14.22 ${ }^{(!)}$(Ray-Chaudhuri-Wilson 1975). Prove the following uniform version of Theorem 14.13: if A_{1}, \ldots, A_{m} is a k-uniform L-intersecting family of subsets of an n-element set, then $m \leqslant\binom{ n}{s}$, where $s=|L|$.

Sketch (Alon-Babai-Suzuki 1991): Start as in the proof of Theorem 14.13 and define the same polynomials f_{1}, \ldots, f_{m} of degree at most s. Associate with each subset I of $\{1, \ldots, n\}$ of cardinality $|I| \leqslant s-1$ the following polynomial of degree at most s :

$$
g_{I}(x)=\left(\left(\sum_{j=1}^{n} x_{j}\right)-k\right) \prod_{i \in I} x_{i}
$$

and observe that for any subset $S \subseteq\{1, \ldots, n\}, g_{I}(S) \neq 0$ if and only if $|S| \neq k$ and $S \supseteq I$. Use this property to show that the polynomials g_{I} together with the polynomials f_{i} are linearly independent. For this, assume

$$
\sum_{i=1}^{m} \lambda_{i} f_{i}+\sum_{|I| \leqslant s-1} \mu_{I} g_{I}=0
$$

for some $\lambda_{i}, \mu_{I} \in \mathbb{R}$. Substitute A_{j} 's for the variables in this equation to show that $\lambda_{j}=0$ for every $j=1, \ldots, m$. What remains is a relation among the g_{I}. To show that this relation must be also trivial, assume the opposite and re-write this relation as $\mu_{1} g_{I_{1}}+\cdots+\mu_{t} g_{I_{t}}=0$ with all $\mu_{i} \neq 0$ and $\left|I_{1}\right| \geqslant\left|I_{j}\right|$ for all $j>1$. Show that then $g_{I_{1}}\left(I_{1}\right) \neq 0$ and $g_{I_{1}}\left(I_{j}\right)=0$ for all $j>1$.
14.23. Let A_{1}, \ldots, A_{m} and B_{1}, \ldots, B_{m} be subsets of an n-element set such that $\left|A_{i} \cap B_{i}\right|$ is odd for all $1 \leqslant i \leqslant m$, and $\left|A_{i} \cap B_{j}\right|$ is even for all $1 \leqslant i<$ $j \leqslant m$. Show that then $m \leqslant n$.
$\mathbf{1 4 . 2 4}^{(!)}$(Frankl-Wilson 1981). Let p be a prime, and $n=4 p-1$. Consider the graph $G=(V, E)$ whose vertex set V consists of all 0-1 vectors of length n with precisely $2 p-11$'s each; two vectors are adjacent if and only if the Euclidean distance between them is $\sqrt{2 p}$. Show that G has no independent set of size larger than $\sum_{i=0}^{p-1}\binom{n}{i}$.

Hint: Use Exercise 14.8 to show that two vectors from V are adjacent in G precisely when they share $p-1$ 1's in common, and apply Theorem 14.14.
Comment: This construction was used by Frankl and Wilson (1981) to resolve an old problem proposed by H. Hadwiger in 1944: how many colors do we need in order to color the points of the n-dimensional Euclidean space \mathbb{R}^{n} so that each monochromatic set of points misses some distance? A set is said to miss distance d if no two of its points are at distance d apart from each other. Larman and Rogers (1972) proved that Hadwiger's problem reduces to the estimating the minimum number of colors $\chi(n)$ necessary to color the points of \mathbb{R}^{n} such that pairs of points of unit distance are colored differently. The graph G we just constructed shows that $\chi(n) \geqslant 2^{\Omega(n)}$ (see the next exercise). Kahn and Kalai (1993) used a similar construction to disprove another 60 years old and widely believed conjecture of K. Borsuk (1933) that every set of diameter one in n dimensional real space R^{n} can be partitioned in at most $n+1$ disjoint pieces of smaller diameter. Kahn and Kalai presented an infinite sequence of examples where the minimum number of pieces grew as an exponential function of \sqrt{n}, rather than just as a linear function $n+1$, as conjectured. Interested reader can find these surprising solutions in the book of Babai and Frankl (1992).

