14.22^(!) (Ray-Chaudhuri–Wilson 1975). Prove the following uniform version of Theorem 14.13: if A_1, \ldots, A_m is a k-uniform L-intersecting family of subsets of an *n*-element set, then $m \leq \binom{n}{s}$, where s = |L|.

Sketch (Alon–Babai–Suzuki 1991): Start as in the proof of Theorem 14.13 and define the same polynomials f_1, \ldots, f_m of degree at most s. Associate with each subset I of $\{1, \ldots, n\}$ of cardinality $|I| \leq s-1$ the following polynomial of degree at most s:

$$g_I(x) = \left(\left(\sum_{j=1}^n x_j \right) - k \right) \prod_{i \in I} x_i,$$

and observe that for any subset $S \subseteq \{1, \ldots, n\}$, $g_I(S) \neq 0$ if and only if $|S| \neq k$ and $S \supseteq I$. Use this property to show that the polynomials g_I together with the polynomials f_i are linearly independent. For this, assume

$$\sum_{i=1}^{m} \lambda_i f_i + \sum_{|I| \leqslant s-1} \mu_I g_I = 0$$

for some $\lambda_i, \mu_I \in \mathbb{R}$. Substitute A_j 's for the variables in this equation to show that $\lambda_j = 0$ for every $j = 1, \ldots, m$. What remains is a relation among the g_I . To show that this relation must be also trivial, assume the opposite and re-write this relation as $\mu_1 g_{I_1} + \cdots + \mu_t g_{I_t} = 0$ with all $\mu_i \neq 0$ and $|I_1| \ge |I_j|$ for all j > 1. Show that then $g_{I_1}(I_1) \neq 0$ and $g_{I_1}(I_j) = 0$ for all j > 1.

14.23. Let A_1, \ldots, A_m and B_1, \ldots, B_m be subsets of an *n*-element set such that $|A_i \cap B_i|$ is odd for all $1 \leq i \leq m$, and $|A_i \cap B_j|$ is even for all $1 \leq i < j \leq m$. Show that then $m \leq n$.

14.24^(!) (Frankl–Wilson 1981). Let p be a prime, and n = 4p - 1. Consider the graph G = (V, E) whose vertex set V consists of all 0-1 vectors of length n with precisely 2p - 1 1's each; two vectors are adjacent if and only if the Euclidean distance between them is $\sqrt{2p}$. Show that G has no independent set of size larger than $\sum_{i=0}^{p-1} {n \choose i}$.

Hint: Use Exercise 14.8 to show that two vectors from V are adjacent in G precisely when they share p-1 1's in common, and apply Theorem 14.14.

Comment: This construction was used by Frankl and Wilson (1981) to resolve an old problem proposed by H. Hadwiger in 1944: how many colors do we need in order to color the points of the *n*-dimensional Euclidean space \mathbb{R}^n so that each monochromatic set of points misses some distance? A set is said to miss *distance d* if no two of its points are at distance *d* apart from each other. Larman and Rogers (1972) proved that Hadwiger's problem reduces to the estimating the minimum number of colors $\chi(n)$ necessary to color the points of \mathbb{R}^n such that pairs of points of unit distance are colored differently. The graph G we just constructed shows that $\chi(n) \ge 2^{\Omega(n)}$ (see the next exercise). Kahn and Kalai (1993) used a similar construction to disprove another 60 years old and widely believed conjecture of K. Borsuk (1933) that every set of diameter one in ndimensional real space \mathbb{R}^n can be partitioned in at most n+1 disjoint pieces of smaller diameter. Kahn and Kalai presented an infinite sequence of examples where the minimum number of pieces grew as an exponential function of \sqrt{n} , rather than just as a linear function n+1, as conjectured. Interested reader can find these surprising solutions in the book of Babai and Frankl (1992).