
184 14. The Basic Method

Proof of Claim 14.20. Suppose not. Then for some v, v′ ∈ A we have u+ v =
u′ + v′, and hence, v + v′ = u+ u′. Let c, c′ be the vectors from C for which
u = c1v1 + · · ·+ ckvk and u′ = c′1v1 + · · ·+ c′kvk. Then

v + v′ = u+ u′ = (c1 + c′1)v1 + (c2 + c′2)v2 + · · ·+ (ck + c′k)vk.

Since vectors c and c′ differ in at least three coordinates, we have on the
right-hand side the sum of at least three vectors, say vi1 + · · · + vil , with
l > 3. But then in the equation (14.6) we can replace these three (or more)
vectors vi1 , . . . , vil by two vectors v, v′, which contradicts the minimality of
k. ut

The same argument also implies that no two distinct vectors c, c′ ∈ C can
lead to one and the same vector u ∈ B, which means that |B| = |C|.

This, together with Claim 14.20, implies

|A| · |C| = |A| · |B| =
∑

u∈B
|u+A| =

∣∣∣∣∣
⋃

u∈B
(u+A)

∣∣∣∣∣ 6 |spanA| .

Hence, log2 |C| 6 log2(1/α) which, together with Claim 14.19, yields the
desired upper bound (14.5) on k. ut

14.5 The flipping cards game

There are situations in theory of computing, where switching to the linear
algebra language alone can lead to interesting results. In particular, linear
combination and/or scalar product can often be used to encode some useful
information about the input vectors which, in its turn, can lead to surprisingly
efficient algorithms.

Suppose that we have two 0-1 vectors u = (u1, . . . , un) and v = (v1, . . . , vn)
of length n. We want to decide whether u = v, but our access to the bits is
very limited: at any moment we can see at most one bit of each pair of the
bits ui and vi. We can imagine the corresponding bits to be written on two
sides of a card, so that we can see all the cards, but only one side of each
card:

1 0 0 1 1

A probe consists in flipping of one or more of the cards. After every probe
we can write down some information but the memory is not reusable – after
the next probe we have to use new memory (i.e., we cannot wipe it out).
Moreover, this is the only memory for us: seeing the information written here
(but not the cards themselves), we ask to flip some of the cards; seeing the
actual values of the cards and using the current information from the memory,

14.5 The flipping cards game 185

we either give an answer or we write some additional bits of information in
the memory; after that the cards are closed for us, and we make the next
probe.

Suppose we are charged for every bit of memory that we use but not for
the number of probes. The goal is to decide if both sides of all cards are the
same using as little of memory as possible. Of course, n bits of memory are
always enough: simply write u in the memory, and flip all the cards to see
v. Can we do better? To enjoy the next two results, the reader is invited to
stop for a moment and try to imagine a protocol which uses less than n bits
of memory.

Theorem 14.21. Let n = r2 for some r > 1. It is possible to test the equality
of two vectors in {0, 1}n using only r+1 probes and writing down only r bits
in the memory.

Proof. The following protocol is due to J. Edmonds and R. Impagliazzo.
Split the given vectors u and v into r pieces of length r: u = (u1, . . . , ur) and
v = (v1, . . . , vr). In the first probe look at vector u and compute the vector

w0 u1 + u2 + · · ·+ ur,

where the sum is over F2. Write down this vector w0 in the memory (using
r bits), and make subsequent r probes as follows. During the ith probe flip
the cards of the ith piece; compute the vector

wi u1 + · · ·+ ui−1 + vi + ui+1 + · · ·+ ur

and just test if the obtained vector wi coincides with the vector w0 (written
in the memory). Answer “u = v” if all the vectors w1, . . . , wr coincide with
w0, and “u 6= v” otherwise. If we answer “u = v”, we know that, after the
first probe, u1+u2+ · · ·+ur = v1+u2+ · · ·+ur and hence u1 = v1; the same
argument is valid for other probes, hence u = v and the protocol is correct.

ut
Using the language of scalar products, Pudlák and Sgall (1997) have

shown that, in fact, O((log n)2) bits are enough.

Theorem 14.22. It is possible to test the equality of two vectors in {0, 1}n
using only O(log n) probes and writing down only O(log n) bits in the memory
about each probe.

Proof. Each probe corresponds to a subset I ⊆ {1, . . . , n}; after this probe we
see n bits: |I| bits {ui : i ∈ I} of u and n− |I| bits {vi : i 6∈ I} of v. We think
of u and v as 0-1 vectors in real vector space R

n. The idea is to compute (a
square of) the Euclidean distance

‖u− v‖2 = 〈u, u〉+ 〈v, v〉 − 2 〈u, v〉

=
n∑

i=1

u2
i +

n∑

i=1

v2
i − 2

(

n∑

i=1

ui

)
·
(

n∑

i=1

vi

)
−
∑

i6=j

uivj

186 14. The Basic Method

of u and v, and check if it is 0. We compute 〈u, u〉 and 〈v, v〉 each using
one probe (probe I = {1, . . . , n} for 〈u, u〉 and probe I = ∅ for 〈v, v〉) and
dlog(n+1)e bits of memory (to write down these two numbers between 0 and
n). It remains to compute the product 〈u, v〉 =∑n

i=1 uivi.
To do this, we first compute the product N (

∑n
i=1 ui) (

∑n
i=1 vi) using

the same probes and additional 2dlog(n+1)e bits of the memory (to write the
value of this product which lies between 0 and n2). To compute the desired
product 〈u, v〉 we need to subtract from N the sum

∑
i6=j uivj of cross-terms.

This is easily done using 2dlog ne probes: choose them so that each of the
cross-terms can be computed by one of them, and for each probe sum all
these terms assigned to it. After each of these probes we write the resulting
partial sum using O(log n) bits of memory. ut

Exercises

14.1.− Prove the Pythagoras theorem: if the vectors u, v are orthogonal,
then ‖u+ v‖2 = ‖u‖2 + ‖v‖2.
14.2.− Show that the minimal distance of a linear code coincides with the
minimum weight of its non-zero vector. Hint: Every linear code contains the zero

vector.

14.3. Prove the following stronger version of Proposition 14.17. Let C be a
linear code of length n and minimal distance k + 1 and let C⊥ be its dual.
Then for every subset S of l 6 k coordinates, every 0-1 string of length l
appears as a projection of C⊥ onto S one and the same number of times.

Hint: Take a matrix whose rows form a basis of C⊥, observe that every k columns
of this matrix are linearly independent and use Proposition 14.3.

14.4.− Let V ⊆ F
n
2 be a subspace of dimension d. Show that |V | = 2d.

14.5.− Let F be a family of subsets of an n-element set such that: (i) every
set of F has an even number of elements, and (ii) each pair of sets share an
even number of elements. Construct such a family with at least 2bn/2c sets.

14.6 (Babai–Frankl 1992). Show that the upper bound 2bn/2c in the previous
exercise cannot be improved.

Hint: Let S be the set of incidence vectors of all sets in F , and let U the span of
this set (over F2). Argue that the rules (i) and (ii) imply that U is a subspace of
U⊥, and apply Proposition 14.2.

14.7.(!) Prove the following “Oddtown Theorem” (see Babai and Frankl
(1992) for the explanation of this name). Let F be a family of subsets of
an n-element set such that: (i) every set of F has an odd number of elements,
and (ii) each pair of sets share an even number of elements. Prove that then
|F| 6 n. Compare this with Exercise 14.5.

Hint: The incidence vectors of sets in F are linear independent over F2.

