Proof. Let A be a set of r random 0-1 vectors of length n, each entry of which takes values 0 or 1 independently and with equal probability $1 / 2$. For every fixed set S of k coordinates and for every fixed vector $v \in\{0,1\}^{S}$,

$$
\operatorname{Prob}\left(v \notin \mathbf{A} \upharpoonright_{S}\right)=\prod_{a \in \mathbf{A}} \operatorname{Prob}\left(v \neq a \Gamma_{S}\right)=\prod_{a \in \mathbf{A}}\left(1-2^{-|S|}\right)=\left(1-2^{-k}\right)^{r}
$$

Since there are only $\binom{n}{k} 2^{k}$ possibilities to choose a pair (S, v), the set \mathbf{A} is not (n, k)-universal with probability at $\operatorname{most}\binom{n}{k} 2^{k}\left(1-2^{-k}\right)^{r}$, which is strictly smaller than 1. Thus, at least one set A of r vectors must be (n, k)-universal, as claimed.

By using the fact that $\binom{n}{k}<(\mathrm{e} n / k)^{k}$ and $\left(1-2^{-k}\right)^{r} \leqslant \mathrm{e}^{-r / 2^{k}}$, and by a special simple construction for $k \leqslant 2$ (cf., for example, Exercise 11.4), it is easy to derive from the last theorem that for every n and k there is an (n, k)-universal set of size at most $k 2^{k} \log n$.

18.6 Cross-intersecting families

A pair of families \mathcal{A}, \mathcal{B} is cross-intersecting if every set in \mathcal{A} intersects every set in \mathcal{B}. The degree $d_{\mathcal{A}}(x)$ of a point x in \mathcal{A} is the number of sets in \mathcal{A} containing x. The rank of \mathcal{A} is the maximum cardinality of a set in \mathcal{A}.

If \mathcal{A} has rank a, then, by the pigeonhole principle, each set in \mathcal{A} contains a point x which is "popular" for the members of \mathcal{B} in that $d_{\mathcal{B}}(x) \geqslant|\mathcal{B}| / a$. Similarly, if \mathcal{B} has rank b, then each member of \mathcal{B} contains a point y for which $d_{\mathcal{A}}(y) \geqslant|\mathcal{A}| / b$. However, this alone does not imply that we can find a point which is popular in both families \mathcal{A} and \mathcal{B}. It turns out that if we relax the "degree of popularity" by one-half, then such a point exists.

Theorem 18.6 (Razborov-Vereshchagin 1999). Let \mathcal{A} be a family of rank a and \mathcal{B} be a family of rank b. Suppose that the pair \mathcal{A}, \mathcal{B} is cross-intersecting. Then there exists a point x such that

$$
d_{\mathcal{A}}(x) \geqslant \frac{|\mathcal{A}|}{2 b} \text { and } d_{\mathcal{B}}(x) \geqslant \frac{|\mathcal{B}|}{2 a} .
$$

Proof. Assume the contrary and let \mathbf{A}, \mathbf{B} be independent random sets that are uniformly distributed in \mathcal{A}, \mathcal{B} respectively. That is, for each $A \in \mathcal{A}$ and $B \in \mathcal{B}, \operatorname{Prob}(\mathbf{A}=A)=1 /|\mathcal{A}|$ and $\operatorname{Prob}(\mathbf{B}=B)=1 /|\mathcal{B}|$. Since the pair \mathcal{A}, \mathcal{B} is cross-intersecting, the probability of the event " $\exists x(x \in \mathbf{A} \cap \mathbf{B})$ " is equal to 1 . Since the probability of a disjunction of events is at most the sum of the probabilities of the events, we have

$$
\sum_{x} \operatorname{Prob}(x \in \mathbf{A} \cap \mathbf{B}) \geqslant 1 .
$$

Let X_{0} consist of those points x for which

$$
\frac{d_{\mathcal{A}}(x)}{|\mathcal{A}|}=\operatorname{Prob}(x \in \mathbf{A})<\frac{1}{2 b},
$$

and X_{1} consist of the remaining points. Note that by our assumption, for any $x \in X_{1}$,

$$
\operatorname{Prob}(x \in \mathbf{B})=\frac{d_{\mathcal{B}}(x)}{|\mathcal{B}|}<\frac{1}{2 a}
$$

holds. By double counting (see Proposition 1.6), $\sum_{x} d_{\mathcal{A}}(x)=\sum_{A \in \mathcal{A}}|A|$. Hence,

$$
\begin{aligned}
& \sum_{x \in X_{1}} \operatorname{Prob}(x \in \mathbf{A} \cap \mathbf{B})=\sum_{x \in X_{1}} \operatorname{Prob}(x \in \mathbf{A}) \cdot \operatorname{Prob}(x \in \mathbf{B}) \\
< & \frac{1}{2 a} \cdot \sum_{x \in X_{1}} \operatorname{Prob}(x \in \mathbf{A}) \leqslant \frac{1}{2 a} \cdot \sum_{x} \operatorname{Prob}(x \in \mathbf{A}) \\
= & \frac{1}{2 a} \cdot \sum_{x} \frac{d_{\mathcal{A}}(x)}{|\mathcal{A}|}=\frac{1}{2 a|\mathcal{A}|} \cdot \sum_{x} d_{\mathcal{A}}(x)=\frac{1}{2 a|\mathcal{A}|} \cdot \sum_{A \in \mathcal{A}}|A| \leqslant \frac{a|\mathcal{A}|}{2 a|\mathcal{A}|}=\frac{1}{2} .
\end{aligned}
$$

In a similar way we obtain

$$
\sum_{x \in X_{0}} \operatorname{Prob}(x \in \mathbf{A} \cap \mathbf{B})<\frac{1}{2}
$$

a contradiction.
This theorem has the following application to boolean functions. Recall that a DNF (a disjunctive normal form) is an Or of monomials, each being an And of literals, where a literal is a variable x_{i} or its negation \bar{x}_{i}. The size of a DNF is the number of its monomials, and the rank is the maximum length of a monomial in it.

Given a pair F_{0}, F_{1} of DNFs, a decision tree for such a pair is a usual decision tree (see Sect. 10.4) with the exception that this time each leaf is labeled by F_{0} or by F_{1}. Given an input $v \in\{0,1\}^{n}$ we follow the (unique) path from the root until we reach some leaf. We require that the DNF labeling the leaf so reached must be falsified by v. Clearly, not every pair of DNFs will have a decision tree: we need that, for every input, at least one of the DNFs outputs 0 on it; that is, the formula $F_{0} \wedge F_{1}$ must be not satisfiable; in this case we say that the pair of DNFs is legal. As before, the depth of a decision tree is the number of edges in a longest path from the root to a leaf. Let $D T\left(F_{0}, F_{1}\right)$ denote the minimum depth of a decision tree for the pair F_{0}, F_{1}.

In particular, if F_{1} is a DNF of some boolean function f, and F_{0} is a DNF of its negation \bar{f}, then their And $F_{0} \wedge F_{1}$ is clearly unsatisfiable, and a decision tree for this pair is precisely the decision tree for f. If, moreover, F_{0} has rank a and F_{1} has rank b, then we already know (see Theorem 10.12) that $D T\left(F_{0}, F_{1}\right) \leqslant a b$.

Using Theorem 18.6, we can prove an upper bound which takes into account not only the rank of DNFs but also their size.

