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Fig. 12.1. Exposed bits are in boldface; a vector u follows vector v if u is below v.

from other members of B at the cost of exposing at most 2t additional bits
in each of them. We call these vectors good. By (i) and (ii), at the cost of
exposing at most log, m bits, each good vector v is already distinguished from
all the vectors in A following it. On the other hand, all the vectors preceding
v belong to B, and hence, v is distinguished also from them by at most 2t
additional bits. Thus, we have at least t2 — ¢ good vectors v and for each of
them, w4 (v) < 2t + logy m. O

12.3 The isolation lemma

Let X be some set of n points, and F be a family of subsets of X. Let us
assign a weight w(z) to each point € X and let us define the weight of a set
E to be w(E) =), .pw(z). It may happen that several sets of 7 will have
the minimal weight. If this is not the case, i.e., if mingcr w(E) is achieved
by a unique E € F, then we say that w is isolating for F.

The following lemma, due to K. Mulmuley, U. Vazirani, and V. Vazirani
(1987), says that — independent of what our family F actually is — a randomly
chosen w is isolating for F with large probability.

Lemma 12.5. Let F be a family of subsets of an m-element set X. Let
w: X — {1,...,N} be a random function, each w(x) independently and
uniformly chosen over the range. Then

n

Prob (w is isolating for F) > 1 — N

Proof (Spencer 1995). For a point z € X, set

R

A crucial observation is that evaluation of a(x) does not require knowledge
of w(z). As w(x) is selected uniformly from {1,..., N},

Prob (w(x) = a(x)) < 1/N,
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so that
Prob (w(x) = a(z) for some z € X) < n/N.

But if w had two minimal sets A, B € F and v € A — B, then

Ee%lalclng(E) = w(B),
Eé%iileEW(E —{z}) = w(4) - w(2),

so w(z) = a(x). Thus, if w is not isolating for F then w(z) = a(x) for some
x € X, and we have already established that the last event can happen with
probability at most n/N. O

This lemma has many applications in the theory of computing. In parti-
cular, Mulmuley et al. (1987) used it to give an efficient randomized algorithm
for finding a perfect matching in a graph. This result is a standard demon-
stration of the isolation lemma. Below we describe an application of different
type: we use this lemma to show that, in the model of switching networks,
counting is not weaker than nondeterminism. (Comparing the power of dif-
ferent modes of computation is one of the main problems in the theory of
computing.)

A (switching-and-rectifier) network is a directed acyclic graph G = (V, E)
with two specified vertices s,t € V, some of whose edges are labeled by
variables x; or their negations Z;. The size of G is defined as the number of
vertices. Each input a = (a1,...,a,) € {0,1}" defines a subgraph G(a) of
G obtained by deleting all edges whose labels are evaluated by a to 0, and
removing the labels from the remaining edges. Let |G(a)| denote the number
of s-t paths in G(a). A network G computes a boolean function in a natural
way: it accepts the input a if and only if |G(a)| > 0. This is a nondeterministic
mode of computation: we accept the input if and only if the labels of at least
one s-t path in G are consistent with it. A parity network is a network with
a counting mode of computation: we accept the input a if and only if the
number of s-t paths consistent with a is odd, i.e., iff |G(a)| = 1 (mod 2).

Using the isolation lemma one can show that, at the cost of a slight
increase of size, every (nondeterministic) network may be simulated by a
parity network.

Theorem 12.6 (Wigderson 1994). If a boolean function in n variables can
be computed by a network of size L, then it can also be computed by a parity
network of size at most n.- L¢, where ¢ < 10.

Proof. Given a graph G = (V, E), a weight function w : F — {1,...,2-|E|}
and an integer [, define the (unweighted, layered) version G! = (V', E’) of
G as follows. Replace every vertex u € V by [ + 1 new vertices ug, u1,...,u;
in V' (i.e., V' consists of [ + 1 copies of V, arranged in layers). For every
edge (u,v) in F and every 0 < i < I — w(e) we put an edge (ui,vier(e))
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in E' (see Fig. 12.2). Let d,,(G) denote the weight of the shortest s-t path
in G (the weight of a path is the sum of weights of its edges; a path is
shortest if its weight is minimal); hence, d,,(G) < M = 2|V|-|E| < |V]? and
V| < (1+D|V].

