
172 14. The Basic Method

In cases when V = F
n for some field F, there is a particularly elegant and

explicit choice of |F| points in general position, using the so-called moment
curve. This curve is defined as the range of the function

F 3 a 7→ m(a) 
(
1, a, a2, . . . , an−1

)
∈ F

n.

Lemma 14.5. Let V = F
n and |F| > n. Then the set of |F| vectors m(a),

a ∈ F, is in general position.

Proof. For n distinct elements a1, . . . , an ∈ F, consider the determinant of
the corresponding n×n matrix with rows m(ai). This determinant is known
as a Vandermonde determinant (cf. Exercise 14.11); its value is

∏

16i<j≤n

(aj − ai) 6= 0.

Therefore the rows m(ai) are linearly independent (consult Exercise 14.12 for
this last conclusion). ut

Let us now look how the linear algebra argument works in concrete situ-
ations.

14.2 Spaces of incidence vectors

Suppose we are given a family F of sets satisfying some conditions. We want
to know how many sets such a family can have. In some situations it is
sufficient to associate sets to their incidence vectors and show that these
vectors are linearly independent.

14.2.1 Fisher’s inequality

Suppose that each two sets of our family share the same number of elements.
How large can such a family be? The answer is given by a fundamental result
of design theory – known as Fisher’s inequality.

Theorem 14.6 (Fisher’s inequality). Let A1, . . . , Am be distinct subsets of
{1, . . . , n} such that |Ai ∩Aj | = k for some fixed 1 6 k 6 n and every i 6= j.
Then m 6 n.

Proof. Let v1, . . . , vm ∈ {0, 1}n be incidence vectors of A1, . . . , Am. By the
linear algebra bound (Proposition 14.1) it is enough to show that these vec-
tors are linearly independent over the reals. Assume the contrary, i.e., that
the linear relation

∑m
i=1 λivi = 0 exists, with not all coefficients being zero.

Obviously, 〈vi, vj〉 = |Ai| if j = i, and 〈vi, vj〉 = k if j 6= i. Consequently,



14.2 Spaces of incidence vectors 173

0 =

( m∑

i=1

λivi

)( m∑

j=1

λjvj

)
=

m∑

i=1

λ2
i 〈vi, vi〉+

∑

16i6=j6m

λiλj 〈vi, vj〉

=

m∑

i=1

λ2
i |Ai|+

∑

16i6=j6m

λiλjk =

m∑

i=1

λ2
i (|Ai| − k) + k ·

( m∑

i=1

λi

)2

.

Clearly, |Ai| > k for all i and |Ai| = k for at most one i, since otherwise
the intersection condition would not be satisfied. But then the right-hand is
greater than 0 (because the last sum can vanish only if at least two of the
coefficients λi are nonzero), a contradiction. ut

This theorem was first proved by the statistician R. A. Fisher in 1940 for
the case when k = 1 and all sets Ai have the same size (such configurations are
known as balanced incomplete block designs). In 1948, de Bruijn and Erdős
relaxed the uniformity condition for the sets Ai (see Theorem 13.4). This
was generalized by R. C. Bose in 1949, and later by several other authors.
But it was the two-page paper of Bose where the linear argument was first
applied to solve a combinatorial problem. The general version, stated above,
was first proved by Majumdar (1953); the proof we presented is a variation
of a simplified argument found in Babai and Frankl (1992).

14.2.2 Inclusion matrices

In Chap. 11 we have proved a fundamental result concerning the Vapnik–
Chervonenkis dimension (see Theorem 11.1). Let us restate this result in
terms of set systems.

Let F be a family of subsets of an n-element set X. Such a family is
(n, k)-dense if there is a subset Y ⊆ X of cardinality |Y | = k such that every
subset Z of Y occurs as Z = E ∩ Y for some E ∈ F .

Theorem 14.7. Let F be a family of subsets of an n-element set X. If F
has more than

∑k−1
i=0

(
n
i

)
members, then F is (n, k)-dense.

We presented two proofs of this result. One was by induction on n and
k, whereas the other was based on a striking observation made by Alon
(1983) and Frankl (1983) that for results like this, it is enough to consider
only those families which are downwards closed. Here we will give one more
proof, based on linear independence. The advantage of this argument is that
it can be easily modified to yield a similar result for uniform families (see
Exercise 14.14).

Proof (due to Frankl and Pach 1983). Let Y1, Y2, . . . , Yr, r =
∑k−1

i=0

(
n
i

)
, be an

enumeration of all subsets of X of size at most k − 1, and let E1, E2, . . . , Es

denote the members of F . Define an s× r 0-1 matrix M = (mij) by

mij = 1 if and only if Ei ⊇ Yj .


