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Proof. Let A be a set of r random 0-1 vectors of length n, each entry of which
takes values 0 or 1 independently and with equal probability 1/2. For every
fixed set S of k coordinates and for every fixed vector v ∈ {0, 1}S ,

Prob (v 6∈ A¹S) =
∏

a∈A

Prob (v 6= a¹S) =
∏

a∈A

(
1− 2−|S|

)
=
(
1− 2−k

)r
.

Since there are only
(
n
k

)
2k possibilities to choose a pair (S, v), the set A is not

(n, k)-universal with probability at most
(
n
k

)
2k(1 − 2−k)r, which is strictly

smaller than 1. Thus, at least one set A of r vectors must be (n, k)-universal,
as claimed. ut

By using the fact that
(
n
k

)
< (en/k)k and (1 − 2−k)r 6 e−r/2k , and by

a special simple construction for k 6 2 (cf., for example, Exercise 11.4), it
is easy to derive from the last theorem that for every n and k there is an
(n, k)-universal set of size at most k2k log n.

18.6 Cross-intersecting families

A pair of families A,B is cross-intersecting if every set in A intersects every
set in B. The degree dA(x) of a point x in A is the number of sets in A
containing x. The rank of A is the maximum cardinality of a set in A.

If A has rank a, then, by the pigeonhole principle, each set in A contains
a point x which is “popular” for the members of B in that dB(x) > |B| /a.
Similarly, if B has rank b, then each member of B contains a point y for which
dA(y) > |A| /b. However, this alone does not imply that we can find a point
which is popular in both families A and B. It turns out that if we relax the
“degree of popularity” by one-half, then such a point exists.

Theorem 18.6 (Razborov–Vereshchagin 1999). Let A be a family of rank a
and B be a family of rank b. Suppose that the pair A,B is cross-intersecting.
Then there exists a point x such that

dA(x) >
|A|
2b

and dB(x) >
|B|
2a

.

Proof. Assume the contrary and let A,B be independent random sets that
are uniformly distributed in A,B respectively. That is, for each A ∈ A and
B ∈ B, Prob (A = A) = 1/|A| and Prob (B = B) = 1/|B|. Since the pair
A,B is cross-intersecting, the probability of the event “∃x(x ∈ A ∩ B)” is
equal to 1. Since the probability of a disjunction of events is at most the sum
of the probabilities of the events, we have

∑

x

Prob (x ∈ A ∩B) > 1.

Let X0 consist of those points x for which
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dA(x)

|A| = Prob (x ∈ A) <
1

2b
,

and X1 consist of the remaining points. Note that by our assumption, for any
x ∈ X1,

Prob (x ∈ B) =
dB(x)

|B| <
1

2a

holds. By double counting (see Proposition 1.6),
∑

x dA(x) =
∑

A∈A |A|.
Hence,

∑

x∈X1

Prob (x ∈ A ∩B) =
∑

x∈X1

Prob (x ∈ A) · Prob (x ∈ B)

<
1

2a
·
∑

x∈X1

Prob (x ∈ A) 6
1

2a
·
∑

x

Prob (x ∈ A)

=
1

2a
·
∑

x

dA(x)

|A| =
1

2a |A| ·
∑

x

dA(x) =
1

2a |A| ·
∑

A∈A
|A| 6 a |A|

2a |A| =
1

2
.

In a similar way we obtain

∑

x∈X0

Prob (x ∈ A ∩B) <
1

2
,

a contradiction. ut
This theorem has the following application to boolean functions. Recall

that a DNF (a disjunctive normal form) is an Or of monomials, each being an
And of literals, where a literal is a variable xi or its negation xi. The size of
a DNF is the number of its monomials, and the rank is the maximum length
of a monomial in it.

Given a pair F0, F1 of DNFs, a decision tree for such a pair is a usual
decision tree (see Sect. 10.4) with the exception that this time each leaf is
labeled by F0 or by F1. Given an input v ∈ {0, 1}n we follow the (unique)
path from the root until we reach some leaf. We require that the DNF labeling
the leaf so reached must be falsified by v. Clearly, not every pair of DNFs will
have a decision tree: we need that, for every input, at least one of the DNFs
outputs 0 on it; that is, the formula F0 ∧ F1 must be not satisfiable; in this
case we say that the pair of DNFs is legal. As before, the depth of a decision
tree is the number of edges in a longest path from the root to a leaf. Let
DT (F0, F1) denote the minimum depth of a decision tree for the pair F0, F1.

In particular, if F1 is a DNF of some boolean function f , and F0 is a
DNF of its negation f , then their And F0 ∧ F1 is clearly unsatisfiable, and
a decision tree for this pair is precisely the decision tree for f . If, moreover,
F0 has rank a and F1 has rank b, then we already know (see Theorem 10.12)
that DT (F0, F1) 6 ab.

Using Theorem 18.6, we can prove an upper bound which takes into ac-
count not only the rank of DNFs but also their size.


