
10.6 Monotone circuits 123

For two boolean functions f and g in n variables, we write f 6 g if
f(x) 6 g(x) for all x ∈ {0, 1}n.

Definition 10.15. Let f(x1, . . . , xn) be a monotone boolean function. We
say that f is t-simple if for every pair of integers 2 6 s, r 6 n there exists a
monotone s-CNF C consisting of at most t·(r−1)s clauses, a monotone r-DNF
D consisting of at most t · (s − 1)r monomials, and a subset I ⊆ {1, . . . , n}
of |I| 6 s− 1 indices, so that either

C 6 f or f 6 D ∨
(∨

i∈I
xi

)

(or both) hold.

We have the following general lower bounds criterion for monotone
boolean circuits. In fact, the same criterion holds for more general circuits,
where we can use as gates not just boolean And and Or but also any real-
valued functions ϕ : R

2 → R such that ϕ(x1, x2) 6 ϕ(y1, y2) whenever x1 6 y1
and x2 6 y2. A similar criterion holds also with unbounded fan-in boolean
gates (see Jukna 1999 for details).

Theorem 10.16. If a monotone boolean function can be computed by a
monotone circuit of size t, then it is t-simple.

Proof. Given a monotone circuit, the idea is to approximate every interme-
diate gate (more exactly – the function computed at the gate) by an (s− 1)-
And-Or and an (r−1)-Or-And, and to show that doing so we do not introduce
too many errors. If the function computed by the whole circuit is not t-simple,
then it cannot be approximated well by such an And-Or/Or-And pair mean-
ing that every such pair must make many errors. Since the number of errors
introduced at each separate gate is small, the total number of gates must be
large.

To make as few errors at each gate as possible we will use the following
simple fact which allows us to convert an (s−1)-And-Or into a small (r−1)-
Or-And and vice versa (cf. also Lemmas 7.4 and 10.7).

Claim 10.17. For every (s − 1)-And-Or f0 there is an (r − 1)-Or-And f1

and an r-DNF D such that |D| 6 (s− 1)r and

f1 6 f0 6 f1 ∨D.
Dually, for every (r − 1)-Or-And f1 there is an (s − 1)-And-Or f0 and an
s-CNF C such that |C| 6 (r − 1)s and

f0 ∧ C 6 f1 6 f0.

Proof. We prove the first claim (the second is dual). Let f0 = S1∧S2∧· · ·∧Sm
be an (s − 1)-And-Or. We associate with f0 the following tree T of fan-out
at most s− 1. The first node of T corresponds to the first clause S1, and the

124 10. Blocking Sets and the Duality

outgoing |S1| edges are labeled by the variables from S1. Suppose we have
reached a node v, and let M be the monomial consisting of the labels of
edges from the root to v. If M intersects all the clauses of f0, then v is a leaf.
Otherwise, let Si be the first clause such that M ∩ Si = ∅. Then the node v
has |Si| outgoing edges labeled by the variables in Si.

Each path from the root to a leaf of T gives us a monomial M which
intersects all the clauses of f0. The Or of paths in T from the root to leafs
of height at most r− 1 give us the desired (r− 1)-Or-And f1. It is clear that
f1 6 f0 because each monomial of f1 intersects all the clauses of f0. The OR
of paths to the nodes of height r give us the desired r-DNF D. This DNF has
at most (s− 1)r monomials since every node of T has fan-out at most s− 1.

ut
We now turn to the actual proof of Theorem 10.16. Let F (x1, . . . , xn) be

a monotone boolean function, and suppose that F can be computed by a
monotone circuit of size t. Our goal is to show that then the function F is
t-simple. To do this, fix an arbitrary pair of integers 2 6 s, r 6 n.

Let f = g ∗ h be a gate in our circuit computing F . By an approximator
of this gate we will mean a pair f0, f1, where f0 is an (s− 1)-And-Or (a left
approximator of f) and f1 is an (r − 1)-Or-And (a right approximator of f)
such that f1 6 f0.

We say that such an approximator f0, f1 of f introduces a new error on
input x ∈ {0, 1}n if the approximators of g and of h did not make an error
on x, but the approximator of f does. That is, g0(x) = g1(x) = g(x) and
h0(x) = h1(x) = h(x), but either f0(x) 6= f(x) or f1(x) 6= f(x).

