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Lemma 15.2 (Alon 1990a). Let vi = (vi1, vi2, . . . , vin), 1 6 i 6 k, be k
mutually orthogonal vectors, where vij ∈ {−1,+1}, and let c1, c2, . . . , ck be k
reals, not all zero. Then the vector y = c1v1 + c2v2 + · · · + ckvk has at least
n/k nonzero entries.

Proof. Assume, without loss of generality, that |c1| = max16i6k|ci|. Put
y = (y1, y2, . . . , yn) and let s be the number of nonzero entries in y, i.e.,
s = |S| where S  {j : yj 6= 0}. Also let |y| stand for the vector (|y1|, . . . , |yn|)
of the absolute values of entries of y. Since vectors v1, . . . , vk are mutually
orthogonal, we have
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where the last inequality follows from Cauchy–Schwarz inequality (14.3). On
the other hand, since v1 is orthogonal to all the vectors v2, . . . , vk,
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Substituting this estimate into the previous one we obtain s > n/k, as desired.
ut

This result gives us some new information about Hadamard matrices.
A Hadamard matrix is a square n × n matrix H with entries in {−1,+1}
and with row vectors mutually orthogonal (and hence with column vectors
mutually orthogonal). Thus, H has a maximal rank n. (Recall that the rank
of a matrix is the minimal number of linearly independent rows.)

The following corollary from Alon’s lemma says that not only the Hadamard
matrix itself but also each of its large enough submatrices has maximal rank.

Corollary 15.3. If t > (1 − 1/r)n, then every r × t sub-matrix H ′ of an
n× n Hadamard matrix H has rank r (over the reals).

Proof. Suppose this is false. Then there is a real nontrivial linear combination
of the rows of H ′ that vanishes. But by Lemma 15.2 this combination, taken
with the corresponding rows of H, has at least n/r nonzero entries, and at
least one of these must appear in a column of H ′, a contradiction. ut

Changing some entries of a real matrix by appropriate reals we can always
reduce its rank. The rigidity of a matrix M is the function RM (r), which for
a given r, gives the minimum number of entries of M which one has to
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change in order to reduce its rank to r or less. Due to its importance, the
rigidity of Hadamard matrices deserves continuous attention. For an n × n
Hadamard matrix H, Pudlák, Razborov, and Savický (1988) proved that

RH(r) > n2

r3 log r . Alon’s lemma implies that RH(r) > n2

r2 .

Corollary 15.4. If less than (n/r)2 entries of an n × n Hadamard matrix
H are changed (over the reals) then the rank of the resulting matrix remains
at least r.

Proof. Split H into n/r submatrices with r rows in each. Since less than
(n/r)(n/r) of the entries of H are changed, in at least one of these r × n
submatrices strictly less than n/r changes are made. Thus, there is an r × t
submatrix, with t > n− n/r, in which no change has taken place. The result
now follows from Corollary 15.3. ut

15.1.3 Hadamard matrices

In the previous section we demonstrated how, using an elementary linear
algebra, one can prove some non-trivial facts about the rank and rigidity of
Hadamard matrices. In this section we will establish several other important
properties of these matrices. Recall that a Hadamard matrix of order n is an
n × n matrix with entries in {−1,+1} whose rows (columns) are mutually
orthogonal.

The first property is the Lindsey Lemma. Its proof can be found in Erdős
and Spencer (1974). We present the neat proof given in Babai, Frankl and
Simon (1986).

Lemma 15.5 (J. H. Lindsey). Let H be an n × n Hadamard matrix and T
be an arbitrary a×b sub-matrix of H. Then the difference between the number
of +1′s and −1′s in T is at most

√
abn.

Proof. Let vi = (vi1, . . . , vin) denote the ith row of H. Assume that T consists
of its first a rows and b columns, and let
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Set x = (1b0n−b) and consider the vector y = (y1, . . . , yn) 
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the Cauchy–Schwarz inequality (14.3),
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‖y‖2 = 〈y, y〉 =
〈 a∑

i=1

vi,

a∑

i=1

vi

〉
=

a∑

i=1

a∑

j=1

〈vi, vj〉 =
a∑

i=1

〈vi, vi〉 = an.


