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Fig. 12.1. Exposed bits are in boldface; a vector u follows vector v if u is below v.

from other members of B at the cost of exposing at most 2t additional bits
in each of them. We call these vectors good. By (i) and (ii), at the cost of
exposing at most log2m bits, each good vector v is already distinguished from
all the vectors in A following it. On the other hand, all the vectors preceding
v belong to B, and hence, v is distinguished also from them by at most 2t
additional bits. Thus, we have at least t2 − t good vectors v and for each of
them, wA(v) 6 2t+ log2m. ut

12.3 The isolation lemma

Let X be some set of n points, and F be a family of subsets of X. Let us
assign a weight w(x) to each point x ∈ X and let us define the weight of a set
E to be w(E) =

∑
x∈E w(x). It may happen that several sets of F will have

the minimal weight. If this is not the case, i.e., if minE∈F w(E) is achieved
by a unique E ∈ F , then we say that w is isolating for F .

The following lemma, due to K. Mulmuley, U. Vazirani, and V. Vazirani
(1987), says that – independent of what our family F actually is – a randomly
chosen w is isolating for F with large probability.

Lemma 12.5. Let F be a family of subsets of an n-element set X. Let
w : X → {1, . . . , N} be a random function, each w(x) independently and
uniformly chosen over the range. Then

Prob (w is isolating for F) > 1− n

N
.

Proof (Spencer 1995). For a point x ∈ X, set

α(x) = min
E∈F ;x6∈E

w(E)− min
E∈F ;x∈E

w(E − {x}).

A crucial observation is that evaluation of α(x) does not require knowledge
of w(x). As w(x) is selected uniformly from {1, . . . , N},

Prob (w(x) = α(x)) 6 1/N,
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so that

Prob (w(x) = α(x) for some x ∈ X) 6 n/N.

But if w had two minimal sets A,B ∈ F and x ∈ A−B, then

min
E∈F ;x6∈E

w(E) = w(B),

min
E∈F ;x∈E

w(E − {x}) = w(A)−w(x),

so w(x) = α(x). Thus, if w is not isolating for F then w(x) = α(x) for some
x ∈ X, and we have already established that the last event can happen with
probability at most n/N . ut

This lemma has many applications in the theory of computing. In parti-
cular, Mulmuley et al. (1987) used it to give an efficient randomized algorithm
for finding a perfect matching in a graph. This result is a standard demon-
stration of the isolation lemma. Below we describe an application of different
type: we use this lemma to show that, in the model of switching networks,
counting is not weaker than nondeterminism. (Comparing the power of dif-
ferent modes of computation is one of the main problems in the theory of
computing.)

A (switching-and-rectifier) network is a directed acyclic graph G = (V,E)
with two specified vertices s, t ∈ V , some of whose edges are labeled by
variables xi or their negations xi. The size of G is defined as the number of
vertices. Each input a = (a1, . . . , an) ∈ {0, 1}n defines a subgraph G(a) of
G obtained by deleting all edges whose labels are evaluated by a to 0, and
removing the labels from the remaining edges. Let |G(a)| denote the number
of s-t paths in G(a). A network G computes a boolean function in a natural
way: it accepts the input a if and only if |G(a)| > 0. This is a nondeterministic
mode of computation: we accept the input if and only if the labels of at least
one s-t path in G are consistent with it. A parity network is a network with
a counting mode of computation: we accept the input a if and only if the
number of s-t paths consistent with a is odd, i.e., iff |G(a)| = 1 (mod 2).

Using the isolation lemma one can show that, at the cost of a slight
increase of size, every (nondeterministic) network may be simulated by a
parity network.

Theorem 12.6 (Wigderson 1994). If a boolean function in n variables can
be computed by a network of size L, then it can also be computed by a parity
network of size at most n · Lc, where c 6 10.

Proof. Given a graph G = (V,E), a weight function w : E → {1, . . . , 2 · |E|}
and an integer l, define the (unweighted, layered) version Gl

w = (V ′, E′) of
G as follows. Replace every vertex u ∈ V by l + 1 new vertices u0, u1, . . . , ul
in V ′ (i.e., V ′ consists of l + 1 copies of V , arranged in layers). For every
edge (u, v) in E and every 0 6 i 6 l − w(e) we put an edge

(
ui, vi+w(e)

)
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in E′ (see Fig. 12.2). Let dw(G) denote the weight of the shortest s-t path
in G (the weight of a path is the sum of weights of its edges; a path is
shortest if its weight is minimal); hence, dw(G) 6 M  2|V | · |E| 6 |V |3 and
|V ′| 6 (1 + l)|V |.

e e21

Fig. 12.2. l = 4, w(e1) = 2 and w(e2) = 1

It can be shown (do this!) that the graphs Gl
w have the following proper-

ties:

(i) if G has no s-t path, then for every w and l, Gl
w has no s0-tl path;

(ii) if G has an s-t path and l = dw(G), then Gl
w has an s0-tl path. Moreover,

the later path is unique if the shortest s-t path in G is unique.

