and t.

Let $G=(V, E)$ be an undirected graph. A subset $S \subseteq V$ is a clique of G if any two vertices of S are adjacent. Similarly, a subset $T \subseteq V$ is an independent set of G if no two vertices of T are adjacent in G.
Theorem 27.3. For any natural numbers s and t there exists a natural number $n=R(s, t)$ such that in any graph on n or more vertices, there exists either a clique of s vertices or an independent set of t vertices.

Proof. To prove the existence of the desired number $n=R(s, t)$, it is sufficient to show, by induction on $s+t$, that $R(s, t)$ is bounded. For the base case, it is easy to verify that $R(1, t)=R(s, 1)=1$. For $s>1$ and $t>1$, let us prove that

$$
\begin{equation*}
R(s, t) \leqslant R(s, t-1)+R(s-1, t) \tag{27.1}
\end{equation*}
$$

Let $G=(V, E)$ be a graph on $n=R(s, t-1)+R(s-1, t)$ vertices. Take an arbitrary vertex $x \in V$, and split $V-\{x\}$ into two subsets S and T, where each vertex of S is nonadjacent to x and each vertex of T is adjacent to x (see Fig. 27.2). Since

$$
R(s, t-1)+R(s-1, t)=|S|+|T|+1
$$

we have either $|S| \geqslant R(s, t-1)$ or $|T| \geqslant R(s-1, t)$.

Fig. 27.2. Splitting the graph into neighbors and non-neighbors of x

Let $|S| \geqslant R(s, t-1)$, and consider the induced subgraph $G[S]$ of G : this is a graph on vertices S, in which two vertices are adjacent if and only if they are such in G. Since the graph $G[S]$ has at least $R(s, t-1)$ vertices, by the induction hypothesis, it contains either a clique on s vertices or an independent set of $t-1$ vertices. Moreover, we know that x is not adjacent to any vertex of S in G. By adding this vertex to S, we conclude that the subgraph $G[S \cup\{x\}]$ (and hence, the graph G itself) contains either a clique of s vertices or an independent set of t vertices.

The case when $|T| \geqslant R(s-1, t)$ is analogous.
The recurrence (27.1) implies (see Exercise 27.6)

$$
\begin{equation*}
R(s, t) \leqslant\binom{ s+t-2}{s-1} \tag{27.2}
\end{equation*}
$$

The lower bound on $R(t, t)$ of order $t 2^{t / 2}$ was proved in Chap. 18 (Theorem 18.1) using the probabilistic method. Thus,

$$
\begin{equation*}
c_{1} t 2^{t / 2} \leqslant R(t, t) \leqslant\binom{ 2 t-2}{t-1} \sim c_{2} 4^{t} / \sqrt{t} \tag{27.3}
\end{equation*}
$$

The gap is still large, and in recent years, relatively little progress has been made. Tight bounds are known only for $s=3$:

$$
c_{1} \frac{t^{2}}{\log t} \leqslant R(3, t) \leqslant c_{2} \frac{t^{2}}{\log t}
$$

