
316 26. Derandomization

26.3 Sum-free sets: the algorithmic aspect

In previous sections we considered two general approaches toward deran-
domizing of probabilistic proofs. In this section we will give one example to
demonstrate that sometimes the desired polynomial-time algorithm is hidden
in the existence proof itself.

A subset B of an additive group is called sum-free if x + y 6∈ B for all
x, y ∈ B. Erdős (1965) and Alon and Kleitman (1990) have proved that every
set A = {a1, . . . , aN} of integers has a sum-free subset B, with |B| > N/3.
The proof is probabilistic (see Theorem 20.2) and the question was whether
there exists a deterministic algorithm for the selection of such a subset B,
which runs in time polynomial in the (binary) size of the problem, that is in

` ­
∑N

i=1 log2 |ai|.
Kolountzakis (1994) has shown that, with a slight modification, the proof

of Theorem 20.2 can be transformed to such an algorithm.
For a prime p let (as before) Zp = {0, 1, . . . , p−1} be the field of the inte-

gers mod p, and let Z
×
p = {1, . . . , p− 1} be the corresponding multiplicative

group in Zp.

Theorem 26.6 (Kolountzakis 1994). Let p = 3k+2 be a prime number and
w(x) a nonnegative function defined on Z

×
p . Define W ­

∑
x∈Z

×
p
w(x) and

assume W > 0. Then there is a sum-free subset E of Z
×
p for which

∑

x∈E
w(x) >

1

3
W. (26.3)

Proof. Write S = {k+ 1, k+ 2, . . . , 2k+ 1}, and observe that S is a sum-free
subset in Zp and |S| > (p − 1)/3. Let the random variable t be uniformly
distributed in Z

×
p , and write f(t) ­

∑
w(x), where the sum is over all x

for which x · t ∈ S, and the product x · t is computed in Zp. Since Z
×
p is a

multiplicative group, we have

E [f(t)] =W · (|S|/(p− 1) > W/3.

By the pigeonhole property of the expectation, there is some t ∈ Z
×
p for which

f(t) > W/3. Define E ­ t−1S. This set is sum-free and (26.3) true for it.
ut

We now turn this proof into an algorithm. Given a set A = {a1, . . . , aN}
of integers of (binary) size ` ­

∑N
i=1 log2 |ai|, our goal is to find a sum-free

subset B, with |B| > N/3, in time polynomial in `. We assume that ` is large.
First, observe that the number of prime factors of an integer x is at most

log2 x. This means that the number of prime factors which appear in the
factorization of any element of A is at most `. The Prime Number Theorem
says that for every pair b, c of relatively prime positive integers, the number
of primes p 6 x such that p is of the form p = bk + c, asymptoticaly equals
to x/(ϕ(b) · lnx), where ϕ(b) = |{y ∈ Zb : gcd(y, b) = 1}| is the Euler totient
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function. In our case b = 3 and c = 2; hence, ϕ(b) = 2. Thus, there is a prime
p of the form p = 3k + 2, not greater than 3` log2 `, which does not divide
any member of A.

Define now

w(x) ­ |{t ∈ A : t = xmod p}| .
Since p does not divide any member of A, we have W = N and, using
Theorem 26.6, we can find a sum-free subset E ⊆ Z

×
p for which the set

B = {t ∈ A : tmod p ∈ E}
has more than N/3 elements. This set B is sum-free since x+ y = z for some
x, y, z ∈ B would imply x+ y = zmod p and E would not be sum-free.

In summary, the steps of our algorithm are the following.

1. Compute all primes up to 3` log2 `.
2. Find a prime p = 3k + 2 which divides no element of A.
3. Compute the values w(x) for all x ∈ Z

×
p .

4. Find by exhaustive search a t ∈ Z
×
p for which f(t) > N/3 (Theorem 26.6

guarantees that such t exists) and compute the set E = t−1S.
5. Construct the set B = {t ∈ A : tmod p ∈ E}.
It is easy to verify (do this!) that all these steps can be carried out in time
polynomial in `.

Exercises

26.1.(!) Use the method of conditional probabilities to derandomize the proof
of Theorem 18.1 and Theorem 18.2.

26.2.− Let G = (V,E) be a graph with n = 2m vertices. Improve the
lower bound |E|/2 on the size of a cut in G (proved in Theorem 26.1) to
|E| > m/(2m− 1).

Hint: Follow the argument of Theorem 26.1 with another probability space:
choose U ⊆ V uniformly from among all m-element subsets of V . Observe that
then any edge has probability m/(2m− 1) of being crossing.

26.3.− Let r be a random vector uniformly distributed in F
d
2. With each

vector a ∈ F
d
2 associate a random variable Xa = 〈a, r〉 whose value is the

scalar product over F2 of this vector with r. Show that these random variables
are 2-wise independent. Hint: Exercise 17.2.

26.4. Let logm = o(
√
n), m > 4, and let H be an m × n 0-1 matrix, the

average density of (i.e., the average number of 1’s in) each row of which does
not exceed p, 0 6 p < 1. Show that then, for every constant δ > 0, there is
an m× t submatrix H ′ of H such that t = O(logm/δ2) and each row of H ′

has average density at most p+ δ.