Now let G = (V,E) be a network computing a given boolean function
f(x1, . . . , xn). Say that a weight function w is good for an input a ∈ {0, 1}n
if either G(a) has no s-t paths or the shortest s-t path in G(a) is unique.
For each input a ∈ {0, 1}n, taking the family F to be all s-t paths in the
graph G(a), the isolation lemma (Lemma 12.5) implies that at least one-half
of all weight functions w are good for a. By a standard counting argument,
there exists a set W of |W | 6 log2(2

n) = n weight functions such that at
least one w ∈ W is good for every input. If w is good for a, then the graph
Gl

w(a) with l = dw (G(a)) has the properties (i) and (ii). For different inputs
a, the corresponding values of l may be different, but they all lie in the
interval 1, . . . ,M . Thus, there exist m 6 n ·M networks H1, . . . , Hm (with
each Hj = Gl

w for some w ∈ W and 1 6 l 6 M) such that, for every input
a ∈ {0, 1}n, the following holds:

(iii) if |G(a)| = 0, then |Hj(a)| = 0 for all j;

(iv) if |G(a)| > 0, then |Hj(a)| = 1 for at least one j.

Let sj , tj be the specified vertices in Hj , j = 1, . . . ,m. We construct
the desired parity network H as follows: to each Hj add the unlabeled edge
(sj , tj), identify tj and sj+1 for every j < m, and add the unlabeled edge
(s1, tm) (see Fig. 12.3).

It is easy to see that, for every input a ∈ {0, 1}n, |H(a)| = 1 (mod 2) if
and only if |G(a)| > 0. Indeed, if |G(a)| = 0, then by (iii), H(a) has precisely
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Fig. 12.3. Construction of the parity network H

two s1-tm paths (formed by added unlabeled edges). On the other hand, if
|G(a)| > 0, then by (iv), at least one Hj(a) has precisely one sj-tj path,
implying that the total number of s1-tm paths in H(a) is odd. Thus, H is a
parity network computing the same boolean function f . ut

For the sake of completeness, let us mention (without proof) the following
interesting “parity-type” isolation lemma proved by Valiant and Vazirani
(1986). View the cube {0, 1}n as n-dimensional vector space F

n
2 , and let

〈u, v〉 =∑n
i=1 uivi (mod 2) denote the scalar product over F2.

Lemma 12.7. Let S ⊆ {0, 1}n, |S| > 2. Let w1, . . . ,wn be chosen indepen-
dently from {0, 1}n at random. Then, with probability at least 1/4, there is
an i such that 〈v,w1〉 = . . . = 〈v,wi〉 = 0 for precisely one vector v ∈ S.

12.4 Isolation in politics: the dictator paradox

One of the problems of politics involves averaging out individual preferences
to reach decisions acceptable to society as a whole. In this section we will
prove one isolation-type result due to Arrow (1950) which shows that, under
some simple “democracy axioms” this is indeed a difficult task.

The simple process of voting can lead to surprisingly counterintuitive
paradoxes. For example, if three people vote for three candidates, giving the
rankings x < y < z, y < z < x, z < x < y, then a majority prefers y to
x (x < y), x to z (z < x) but also z to y (y < z). In general, we have the
following situation.

Suppose that I = {1, . . . , n} is a society consisting of a set of n individuals.
These individuals are to be offered a choice among a set X of options, for
example, by a referendum. We assume that each individual i has made her/his
mind up about the relative worth of the options. We can describe this by a
total order <i on X, for each i ∈ I, where x <i y means that the individual
i prefers option y to option x. So, after a referendum we have a set R = {<1

, . . . , <n} of total orders on X. A social choice function F takes such a set of
total orders as input and comes up with a “social preference” on X, i.e., with
some total order < on X. Being total means, in particular, that the order <
is transitive: if x < y and y < z then x < z.

Given a social choice function F , a dictator is an individual i0 ∈ I such
that for every referendum, the resulting social preference < coincides with