Fig. 12.2. [ =4, w(e1) =2 and w(ez) =1

It can be shown (do this!) that the graphs G, have the following proper-
ties:

(i) if G has no s-t path, then for every w and I, G, has no so-t; path;

(ii) if G has an s-t path and [ = d,,(G), then G', has an so-t; path. Moreover,
the later path is unique if the shortest s-t path in G is unique.

Now let G = (V, E) be a network computing a given boolean function
f(z1,...,2,). Say that a weight function w is good for an input a € {0,1}"
if either G(a) has no s-t paths or the shortest s-t path in G(a) is unique.
For each input a € {0,1}", taking the family F to be all s-¢ paths in the
graph G(a), the isolation lemma (Lemma 12.5) implies that at least one-half
of all weight functions w are good for a. By a standard counting argument,
there exists a set W of |[W| < log,(2") = n weight functions such that at
least one w € W is good for every input. If w is good for a, then the graph
G!,(a) with [ = d,, (G(a)) has the properties (i) and (ii). For different inputs
a, the corresponding values of [ may be different, but they all lie in the
interval 1,..., M. Thus, there exist m < n - M networks Hy,..., H,, (with
each H; = Giu for some w € W and 1 <1 < M) such that, for every input
a € {0,1}", the following holds:

(iii) if |G(a)| = 0, then |H;(a)| = 0 for all j;
(iv) if |G(a)| > 0, then |H;(a)| =1 for at least one j.

Let s;,t; be the specified vertices in H;, j = 1,...,m. We construct
the desired parity network H as follows: to each H; add the unlabeled edge
(sj,tj), identify ¢; and s;41 for every j < m, and add the unlabeled edge
(s1,tm) (see Fig. 12.3).

It is easy to see that, for every input a € {0,1}", |[H(a)| = 1 (mod 2) if
and only if |G(a)| > 0. Indeed, if |G(a)| = 0, then by (iii), H(a) has precisely
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Fig. 12.3. Construction of the parity network H

two s1-t,, paths (formed by added unlabeled edges). On the other hand, if
|G(a)| > 0, then by (iv), at least one Hj;(a) has precisely one s;-t; path,
implying that the total number of s;-t,,, paths in H(a) is odd. Thus, H is a
parity network computing the same boolean function f. ad

For the sake of completeness, let us mention (without proof) the following
interesting “parity-type” isolation lemma proved by Valiant and Vazirani
(1986). View the cube {0,1}" as n-dimensional vector space FJ, and let
(u,v) = >, u;v; (mod2) denote the scalar product over Fy.

Lemma 12.7. Let S C {0,1}", |S| > 2. Let wy,...,w, be chosen indepen-
dently from {0,1}" at random. Then, with probability at least 1/4, there is
an i such that (v,wq) = ... = (v,w;) =0 for precisely one vector v € S.

12.4 Isolation in politics: the dictator paradox

One of the problems of politics involves averaging out individual preferences
to reach decisions acceptable to society as a whole. In this section we will
prove one isolation-type result due to Arrow (1950) which shows that, under
some simple “democracy axioms” this is indeed a difficult task.

The simple process of voting can lead to surprisingly counterintuitive
paradoxes. For example, if three people vote for three candidates, giving the
rankings © < y < 2z, y < z < z, z < x < y, then a majority prefers y to
z (x <y),xtoz(z <) but also z to y (y < z). In general, we have the
following situation.

Suppose that I = {1,...,n} is a society consisting of a set of n individuals.
These individuals are to be offered a choice among a set X of options, for
example, by a referendum. We assume that each individual ¢ has made her /his
mind up about the relative worth of the options. We can describe this by a
total order <; on X, for each ¢ € I, where x <; y means that the individual
i prefers option y to option z. So, after a referendum we have a set R = {<;
,. .., <n} of total orders on X. A social choice function F takes such a set of
total orders as input and comes up with a “social preference” on X, i.e., with
some total order < on X. Being total means, in particular, that the order <
is transitive: if x < y and y < z then z < z.

Given a social choice function F', a dictator is an individual iy € I such
that for every referendum, the resulting social preference < coincides with



