
26. Derandomization

Given a randomized algorithm A, a natural approach towards derandomizing
it is to find a method for searching the associated sample space Ω for a
good point ω with respect to a given input instance x; a point is good for
x if A(x, ω) = f(x). Given such a point ω, the algorithm A(x, ω) becomes a
deterministic algorithm and it is guaranteed to find the correct solution. The
problem faced in searching the sample space is that it is usually exponential
in size.

Two general methods for searching the sample space have emerged in
recent years. One of them – the method of conditional probabilities – starts
with a “trivial” (in most situations, uniform) sample space Ω whose size is
usually exponential, and the idea is to make some non-trivial search procedure
within it. The other method – the method of small sample spaces – first tries
to design some “small” sample space Ω′ (say, of polynomial size), and then
performs an exhaustive search of it. In this chapter we will shortly discuss
both these approaches.

26.1 The method of conditional probabilities

The aim of this method is to convert probabilistic proofs of existence of com-
binatorial structures into efficient deterministic algorithms for their actual
construction. The idea is to perform a binary search of the sample space Ω
for a good point. At each step, the current sample space is split into two equal
halves and the conditional probability of obtaining a good point is computed
for each half. The search is then restricted to the half where the conditional
probability is higher. The search terminates when only one sample point
(which must be good) remains. This method is applicable to large sample
spaces Ω since it requires only log2 |Ω| steps. In situations, where the cor-
responding conditional probabilities can be effectively computed (or at least
approximated) this approach works pretty well. To explain the idea, let us
consider the following problem.

Given a 3-CNF formula F (x1, . . . , xn), we want to find an assignment of
values 0 or 1 to x1, . . . , xn satisfying as many clauses as possible. If we assign
to each variable the value 0 or 1 at random independently and with equal
probability, then we may expect that at least 7/8 fraction of clauses will be

308 26. Derandomization

satisfied, just because each clause is satisfied with probability 1− 2−3 = 7/8
(see Proposition 26.2).

But where is the assignment? The argument above guarantees only the
existence of such an assignment and gives no idea about how to find it. An
exhaustive search will always lead us to the desired assignment. But this
dummy strategy will require exponential (in n) number of steps. Can we do
better? It appears that we can “derandomize” the probabilistic proof of exis-
tence so that it leads to a deterministic algorithm which is only polynomial
in the length of the input formula.

Before we turn to a formal description of the method, let us first try
to solve our special problem with the help of a chimpanzee (this beautiful
explanation is due to Maurice Cochand).

We build a binary tree whose 2n leaves correspond to the 2n possible
assignments. Leaves are close to the sky, as they should be. Going up to the
left branch at level i corresponds to choose the value 0 for xi, going up to
the right gives xi the value 1.

In oder to motivate the chimpanzee for this fascinating problem, we attach
at every leaf of the tree a black box containing a number of bananas equal to
the number of clauses satisfied by the assignment corresponding to that leaf.
We do then invite the chimpanzee to go up in oder to bring down one of the
black boxes, making him most clear the potential benefit of the operation.

We repeat this experiment many times, with many different trees corre-
sponding to as many formulas F , having different number of variables and
clauses. The chimpanzee newer looked at the list of clauses (although he was
allowed to do it), did not even care about the number of variables. He moved
up quickly along the tree, and always brought back a box having a number
of bananas at least equal to 7/8 times the number of clauses!

We asked him for his secret (he definitely had one, this was more than
luck!). For a number of bananas we do not dare to mentioned here, he gave
the following answer:

“Embracingly simple,” he said. “At every junction I do the same: because
of the weight, the branch supporting the subtree having the biggest number
of bananas is not as steep as the other one, there I go!”

26.1.1 A general frame

Suppose we have a sample space Ω, and assume, for simplicity, that it is
symmetric (i.e., each point has probability 2−|Ω|) and that Ω = {0, 1}n.
Let A1, . . . , Am be a collection of events, and consider the random variable
X = X1 + · · ·+Xm where Xi is the indicator random variable for Ai. Hence,
E [X] =

∑m
i=1 Prob (Ai). Also suppose that we have a proof that E [X] > k.

So, there is a point (ε1, . . . , εn) in the sample space in which at least k of the
events hold. Our objective is to find such a point deterministically.

Introduce n random variables Y1, . . . , Yn where each Yi takes value 0 or 1
independently with equal probability. We find the bits ε1, ε2, . . . sequentially