We define approximators inductively as follows.

Case 1: f is an input variable, say, f = xi.
In this case we take f0 = f1 ­ xi. It is clear that this approximator

introduces no errors.

Case 2: f is an And gate, f = g ∧ h.
In this case we take f0 ­ g0 ∧ h0 as the left approximator of f ; hence,

f0 introduces no new errors. To define the right approximator of f we use
Claim 10.17 to convert f0 into an (r− 1)-Or-And f1; hence, f1 6 f0. Let Ef

be the set of inputs on which f1 introduces a new error, i.e.,

Ef ­ {x : f(x) = f0(x) = 1 but f1(x) = 0} .
By Claim 10.17, all these errors can be “corrected” by adding a relatively
small r-DNF: there is an r-DNF D such that |D| 6 (s − 1)r and D(x) = 1
for all x ∈ Ef .

Case 3: f is an Or gate, f = g ∨ h.
In this case we take f1 ­ g1 ∨ h1 as the right approximator of f ; hence,

f1 introduces no new errors. To define the left approximator of f we use
Claim 10.17 to convert f1 into an (s− 1)-And-Or f0; hence, f1 6 f0. Let Ef

be the set of inputs on which f0 introduces a new error, i.e.,

10.6 Monotone circuits 125

Ef ­ {x : f(x) = f1(x) = 0 but f0(x) = 1} .
By Claim 10.17, all these errors can be “corrected” by adding a relatively
small s-CNF: there is an r-CNF C such that |C| 6 (r− 1)s and C(x) = 0 for
all x ∈ Ef .

Proceeding in this way we will reach the last gate of our circuit computing
the given function F . Let F0, F1 be its approximator, and let E be the set
of all inputs x ∈ {0, 1}n on which F differs from at least of one of the
functions F0 or F1. Since at input gates (= variables) no error was made,
for every such input x ∈ E, the corresponding error should be introduced at
some intermediate gate. That is, for every x ∈ E there is a gate f such that
x ∈ Ef (approximator of f introduces an error on x for the first time). But
we have shown that, for each gate, all these errors can be corrected by adding
an s-CNF of size at most (r− 1)s or an r-DNF of size at most (s− 1)r. Since
we have only t gates, all such errors x ∈ E can be corrected by adding an
s-CNF C of size at most t ·(r−1)s and an r-DNF D of size at most t ·(s−1)r,
that is, for all inputs x ∈ {0, 1}n, we have

C(x) ∧ F0(x) 6 F (x) 6 F1(x) ∨D(x).

This already implies that the function F is t-simple. Indeed, if the CNF F0

is empty (i.e., if F0 ≡ 1) then C 6 F , and we are done. Otherwise, F0

must contain some clause S of length at most s − 1, say, S =
∨

i∈I xi for
some I of size |I| 6 s − 1. Since F0 6 S, the condition F1 6 F0 implies
F 6 F1 ∨ D 6 F0 ∨ D 6 S ∨ D, as desired. This completes the proof of
Theorem 10.16. ut

10.6.2 Explicit lower bounds

In order to show that a given boolean function cannot be computed by a
monotone circuit of size at most t, it is enough, by Theorem 10.16, to show
that the function is not t-simple for at least one(!) choice of parameters s
and r. In the following three sections we demonstrate how this can be used
to derive exponential lower bounds for concrete boolean functions.

In applications, boolean functions f are usually defined as set-theoretic
predicates. In this case we say that f accepts a set S ⊆ {1, . . . , n} if and
only if f accepts its incidence vector. It is therefore convenient to also have
a set-theoretic definition of t-simplicity, which we give now.

A set S is a positive input for f if f(S) = 1, and a negative input if f(S) =
0, where S is the complement of S. Put otherwise, a positive (negative) input
is a set of variables which, if assigned the value 1 (0), forces the function
to take the value 1 (0) regardless of the values assigned to the remaining
variables. Note that one set S can be both positive and negative input! For
example, if f(x1, x2, x3) outputs 1 iff x1+x2+x3 > 2, then S = {1, 2} is both
positive and negative input for f , because f(1, 1, x3) = 1 and f(0, 0, x3) = 0.

The following is a set-theoretic equivalent of Definition 10.15 (show this):

